solidity/libsolutil/LPIncremental.h
2022-08-24 15:54:22 +02:00

242 lines
7.3 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#pragma once
//#define DEBUG 1
#include <libsolutil/Numeric.h>
#include <libsolutil/LinearExpression.h>
#include <boost/rational.hpp>
#include <vector>
#include <variant>
#include <functional>
namespace solidity::util
{
using rational = boost::rational<bigint>;
using Model = std::map<std::string, rational>;
using ReasonSet = std::set<size_t>;
/**
* Constraint of the form
* - data[1] * x_1 + data[2] * x_2 + ... <= data[0] (LESS_OR_EQUAL)
* - data[1] * x_1 + data[2] * x_2 + ... < data[0] (LESS_THAN)
* - data[1] * x_1 + data[2] * x_2 + ... = data[0] (EQUAL)
* The set and order of variables is implied.
*/
struct Constraint
{
LinearExpression data;
enum Kind { EQUAL, LESS_THAN, LESS_OR_EQUAL };
Kind kind = LESS_OR_EQUAL;
bool operator<(Constraint const& _other) const;
bool operator==(Constraint const& _other) const;
};
/**
* A two-dimensional rational number "a + b*delta" that can be used to perform strict comparisons:
* x > 0 is transformed into x >= 1*delta, where delta is assumed to be "small". Its value
* is never explicitly computed / set, it is just a symbolic parameter.
*/
struct RationalWithDelta
{
RationalWithDelta(rational _x = {}): m_main(move(_x)) {}
static RationalWithDelta delta()
{
RationalWithDelta x(0);
x.m_delta = 1;
return x;
}
RationalWithDelta& operator+=(RationalWithDelta const& _other)
{
m_main += _other.m_main;
m_delta += _other.m_delta;
return *this;
}
RationalWithDelta& operator-=(RationalWithDelta const& _other)
{
m_main -= _other.m_main;
m_delta -= _other.m_delta;
return *this;
}
RationalWithDelta operator-(RationalWithDelta const& _other) const
{
RationalWithDelta ret = *this;
ret -= _other;
return ret;
}
RationalWithDelta& operator*=(rational const& _factor)
{
m_main *= _factor;
m_delta *= _factor;
return *this;
}
RationalWithDelta operator*(rational const& _factor) const
{
RationalWithDelta ret = *this;
ret *= _factor;
return ret;
}
RationalWithDelta& operator/=(rational const& _factor)
{
m_main /= _factor;
m_delta /= _factor;
return *this;
}
RationalWithDelta operator/(rational const& _factor) const
{
RationalWithDelta ret = *this;
ret /= _factor;
return ret;
}
bool operator<=(RationalWithDelta const& _other) const
{
return std::tie(m_main, m_delta) <= std::tie(_other.m_main, _other.m_delta);
}
bool operator>=(RationalWithDelta const& _other) const
{
return std::tie(m_main, m_delta) >= std::tie(_other.m_main, _other.m_delta);
}
bool operator<(RationalWithDelta const& _other) const
{
return std::tie(m_main, m_delta) < std::tie(_other.m_main, _other.m_delta);
}
bool operator>(RationalWithDelta const& _other) const
{
return std::tie(m_main, m_delta) > std::tie(_other.m_main, _other.m_delta);
}
bool operator==(RationalWithDelta const& _other) const
{
return std::tie(m_main, m_delta) == std::tie(_other.m_main, _other.m_delta);
}
bool operator!=(RationalWithDelta const& _other) const
{
return std::tie(m_main, m_delta) != std::tie(_other.m_main, _other.m_delta);
}
std::string toString() const;
rational m_main;
rational m_delta;
};
}
namespace solidity::util
{
enum class LPResult
{
Unknown,
Unbounded, ///< System has a solution, but it can have an arbitrary objective value.
Feasible, ///< System has a solution (it might be unbounded, though).
Infeasible ///< System does not have any solution.
};
class LPSolver
{
public:
void addConstraint(Constraint const& _constraint);
void addLowerBound(size_t _variable, RationalWithDelta _bound);
void addUpperBound(size_t _variable, RationalWithDelta _bound);
/// Add the conditional constraint but do not activate it yet.
void addConditionalConstraint(Constraint const& _constraint, size_t _reason);
void activateConstraint(size_t _reason);
void setTrailSize(size_t _trailSize);
void setVariableName(size_t _variable, std::string _name);
std::pair<LPResult, ReasonSet> check();
std::string toString() const;
std::map<std::string, rational> model() const;
private:
struct Bounds
{
std::optional<RationalWithDelta> lower;
std::optional<RationalWithDelta> upper;
};
struct Variable
{
#ifdef DEBUG
std::string name = {};
#endif
RationalWithDelta value = {};
Bounds bounds = {};
std::optional<size_t> lowerReason;
std::optional<size_t> upperReason;
};
/// Consumes a constraint and returns a controlling variable (can be a new slack
/// but does not need to) and corresponding bounds.
/// If it adds a slack variable, updates the factors and properly sets the value
/// for the slack variable (which will be a new basic variable).
std::pair<size_t, Bounds> constraintIntoVariableBounds(Constraint const& _constraint);
void addBounds(size_t _variable, Bounds _bounds);
std::set<size_t> collectReasonsForVariable(size_t _variable);
bool correctNonbasic();
/// Set value of non-basic variable.
void update(size_t _varIndex, RationalWithDelta const& _value);
/// @returns the index of the first basic variable violating its bounds.
std::optional<size_t> firstConflictingBasicVariable() const;
std::optional<size_t> firstReplacementVar(size_t _basicVarToReplace, bool _increasing) const;
/// @returns the set of reasons in case "firstReplacementVar" failed.
std::set<size_t> reasonsForUnsat(size_t _basicVarToReplace, bool _increasing) const;
void pivot(size_t _old, size_t _new);
void pivotAndUpdate(size_t _oldBasicVar, RationalWithDelta const& _newValue, size_t _newBasicVar);
void addOuterVariable(size_t _outerIndex);
/// Adds a new outer variable if it is not known yet and returns the inner index in any case.
size_t maybeAddOuterVariable(size_t _outerIndex);
size_t addNewVariable();
/// Counter to enable unique names for the slack variables.
size_t m_slackVariableCounter = 0;
std::optional<LPResult> result = std::nullopt;
size_t trailSize = 0;
SparseMatrix factors;
std::vector<Variable> variables;
/// Stack of (trail size, variable index, bounds, lower reason, upper reason).
std::vector<std::tuple<size_t, size_t, Bounds, std::optional<size_t>, std::optional<size_t>>> storedBounds;
/// Last known satisfying values for variables.
std::vector<RationalWithDelta> previousGoodValues;
std::set<size_t> variablesPotentiallyOutOfBounds;
/// Variable index to constraint it controls.
std::map<size_t, size_t> basicVariables;
/// Maps outer indices to inner indices.
std::map<size_t, size_t> varMapping = {};
/// Mapping from reason (constraint ID) to variable it controls and bounds for it.
/// A variable can be controlled by multiple constraints.
/// TODO do we want to store the reverse mapping?
std::map<size_t, std::pair<size_t, Bounds>> reasonToBounds;
std::set<size_t> reasons;
};
}