solidity/test/libyul/Parser.cpp

574 lines
18 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @date 2017
* Unit tests for parsing Yul.
*/
#include <test/Options.h>
#include <test/libsolidity/ErrorCheck.h>
#include <test/libyul/Common.h>
#include <libyul/AsmParser.h>
#include <libyul/AsmAnalysis.h>
#include <libyul/AsmAnalysisInfo.h>
#include <libyul/Dialect.h>
#include <liblangutil/Scanner.h>
#include <liblangutil/ErrorReporter.h>
#include <boost/optional.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <string>
#include <memory>
using namespace std;
using namespace dev;
using namespace langutil;
namespace yul
{
namespace test
{
namespace
{
bool parse(string const& _source, Dialect const& _dialect, ErrorReporter& errorReporter)
{
try
{
auto scanner = make_shared<Scanner>(CharStream(_source, ""));
auto parserResult = yul::Parser(errorReporter, _dialect).parse(scanner, false);
if (parserResult)
{
yul::AsmAnalysisInfo analysisInfo;
return (yul::AsmAnalyzer(
analysisInfo,
errorReporter,
_dialect
)).analyze(*parserResult);
}
}
catch (FatalError const&)
{
BOOST_FAIL("Fatal error leaked.");
}
return false;
}
boost::optional<Error> parseAndReturnFirstError(string const& _source, Dialect const& _dialect, bool _allowWarnings = true)
{
ErrorList errors;
ErrorReporter errorReporter(errors);
if (!parse(_source, _dialect, errorReporter))
{
BOOST_REQUIRE(!errors.empty());
BOOST_CHECK_EQUAL(errors.size(), 1);
return *errors.front();
}
else
{
// If success is true, there might still be an error in the assembly stage.
if (_allowWarnings && Error::containsOnlyWarnings(errors))
return {};
else if (!errors.empty())
{
if (!_allowWarnings)
BOOST_CHECK_EQUAL(errors.size(), 1);
return *errors.front();
}
}
return {};
}
bool successParse(std::string const& _source, Dialect const& _dialect = Dialect::yul(), bool _allowWarnings = true)
{
return !parseAndReturnFirstError(_source, _dialect, _allowWarnings);
}
Error expectError(std::string const& _source, Dialect const& _dialect = Dialect::yul(), bool _allowWarnings = false)
{
auto error = parseAndReturnFirstError(_source, _dialect, _allowWarnings);
BOOST_REQUIRE(error);
return *error;
}
}
#define CHECK_ERROR_DIALECT(text, typ, substring, dialect) \
do \
{ \
Error err = expectError((text), dialect, false); \
BOOST_CHECK(err.type() == (Error::Type::typ)); \
BOOST_CHECK(dev::solidity::searchErrorMessage(err, (substring))); \
} while(0)
#define CHECK_ERROR(text, typ, substring) CHECK_ERROR_DIALECT(text, typ, substring, Dialect::yul())
BOOST_AUTO_TEST_SUITE(YulParser)
BOOST_AUTO_TEST_CASE(smoke_test)
{
BOOST_CHECK(successParse("{ }"));
}
BOOST_AUTO_TEST_CASE(vardecl)
{
BOOST_CHECK(successParse("{ let x:u256 := 7:u256 }"));
}
BOOST_AUTO_TEST_CASE(vardecl_bool)
{
BOOST_CHECK(successParse("{ let x:bool := true:bool }"));
BOOST_CHECK(successParse("{ let x:bool := false:bool }"));
}
BOOST_AUTO_TEST_CASE(vardecl_empty)
{
BOOST_CHECK(successParse("{ let x:u256 }"));
}
BOOST_AUTO_TEST_CASE(assignment)
{
BOOST_CHECK(successParse("{ let x:u256 := 2:u256 let y:u256 := x }"));
}
BOOST_AUTO_TEST_CASE(period_in_identifier)
{
BOOST_CHECK(successParse("{ let x.y:u256 := 2:u256 }"));
}
BOOST_AUTO_TEST_CASE(period_not_as_identifier_start)
{
CHECK_ERROR("{ let .y:u256 }", ParserError, "Expected identifier but got '.'");
}
BOOST_AUTO_TEST_CASE(period_in_identifier_spaced)
{
CHECK_ERROR("{ let x. y:u256 }", ParserError, "Expected ':' but got identifier");
CHECK_ERROR("{ let x .y:u256 }", ParserError, "Expected ':' but got '.'");
CHECK_ERROR("{ let x . y:u256 }", ParserError, "Expected ':' but got '.'");
}
BOOST_AUTO_TEST_CASE(period_in_identifier_start)
{
BOOST_CHECK(successParse("{ x.y(2:u256) function x.y(a:u256) {} }"));
}
BOOST_AUTO_TEST_CASE(period_in_identifier_start_with_comment)
{
BOOST_CHECK(successParse("/// comment\n{ x.y(2:u256) function x.y(a:u256) {} }"));
}
BOOST_AUTO_TEST_CASE(vardecl_complex)
{
BOOST_CHECK(successParse("{ function add(a:u256, b:u256) -> c:u256 {} let y:u256 := 2:u256 let x:u256 := add(7:u256, add(6:u256, y)) }"));
}
BOOST_AUTO_TEST_CASE(blocks)
{
BOOST_CHECK(successParse("{ let x:u256 := 7:u256 { let y:u256 := 3:u256 } { let z:u256 := 2:u256 } }"));
}
BOOST_AUTO_TEST_CASE(function_definitions)
{
BOOST_CHECK(successParse("{ function f() { } function g(a:u256) -> x:u256 { } }"));
}
BOOST_AUTO_TEST_CASE(function_definitions_multiple_args)
{
BOOST_CHECK(successParse("{ function f(a:u256, d:u256) { } function g(a:u256, d:u256) -> x:u256, y:u256 { } }"));
}
BOOST_AUTO_TEST_CASE(function_calls)
{
BOOST_CHECK(successParse("{ function f(a:u256) -> b:u256 {} function g(a:u256, b:u256, c:u256) {} function x() { g(1:u256, 2:u256, f(3:u256)) x() } }"));
}
BOOST_AUTO_TEST_CASE(tuple_assignment)
{
BOOST_CHECK(successParse("{ function f() -> a:u256, b:u256, c:u256 {} let x:u256, y:u256, z:u256 := f() }"));
}
BOOST_AUTO_TEST_CASE(instructions)
{
CHECK_ERROR("{ pop }", ParserError, "Call or assignment expected.");
}
BOOST_AUTO_TEST_CASE(push)
{
CHECK_ERROR("{ 0x42:u256 }", ParserError, "Call or assignment expected.");
}
BOOST_AUTO_TEST_CASE(assign_from_stack)
{
CHECK_ERROR("{ =: x:u256 }", ParserError, "Literal or identifier expected.");
}
BOOST_AUTO_TEST_CASE(empty_call)
{
CHECK_ERROR("{ () }", ParserError, "Literal or identifier expected.");
}
BOOST_AUTO_TEST_CASE(tokens_as_identifers)
{
BOOST_CHECK(successParse("{ let return:u256 := 1:u256 }"));
BOOST_CHECK(successParse("{ let byte:u256 := 1:u256 }"));
BOOST_CHECK(successParse("{ let address:u256 := 1:u256 }"));
BOOST_CHECK(successParse("{ let bool:u256 := 1:u256 }"));
}
BOOST_AUTO_TEST_CASE(lacking_types)
{
CHECK_ERROR("{ let x := 1:u256 }", ParserError, "Expected ':' but got ':='");
CHECK_ERROR("{ let x:u256 := 1 }", ParserError, "Expected ':' but got '}'");
CHECK_ERROR("{ function f(a) {} }", ParserError, "Expected ':' but got ')'");
CHECK_ERROR("{ function f(a:u256) -> b {} }", ParserError, "Expected ':' but got '{'");
}
BOOST_AUTO_TEST_CASE(invalid_types)
{
/// testing invalid literal
/// NOTE: these will need to change when types are compared
CHECK_ERROR("{ let x:bool := 1:invalid }", TypeError, "\"invalid\" is not a valid type (user defined types are not yet supported).");
/// testing invalid variable declaration
CHECK_ERROR("{ let x:invalid := 1:bool }", TypeError, "\"invalid\" is not a valid type (user defined types are not yet supported).");
CHECK_ERROR("{ function f(a:invalid) {} }", TypeError, "\"invalid\" is not a valid type (user defined types are not yet supported).");
}
BOOST_AUTO_TEST_CASE(number_literals)
{
BOOST_CHECK(successParse("{ let x:u256 := 1:u256 }"));
CHECK_ERROR("{ let x:u256 := .1:u256 }", ParserError, "Invalid number literal.");
CHECK_ERROR("{ let x:u256 := 1e5:u256 }", ParserError, "Invalid number literal.");
CHECK_ERROR("{ let x:u256 := 67.235:u256 }", ParserError, "Invalid number literal.");
CHECK_ERROR("{ let x:u256 := 0x1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff:u256 }", TypeError, "Number literal too large (> 256 bits)");
}
BOOST_AUTO_TEST_CASE(builtin_types)
{
BOOST_CHECK(successParse("{ let x:bool := true:bool }"));
BOOST_CHECK(successParse("{ let x:u8 := 1:u8 }"));
BOOST_CHECK(successParse("{ let x:s8 := 1:u8 }"));
BOOST_CHECK(successParse("{ let x:u32 := 1:u32 }"));
BOOST_CHECK(successParse("{ let x:s32 := 1:s32 }"));
BOOST_CHECK(successParse("{ let x:u64 := 1:u64 }"));
BOOST_CHECK(successParse("{ let x:s64 := 1:s64 }"));
BOOST_CHECK(successParse("{ let x:u128 := 1:u128 }"));
BOOST_CHECK(successParse("{ let x:s128 := 1:s128 }"));
BOOST_CHECK(successParse("{ let x:u256 := 1:u256 }"));
BOOST_CHECK(successParse("{ let x:s256 := 1:s256 }"));
}
BOOST_AUTO_TEST_CASE(recursion_depth)
{
string input;
for (size_t i = 0; i < 20000; i++)
input += "{";
input += "let x:u256 := 0:u256";
for (size_t i = 0; i < 20000; i++)
input += "}";
CHECK_ERROR(input, ParserError, "recursion");
}
BOOST_AUTO_TEST_CASE(multiple_assignment)
{
CHECK_ERROR("{ let x:u256 function f() -> a:u256, b:u256 {} 123:u256, x := f() }", ParserError, "Variable name must precede \",\" in multiple assignment.");
CHECK_ERROR("{ let x:u256 function f() -> a:u256, b:u256 {} x, 123:u256 := f() }", ParserError, "Variable name must precede \":=\" in assignment.");
/// NOTE: Travis hiccups if not having a variable
char const* text = R"(
{
function f(a:u256) -> r1:u256, r2:u256 {
r1 := a
r2 := 7:u256
}
let x:u256 := 9:u256
let y:u256 := 2:u256
x, y := f(x)
}
)";
BOOST_CHECK(successParse(text));
}
BOOST_AUTO_TEST_CASE(if_statement)
{
BOOST_CHECK(successParse("{ if true:bool {} }"));
BOOST_CHECK(successParse("{ if false:bool { let x:u256 := 3:u256 } }"));
BOOST_CHECK(successParse("{ function f() -> x:bool {} if f() { let b:bool := f() } }"));
}
BOOST_AUTO_TEST_CASE(break_outside_of_for_loop)
{
CHECK_ERROR_DIALECT(
"{ let x if x { break } }",
SyntaxError,
"Keyword \"break\" needs to be inside a for-loop body.",
EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople())
);
}
BOOST_AUTO_TEST_CASE(continue_outside_of_for_loop)
{
CHECK_ERROR_DIALECT(
"{ let x if x { continue } }",
SyntaxError,
"Keyword \"continue\" needs to be inside a for-loop body.",
EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople())
);
}
BOOST_AUTO_TEST_CASE(for_statement)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
BOOST_CHECK(successParse("{ for {let i := 0} iszero(eq(i, 10)) {i := add(i, 1)} {} }", dialect));
}
BOOST_AUTO_TEST_CASE(for_statement_break)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
BOOST_CHECK(successParse("{ for {let i := 0} iszero(eq(i, 10)) {i := add(i, 1)} {break} }", dialect));
}
BOOST_AUTO_TEST_CASE(for_statement_break_init)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
CHECK_ERROR_DIALECT(
"{ for {let i := 0 break} iszero(eq(i, 10)) {i := add(i, 1)} {} }",
SyntaxError,
"Keyword \"break\" in for-loop init block is not allowed.",
dialect
);
}
BOOST_AUTO_TEST_CASE(for_statement_break_post)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
CHECK_ERROR_DIALECT(
"{ for {let i := 0} iszero(eq(i, 10)) {i := add(i, 1) break} {} }",
SyntaxError,
"Keyword \"break\" in for-loop post block is not allowed.",
dialect
);
}
BOOST_AUTO_TEST_CASE(for_statement_nested_break)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
CHECK_ERROR_DIALECT(
"{ for {let i := 0} iszero(eq(i, 10)) {} { function f() { break } } }",
SyntaxError,
"Keyword \"break\" needs to be inside a for-loop body.",
dialect
);
}
BOOST_AUTO_TEST_CASE(for_statement_continue)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
BOOST_CHECK(successParse("{ for {let i := 0} iszero(eq(i, 10)) {i := add(i, 1)} {continue} }", dialect));
}
BOOST_AUTO_TEST_CASE(for_statement_continue_fail_init)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
CHECK_ERROR_DIALECT(
"{ for {let i := 0 continue} iszero(eq(i, 10)) {i := add(i, 1)} {} }",
SyntaxError,
"Keyword \"continue\" in for-loop init block is not allowed.",
dialect
);
}
BOOST_AUTO_TEST_CASE(for_statement_continue_fail_post)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
CHECK_ERROR_DIALECT(
"{ for {let i := 0} iszero(eq(i, 10)) {i := add(i, 1) continue} {} }",
SyntaxError,
"Keyword \"continue\" in for-loop post block is not allowed.",
dialect
);
}
BOOST_AUTO_TEST_CASE(for_statement_nested_continue)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
CHECK_ERROR_DIALECT(
"{ for {let i := 0} iszero(eq(i, 10)) {} { function f() { continue } } }",
SyntaxError,
"Keyword \"continue\" needs to be inside a for-loop body.",
dialect
);
}
BOOST_AUTO_TEST_CASE(for_statement_continue_nested_init_in_body)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion::constantinople());
CHECK_ERROR_DIALECT(
"{ for {} 1 {} {let x for { continue } x {} {}} }",
SyntaxError,
"Keyword \"continue\" in for-loop init block is not allowed.",
dialect
);
}
BOOST_AUTO_TEST_CASE(for_statement_continue_nested_body_in_init)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion{});
BOOST_CHECK(successParse("{ for {let x for {} x {} { continue }} 1 {} {} }", dialect));
}
BOOST_AUTO_TEST_CASE(for_statement_break_nested_body_in_init)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion{});
BOOST_CHECK(successParse("{ for {let x for {} x {} { break }} 1 {} {} }", dialect));
}
BOOST_AUTO_TEST_CASE(for_statement_continue_nested_body_in_post)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion{});
BOOST_CHECK(successParse("{ for {} 1 {let x for {} x {} { continue }} {} }", dialect));
}
BOOST_AUTO_TEST_CASE(for_statement_break_nested_body_in_post)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion{});
BOOST_CHECK(successParse("{ for {} 1 {let x for {} x {} { break }} {} }", dialect));
}
BOOST_AUTO_TEST_CASE(function_defined_in_init_block)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion{});
BOOST_CHECK(successParse("{ for { } 1 { function f() {} } {} }", dialect));
BOOST_CHECK(successParse("{ for { } 1 {} { function f() {} } }", dialect));
CHECK_ERROR_DIALECT(
"{ for { function f() {} } 1 {} {} }",
SyntaxError,
"Functions cannot be defined inside a for-loop init block.",
dialect
);
}
BOOST_AUTO_TEST_CASE(function_defined_in_init_nested)
{
auto const& dialect = EVMDialect::strictAssemblyForEVMObjects(EVMVersion{});
BOOST_CHECK(successParse(
"{ for {"
"for { } 1 { function f() {} } {}"
"} 1 {} {} }", dialect));
CHECK_ERROR_DIALECT(
"{ for { for {function foo() {}} 1 {} {} } 1 {} {} }",
SyntaxError,
"Functions cannot be defined inside a for-loop init block.",
dialect
);
CHECK_ERROR_DIALECT(
"{ for {} 1 {for {function foo() {}} 1 {} {} } {} }",
SyntaxError,
"Functions cannot be defined inside a for-loop init block.",
dialect
);
}
BOOST_AUTO_TEST_CASE(if_statement_invalid)
{
CHECK_ERROR("{ if let x:u256 {} }", ParserError, "Literal or identifier expected.");
CHECK_ERROR("{ if true:bool let x:u256 := 3:u256 }", ParserError, "Expected '{' but got reserved keyword 'let'");
// TODO change this to an error once we check types.
BOOST_CHECK(successParse("{ if 42:u256 { } }"));
}
BOOST_AUTO_TEST_CASE(switch_case_types)
{
CHECK_ERROR("{ switch 0:u256 case 0:u256 {} case 1:u32 {} }", TypeError, "Switch cases have non-matching types.");
// The following should be an error in the future, but this is not yet detected.
BOOST_CHECK(successParse("{ switch 0:u256 case 0:u32 {} case 1:u32 {} }"));
}
BOOST_AUTO_TEST_CASE(switch_duplicate_case)
{
CHECK_ERROR("{ switch 0:u256 case 0:u256 {} case 0x0:u256 {} }", DeclarationError, "Duplicate case defined.");
BOOST_CHECK(successParse("{ switch 0:u256 case 42:u256 {} case 0x42:u256 {} }"));
}
BOOST_AUTO_TEST_CASE(switch_duplicate_case_different_literal)
{
CHECK_ERROR("{ switch 0:u256 case 0:u256 {} case \"\":u256 {} }", DeclarationError, "Duplicate case defined.");
BOOST_CHECK(successParse("{ switch 1:u256 case \"1\":u256 {} case \"2\":u256 {} }"));
}
BOOST_AUTO_TEST_CASE(switch_case_string_literal_too_long)
{
BOOST_CHECK(successParse("{let x:u256 switch x case \"01234567890123456789012345678901\":u256 {}}"));
CHECK_ERROR("{let x:u256 switch x case \"012345678901234567890123456789012\":u256 {}}", TypeError, "String literal too long (33 > 32)");
}
BOOST_AUTO_TEST_CASE(function_shadowing_outside_vars)
{
CHECK_ERROR("{ let x:u256 function f() -> x:u256 {} }", DeclarationError, "already taken in this scope");
BOOST_CHECK(successParse("{ { let x:u256 } function f() -> x:u256 {} }"));
}
BOOST_AUTO_TEST_CASE(builtins_parser)
{
struct SimpleDialect: public Dialect
{
SimpleDialect(): Dialect(AsmFlavour::Strict) {}
BuiltinFunction const* builtin(YulString _name) const override
{
return _name == "builtin"_yulstring ? &f : nullptr;
}
BuiltinFunction f;
};
SimpleDialect dialect;
CHECK_ERROR_DIALECT("{ let builtin := 6 }", ParserError, "Cannot use builtin function name \"builtin\" as identifier name.", dialect);
CHECK_ERROR_DIALECT("{ function builtin() {} }", ParserError, "Cannot use builtin function name \"builtin\" as identifier name.", dialect);
CHECK_ERROR_DIALECT("{ function f(x) { f(builtin) } }", ParserError, "Expected '(' but got ')'", dialect);
CHECK_ERROR_DIALECT("{ function f(builtin) {}", ParserError, "Cannot use builtin function name \"builtin\" as identifier name.", dialect);
CHECK_ERROR_DIALECT("{ function f() -> builtin {}", ParserError, "Cannot use builtin function name \"builtin\" as identifier name.", dialect);
}
BOOST_AUTO_TEST_CASE(builtins_analysis)
{
struct SimpleDialect: public Dialect
{
SimpleDialect(): Dialect(AsmFlavour::Strict) {}
BuiltinFunction const* builtin(YulString _name) const override
{
return _name == "builtin"_yulstring ? &f : nullptr;
}
BuiltinFunction f{"builtin"_yulstring, vector<Type>(2), vector<Type>(3), {}};
};
SimpleDialect dialect;
BOOST_CHECK(successParse("{ let a, b, c := builtin(1, 2) }", dialect));
CHECK_ERROR_DIALECT("{ let a, b, c := builtin(1) }", TypeError, "Function expects 2 arguments but got 1", dialect);
CHECK_ERROR_DIALECT("{ let a, b := builtin(1, 2) }", DeclarationError, "Variable count mismatch: 2 variables and 3 values.", dialect);
}
BOOST_AUTO_TEST_SUITE_END()
}
} // end namespaces