mirror of
				https://github.com/ethereum/solidity
				synced 2023-10-03 13:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1912 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1912 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
	This file is part of solidity.
 | 
						|
 | 
						|
	solidity is free software: you can redistribute it and/or modify
 | 
						|
	it under the terms of the GNU General Public License as published by
 | 
						|
	the Free Software Foundation, either version 3 of the License, or
 | 
						|
	(at your option) any later version.
 | 
						|
 | 
						|
	solidity is distributed in the hope that it will be useful,
 | 
						|
	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
	GNU General Public License for more details.
 | 
						|
 | 
						|
	You should have received a copy of the GNU General Public License
 | 
						|
	along with solidity.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
*/
 | 
						|
/**
 | 
						|
 * @author Christian <c@ethdev.com>
 | 
						|
 * @date 2015
 | 
						|
 * Type analyzer and checker.
 | 
						|
 */
 | 
						|
 | 
						|
#include <libsolidity/analysis/TypeChecker.h>
 | 
						|
#include <memory>
 | 
						|
#include <boost/algorithm/string/predicate.hpp>
 | 
						|
#include <boost/range/adaptor/reversed.hpp>
 | 
						|
#include <libsolidity/ast/AST.h>
 | 
						|
#include <libsolidity/inlineasm/AsmAnalysis.h>
 | 
						|
#include <libsolidity/inlineasm/AsmAnalysisInfo.h>
 | 
						|
#include <libsolidity/inlineasm/AsmData.h>
 | 
						|
#include <libsolidity/interface/ErrorReporter.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace dev;
 | 
						|
using namespace dev::solidity;
 | 
						|
 | 
						|
 | 
						|
bool TypeChecker::checkTypeRequirements(ASTNode const& _contract)
 | 
						|
{
 | 
						|
	try
 | 
						|
	{
 | 
						|
		_contract.accept(*this);
 | 
						|
	}
 | 
						|
	catch (FatalError const&)
 | 
						|
	{
 | 
						|
		// We got a fatal error which required to stop further type checking, but we can
 | 
						|
		// continue normally from here.
 | 
						|
		if (m_errorReporter.errors().empty())
 | 
						|
			throw; // Something is weird here, rather throw again.
 | 
						|
	}
 | 
						|
	return Error::containsOnlyWarnings(m_errorReporter.errors());
 | 
						|
}
 | 
						|
 | 
						|
TypePointer const& TypeChecker::type(Expression const& _expression) const
 | 
						|
{
 | 
						|
	solAssert(!!_expression.annotation().type, "Type requested but not present.");
 | 
						|
	return _expression.annotation().type;
 | 
						|
}
 | 
						|
 | 
						|
TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const
 | 
						|
{
 | 
						|
	solAssert(!!_variable.annotation().type, "Type requested but not present.");
 | 
						|
	return _variable.annotation().type;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(ContractDefinition const& _contract)
 | 
						|
{
 | 
						|
	m_scope = &_contract;
 | 
						|
 | 
						|
	// We force our own visiting order here. The structs have to be excluded below.
 | 
						|
	set<ASTNode const*> visited;
 | 
						|
	for (auto const& s: _contract.definedStructs())
 | 
						|
		visited.insert(s);
 | 
						|
	ASTNode::listAccept(_contract.definedStructs(), *this);
 | 
						|
	ASTNode::listAccept(_contract.baseContracts(), *this);
 | 
						|
 | 
						|
	checkContractDuplicateFunctions(_contract);
 | 
						|
	checkContractIllegalOverrides(_contract);
 | 
						|
	checkContractAbstractFunctions(_contract);
 | 
						|
	checkContractAbstractConstructors(_contract);
 | 
						|
 | 
						|
	FunctionDefinition const* function = _contract.constructor();
 | 
						|
	if (function)
 | 
						|
	{
 | 
						|
		if (!function->returnParameters().empty())
 | 
						|
			m_errorReporter.typeError(function->returnParameterList()->location(), "Non-empty \"returns\" directive for constructor.");
 | 
						|
		if (function->isDeclaredConst())
 | 
						|
			m_errorReporter.typeError(function->location(), "Constructor cannot be defined as constant.");
 | 
						|
		if (function->visibility() != FunctionDefinition::Visibility::Public && function->visibility() != FunctionDefinition::Visibility::Internal)
 | 
						|
			m_errorReporter.typeError(function->location(), "Constructor must be public or internal.");
 | 
						|
	}
 | 
						|
 | 
						|
	FunctionDefinition const* fallbackFunction = nullptr;
 | 
						|
	for (FunctionDefinition const* function: _contract.definedFunctions())
 | 
						|
	{
 | 
						|
		if (function->name().empty())
 | 
						|
		{
 | 
						|
			if (fallbackFunction)
 | 
						|
			{
 | 
						|
				m_errorReporter.declarationError(function->location(), "Only one fallback function is allowed.");
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				fallbackFunction = function;
 | 
						|
				if (_contract.isLibrary())
 | 
						|
					m_errorReporter.typeError(fallbackFunction->location(), "Libraries cannot have fallback functions.");
 | 
						|
				if (fallbackFunction->isDeclaredConst())
 | 
						|
					m_errorReporter.typeError(fallbackFunction->location(), "Fallback function cannot be declared constant.");
 | 
						|
				if (!fallbackFunction->parameters().empty())
 | 
						|
					m_errorReporter.typeError(fallbackFunction->parameterList().location(), "Fallback function cannot take parameters.");
 | 
						|
				if (!fallbackFunction->returnParameters().empty())
 | 
						|
					m_errorReporter.typeError(fallbackFunction->returnParameterList()->location(), "Fallback function cannot return values.");
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!function->isImplemented())
 | 
						|
			_contract.annotation().isFullyImplemented = false;
 | 
						|
	}
 | 
						|
 | 
						|
	for (auto const& n: _contract.subNodes())
 | 
						|
		if (!visited.count(n.get()))
 | 
						|
			n->accept(*this);
 | 
						|
 | 
						|
	checkContractExternalTypeClashes(_contract);
 | 
						|
	// check for hash collisions in function signatures
 | 
						|
	set<FixedHash<4>> hashes;
 | 
						|
	for (auto const& it: _contract.interfaceFunctionList())
 | 
						|
	{
 | 
						|
		FixedHash<4> const& hash = it.first;
 | 
						|
		if (hashes.count(hash))
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_contract.location(),
 | 
						|
				string("Function signature hash collision for ") + it.second->externalSignature()
 | 
						|
			);
 | 
						|
		hashes.insert(hash);
 | 
						|
	}
 | 
						|
 | 
						|
	if (_contract.isLibrary())
 | 
						|
		checkLibraryRequirements(_contract);
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::checkContractDuplicateFunctions(ContractDefinition const& _contract)
 | 
						|
{
 | 
						|
	/// Checks that two functions with the same name defined in this contract have different
 | 
						|
	/// argument types and that there is at most one constructor.
 | 
						|
	map<string, vector<FunctionDefinition const*>> functions;
 | 
						|
	for (FunctionDefinition const* function: _contract.definedFunctions())
 | 
						|
		functions[function->name()].push_back(function);
 | 
						|
 | 
						|
	// Constructor
 | 
						|
	if (functions[_contract.name()].size() > 1)
 | 
						|
	{
 | 
						|
		SecondarySourceLocation ssl;
 | 
						|
		auto it = ++functions[_contract.name()].begin();
 | 
						|
		for (; it != functions[_contract.name()].end(); ++it)
 | 
						|
			ssl.append("Another declaration is here:", (*it)->location());
 | 
						|
 | 
						|
		m_errorReporter.declarationError(
 | 
						|
			functions[_contract.name()].front()->location(),
 | 
						|
			ssl,
 | 
						|
			"More than one constructor defined."
 | 
						|
		);
 | 
						|
	}
 | 
						|
	for (auto const& it: functions)
 | 
						|
	{
 | 
						|
		vector<FunctionDefinition const*> const& overloads = it.second;
 | 
						|
		for (size_t i = 0; i < overloads.size(); ++i)
 | 
						|
			for (size_t j = i + 1; j < overloads.size(); ++j)
 | 
						|
				if (FunctionType(*overloads[i]).hasEqualArgumentTypes(FunctionType(*overloads[j])))
 | 
						|
				{
 | 
						|
					m_errorReporter.declarationError(
 | 
						|
						overloads[j]->location(),
 | 
						|
						SecondarySourceLocation().append(
 | 
						|
							"Other declaration is here:",
 | 
						|
							overloads[i]->location()
 | 
						|
						),
 | 
						|
						"Function with same name and arguments defined twice."
 | 
						|
					);
 | 
						|
				}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::checkContractAbstractFunctions(ContractDefinition const& _contract)
 | 
						|
{
 | 
						|
	// Mapping from name to function definition (exactly one per argument type equality class) and
 | 
						|
	// flag to indicate whether it is fully implemented.
 | 
						|
	using FunTypeAndFlag = std::pair<FunctionTypePointer, bool>;
 | 
						|
	map<string, vector<FunTypeAndFlag>> functions;
 | 
						|
 | 
						|
	bool allBaseConstructorsImplemented = true;
 | 
						|
	// Search from base to derived
 | 
						|
	for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.annotation().linearizedBaseContracts))
 | 
						|
		for (FunctionDefinition const* function: contract->definedFunctions())
 | 
						|
		{
 | 
						|
			// Take constructors out of overload hierarchy
 | 
						|
			if (function->isConstructor())
 | 
						|
			{
 | 
						|
				if (!function->isImplemented())
 | 
						|
					// Base contract's constructor is not fully implemented, no way to get
 | 
						|
					// out of this.
 | 
						|
					allBaseConstructorsImplemented = false;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			auto& overloads = functions[function->name()];
 | 
						|
			FunctionTypePointer funType = make_shared<FunctionType>(*function);
 | 
						|
			auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag)
 | 
						|
			{
 | 
						|
				return funType->hasEqualArgumentTypes(*_funAndFlag.first);
 | 
						|
			});
 | 
						|
			if (it == overloads.end())
 | 
						|
				overloads.push_back(make_pair(funType, function->isImplemented()));
 | 
						|
			else if (it->second)
 | 
						|
			{
 | 
						|
				if (!function->isImplemented())
 | 
						|
					m_errorReporter.typeError(function->location(), "Redeclaring an already implemented function as abstract");
 | 
						|
			}
 | 
						|
			else if (function->isImplemented())
 | 
						|
				it->second = true;
 | 
						|
		}
 | 
						|
 | 
						|
	if (!allBaseConstructorsImplemented)
 | 
						|
		_contract.annotation().isFullyImplemented = false;
 | 
						|
 | 
						|
	// Set to not fully implemented if at least one flag is false.
 | 
						|
	for (auto const& it: functions)
 | 
						|
		for (auto const& funAndFlag: it.second)
 | 
						|
			if (!funAndFlag.second)
 | 
						|
			{
 | 
						|
				_contract.annotation().isFullyImplemented = false;
 | 
						|
				return;
 | 
						|
			}
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::checkContractAbstractConstructors(ContractDefinition const& _contract)
 | 
						|
{
 | 
						|
	set<ContractDefinition const*> argumentsNeeded;
 | 
						|
	// check that we get arguments for all base constructors that need it.
 | 
						|
	// If not mark the contract as abstract (not fully implemented)
 | 
						|
 | 
						|
	vector<ContractDefinition const*> const& bases = _contract.annotation().linearizedBaseContracts;
 | 
						|
	for (ContractDefinition const* contract: bases)
 | 
						|
		if (FunctionDefinition const* constructor = contract->constructor())
 | 
						|
			if (contract != &_contract && !constructor->parameters().empty())
 | 
						|
				argumentsNeeded.insert(contract);
 | 
						|
 | 
						|
	for (ContractDefinition const* contract: bases)
 | 
						|
	{
 | 
						|
		if (FunctionDefinition const* constructor = contract->constructor())
 | 
						|
			for (auto const& modifier: constructor->modifiers())
 | 
						|
			{
 | 
						|
				auto baseContract = dynamic_cast<ContractDefinition const*>(
 | 
						|
					&dereference(*modifier->name())
 | 
						|
				);
 | 
						|
				if (baseContract)
 | 
						|
					argumentsNeeded.erase(baseContract);
 | 
						|
			}
 | 
						|
 | 
						|
 | 
						|
		for (ASTPointer<InheritanceSpecifier> const& base: contract->baseContracts())
 | 
						|
		{
 | 
						|
			auto baseContract = dynamic_cast<ContractDefinition const*>(&dereference(base->name()));
 | 
						|
			solAssert(baseContract, "");
 | 
						|
			if (!base->arguments().empty())
 | 
						|
				argumentsNeeded.erase(baseContract);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (!argumentsNeeded.empty())
 | 
						|
		_contract.annotation().isFullyImplemented = false;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::checkContractIllegalOverrides(ContractDefinition const& _contract)
 | 
						|
{
 | 
						|
	// TODO unify this at a later point. for this we need to put the constness and the access specifier
 | 
						|
	// into the types
 | 
						|
	map<string, vector<FunctionDefinition const*>> functions;
 | 
						|
	map<string, ModifierDefinition const*> modifiers;
 | 
						|
 | 
						|
	// We search from derived to base, so the stored item causes the error.
 | 
						|
	for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
 | 
						|
	{
 | 
						|
		for (FunctionDefinition const* function: contract->definedFunctions())
 | 
						|
		{
 | 
						|
			if (function->isConstructor())
 | 
						|
				continue; // constructors can neither be overridden nor override anything
 | 
						|
			string const& name = function->name();
 | 
						|
			if (modifiers.count(name))
 | 
						|
				m_errorReporter.typeError(modifiers[name]->location(), "Override changes function to modifier.");
 | 
						|
			FunctionType functionType(*function);
 | 
						|
			// function should not change the return type
 | 
						|
			for (FunctionDefinition const* overriding: functions[name])
 | 
						|
			{
 | 
						|
				FunctionType overridingType(*overriding);
 | 
						|
				if (!overridingType.hasEqualArgumentTypes(functionType))
 | 
						|
					continue;
 | 
						|
				if (
 | 
						|
					overriding->visibility() != function->visibility() ||
 | 
						|
					overriding->isDeclaredConst() != function->isDeclaredConst() ||
 | 
						|
					overriding->isPayable() != function->isPayable() ||
 | 
						|
					overridingType != functionType
 | 
						|
				)
 | 
						|
					m_errorReporter.typeError(overriding->location(), "Override changes extended function signature.");
 | 
						|
			}
 | 
						|
			functions[name].push_back(function);
 | 
						|
		}
 | 
						|
		for (ModifierDefinition const* modifier: contract->functionModifiers())
 | 
						|
		{
 | 
						|
			string const& name = modifier->name();
 | 
						|
			ModifierDefinition const*& override = modifiers[name];
 | 
						|
			if (!override)
 | 
						|
				override = modifier;
 | 
						|
			else if (ModifierType(*override) != ModifierType(*modifier))
 | 
						|
				m_errorReporter.typeError(override->location(), "Override changes modifier signature.");
 | 
						|
			if (!functions[name].empty())
 | 
						|
				m_errorReporter.typeError(override->location(), "Override changes modifier to function.");
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::checkContractExternalTypeClashes(ContractDefinition const& _contract)
 | 
						|
{
 | 
						|
	map<string, vector<pair<Declaration const*, FunctionTypePointer>>> externalDeclarations;
 | 
						|
	for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
 | 
						|
	{
 | 
						|
		for (FunctionDefinition const* f: contract->definedFunctions())
 | 
						|
			if (f->isPartOfExternalInterface())
 | 
						|
			{
 | 
						|
				auto functionType = make_shared<FunctionType>(*f);
 | 
						|
				// under non error circumstances this should be true
 | 
						|
				if (functionType->interfaceFunctionType())
 | 
						|
					externalDeclarations[functionType->externalSignature()].push_back(
 | 
						|
						make_pair(f, functionType)
 | 
						|
					);
 | 
						|
			}
 | 
						|
		for (VariableDeclaration const* v: contract->stateVariables())
 | 
						|
			if (v->isPartOfExternalInterface())
 | 
						|
			{
 | 
						|
				auto functionType = make_shared<FunctionType>(*v);
 | 
						|
				// under non error circumstances this should be true
 | 
						|
				if (functionType->interfaceFunctionType())
 | 
						|
					externalDeclarations[functionType->externalSignature()].push_back(
 | 
						|
						make_pair(v, functionType)
 | 
						|
					);
 | 
						|
			}
 | 
						|
	}
 | 
						|
	for (auto const& it: externalDeclarations)
 | 
						|
		for (size_t i = 0; i < it.second.size(); ++i)
 | 
						|
			for (size_t j = i + 1; j < it.second.size(); ++j)
 | 
						|
				if (!it.second[i].second->hasEqualArgumentTypes(*it.second[j].second))
 | 
						|
					m_errorReporter.typeError(
 | 
						|
						it.second[j].first->location(),
 | 
						|
						"Function overload clash during conversion to external types for arguments."
 | 
						|
					);
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::checkLibraryRequirements(ContractDefinition const& _contract)
 | 
						|
{
 | 
						|
	solAssert(_contract.isLibrary(), "");
 | 
						|
	if (!_contract.baseContracts().empty())
 | 
						|
		m_errorReporter.typeError(_contract.location(), "Library is not allowed to inherit.");
 | 
						|
 | 
						|
	for (auto const& var: _contract.stateVariables())
 | 
						|
		if (!var->isConstant())
 | 
						|
			m_errorReporter.typeError(var->location(), "Library cannot have non-constant state variables");
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::checkDoubleStorageAssignment(Assignment const& _assignment)
 | 
						|
{
 | 
						|
	TupleType const& lhs = dynamic_cast<TupleType const&>(*type(_assignment.leftHandSide()));
 | 
						|
	TupleType const& rhs = dynamic_cast<TupleType const&>(*type(_assignment.rightHandSide()));
 | 
						|
 | 
						|
	bool fillRight = !lhs.components().empty() && (!lhs.components().back() || lhs.components().front());
 | 
						|
	size_t storageToStorageCopies = 0;
 | 
						|
	size_t toStorageCopies = 0;
 | 
						|
	for (size_t i = 0; i < lhs.components().size(); ++i)
 | 
						|
	{
 | 
						|
		ReferenceType const* ref = dynamic_cast<ReferenceType const*>(lhs.components()[i].get());
 | 
						|
		if (!ref || !ref->dataStoredIn(DataLocation::Storage) || ref->isPointer())
 | 
						|
			continue;
 | 
						|
		size_t rhsPos = fillRight ? i : rhs.components().size() - (lhs.components().size() - i);
 | 
						|
		solAssert(rhsPos < rhs.components().size(), "");
 | 
						|
		toStorageCopies++;
 | 
						|
		if (rhs.components()[rhsPos]->dataStoredIn(DataLocation::Storage))
 | 
						|
			storageToStorageCopies++;
 | 
						|
	}
 | 
						|
	if (storageToStorageCopies >= 1 && toStorageCopies >= 2)
 | 
						|
		m_errorReporter.warning(
 | 
						|
			_assignment.location(),
 | 
						|
			"This assignment performs two copies to storage. Since storage copies do not first "
 | 
						|
			"copy to a temporary location, one of them might be overwritten before the second "
 | 
						|
			"is executed and thus may have unexpected effects. It is safer to perform the copies "
 | 
						|
			"separately or assign to storage pointers first."
 | 
						|
		);
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance)
 | 
						|
{
 | 
						|
	auto base = dynamic_cast<ContractDefinition const*>(&dereference(_inheritance.name()));
 | 
						|
	solAssert(base, "Base contract not available.");
 | 
						|
 | 
						|
	if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
 | 
						|
		m_errorReporter.typeError(_inheritance.location(), "Interfaces cannot inherit.");
 | 
						|
 | 
						|
	if (base->isLibrary())
 | 
						|
		m_errorReporter.typeError(_inheritance.location(), "Libraries cannot be inherited from.");
 | 
						|
 | 
						|
	auto const& arguments = _inheritance.arguments();
 | 
						|
	TypePointers parameterTypes = ContractType(*base).newExpressionType()->parameterTypes();
 | 
						|
	if (!arguments.empty() && parameterTypes.size() != arguments.size())
 | 
						|
	{
 | 
						|
		m_errorReporter.typeError(
 | 
						|
			_inheritance.location(),
 | 
						|
			"Wrong argument count for constructor call: " +
 | 
						|
			toString(arguments.size()) +
 | 
						|
			" arguments given but expected " +
 | 
						|
			toString(parameterTypes.size()) +
 | 
						|
			"."
 | 
						|
		);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (size_t i = 0; i < arguments.size(); ++i)
 | 
						|
		if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				arguments[i]->location(),
 | 
						|
				"Invalid type for argument in constructor call. "
 | 
						|
				"Invalid implicit conversion from " +
 | 
						|
				type(*arguments[i])->toString() +
 | 
						|
				" to " +
 | 
						|
				parameterTypes[i]->toString() +
 | 
						|
				" requested."
 | 
						|
						);
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::endVisit(UsingForDirective const& _usingFor)
 | 
						|
{
 | 
						|
	ContractDefinition const* library = dynamic_cast<ContractDefinition const*>(
 | 
						|
		_usingFor.libraryName().annotation().referencedDeclaration
 | 
						|
	);
 | 
						|
	if (!library || !library->isLibrary())
 | 
						|
		m_errorReporter.typeError(_usingFor.libraryName().location(), "Library name expected.");
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(StructDefinition const& _struct)
 | 
						|
{
 | 
						|
	if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
 | 
						|
		m_errorReporter.typeError(_struct.location(), "Structs cannot be defined in interfaces.");
 | 
						|
 | 
						|
	for (ASTPointer<VariableDeclaration> const& member: _struct.members())
 | 
						|
		if (!type(*member)->canBeStored())
 | 
						|
			m_errorReporter.typeError(member->location(), "Type cannot be used in struct.");
 | 
						|
 | 
						|
	// Check recursion, fatal error if detected.
 | 
						|
	using StructPointer = StructDefinition const*;
 | 
						|
	using StructPointersSet = set<StructPointer>;
 | 
						|
	function<void(StructPointer,StructPointersSet const&)> check = [&](StructPointer _struct, StructPointersSet const& _parents)
 | 
						|
	{
 | 
						|
		if (_parents.count(_struct))
 | 
						|
			m_errorReporter.fatalTypeError(_struct->location(), "Recursive struct definition.");
 | 
						|
		StructPointersSet parents = _parents;
 | 
						|
		parents.insert(_struct);
 | 
						|
		for (ASTPointer<VariableDeclaration> const& member: _struct->members())
 | 
						|
			if (type(*member)->category() == Type::Category::Struct)
 | 
						|
			{
 | 
						|
				auto const& typeName = dynamic_cast<UserDefinedTypeName const&>(*member->typeName());
 | 
						|
				check(&dynamic_cast<StructDefinition const&>(*typeName.annotation().referencedDeclaration), parents);
 | 
						|
			}
 | 
						|
	};
 | 
						|
	check(&_struct, StructPointersSet{});
 | 
						|
 | 
						|
	ASTNode::listAccept(_struct.members(), *this);
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(FunctionDefinition const& _function)
 | 
						|
{
 | 
						|
	bool isLibraryFunction =
 | 
						|
		dynamic_cast<ContractDefinition const*>(_function.scope()) &&
 | 
						|
		dynamic_cast<ContractDefinition const*>(_function.scope())->isLibrary();
 | 
						|
	if (_function.isPayable())
 | 
						|
	{
 | 
						|
		if (isLibraryFunction)
 | 
						|
			m_errorReporter.typeError(_function.location(), "Library functions cannot be payable.");
 | 
						|
		if (!_function.isConstructor() && !_function.name().empty() && !_function.isPartOfExternalInterface())
 | 
						|
			m_errorReporter.typeError(_function.location(), "Internal functions cannot be payable.");
 | 
						|
		if (_function.isDeclaredConst())
 | 
						|
			m_errorReporter.typeError(_function.location(), "Functions cannot be constant and payable at the same time.");
 | 
						|
	}
 | 
						|
	for (ASTPointer<VariableDeclaration> const& var: _function.parameters() + _function.returnParameters())
 | 
						|
	{
 | 
						|
		if (!type(*var)->canLiveOutsideStorage())
 | 
						|
			m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
 | 
						|
		if (_function.visibility() >= FunctionDefinition::Visibility::Public && !(type(*var)->interfaceType(isLibraryFunction)))
 | 
						|
			m_errorReporter.fatalTypeError(var->location(), "Internal type is not allowed for public or external functions.");
 | 
						|
 | 
						|
		var->accept(*this);
 | 
						|
	}
 | 
						|
	set<Declaration const*> modifiers;
 | 
						|
	for (ASTPointer<ModifierInvocation> const& modifier: _function.modifiers())
 | 
						|
	{
 | 
						|
		visitManually(
 | 
						|
			*modifier,
 | 
						|
			_function.isConstructor() ?
 | 
						|
			dynamic_cast<ContractDefinition const&>(*_function.scope()).annotation().linearizedBaseContracts :
 | 
						|
			vector<ContractDefinition const*>()
 | 
						|
		);
 | 
						|
		Declaration const* decl = &dereference(*modifier->name());
 | 
						|
		if (modifiers.count(decl))
 | 
						|
		{
 | 
						|
			if (dynamic_cast<ContractDefinition const*>(decl))
 | 
						|
				m_errorReporter.declarationError(modifier->location(), "Base constructor already provided.");
 | 
						|
			else
 | 
						|
				m_errorReporter.declarationError(modifier->location(), "Modifier already used for this function.");
 | 
						|
		}
 | 
						|
		else
 | 
						|
			modifiers.insert(decl);
 | 
						|
	}
 | 
						|
	if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
 | 
						|
	{
 | 
						|
		if (_function.isImplemented())
 | 
						|
			m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot have an implementation.");
 | 
						|
		if (_function.visibility() < FunctionDefinition::Visibility::Public)
 | 
						|
			m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot be internal or private.");
 | 
						|
		if (_function.isConstructor())
 | 
						|
			m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in interfaces.");
 | 
						|
	}
 | 
						|
	if (_function.isImplemented())
 | 
						|
		_function.body().accept(*this);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(VariableDeclaration const& _variable)
 | 
						|
{
 | 
						|
	// Forbid any variable declarations inside interfaces unless they are part of
 | 
						|
	// a function's input/output parameters.
 | 
						|
	if (
 | 
						|
		m_scope->contractKind() == ContractDefinition::ContractKind::Interface
 | 
						|
		&& !_variable.isCallableParameter()
 | 
						|
	)
 | 
						|
		m_errorReporter.typeError(_variable.location(), "Variables cannot be declared in interfaces.");
 | 
						|
 | 
						|
	// Variables can be declared without type (with "var"), in which case the first assignment
 | 
						|
	// sets the type.
 | 
						|
	// Note that assignments before the first declaration are legal because of the special scoping
 | 
						|
	// rules inherited from JavaScript.
 | 
						|
 | 
						|
	// type is filled either by ReferencesResolver directly from the type name or by
 | 
						|
	// TypeChecker at the VariableDeclarationStatement level.
 | 
						|
	TypePointer varType = _variable.annotation().type;
 | 
						|
	solAssert(!!varType, "Failed to infer variable type.");
 | 
						|
	if (_variable.value())
 | 
						|
		expectType(*_variable.value(), *varType);
 | 
						|
	if (_variable.isConstant())
 | 
						|
	{
 | 
						|
		if (!_variable.isStateVariable())
 | 
						|
			m_errorReporter.typeError(_variable.location(), "Illegal use of \"constant\" specifier.");
 | 
						|
		if (!_variable.type()->isValueType())
 | 
						|
		{
 | 
						|
			bool allowed = false;
 | 
						|
			if (auto arrayType = dynamic_cast<ArrayType const*>(_variable.type().get()))
 | 
						|
				allowed = arrayType->isString();
 | 
						|
			if (!allowed)
 | 
						|
				m_errorReporter.typeError(_variable.location(), "Constants of non-value type not yet implemented.");
 | 
						|
		}
 | 
						|
		if (!_variable.value())
 | 
						|
			m_errorReporter.typeError(_variable.location(), "Uninitialized \"constant\" variable.");
 | 
						|
		else if (!_variable.value()->annotation().isPure)
 | 
						|
			m_errorReporter.warning(
 | 
						|
				_variable.value()->location(),
 | 
						|
				"Initial value for constant variable has to be compile-time constant. "
 | 
						|
				"This will fail to compile with the next breaking version change."
 | 
						|
			);
 | 
						|
	}
 | 
						|
	if (!_variable.isStateVariable())
 | 
						|
	{
 | 
						|
		if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData))
 | 
						|
			if (!varType->canLiveOutsideStorage())
 | 
						|
				m_errorReporter.typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage.");
 | 
						|
	}
 | 
						|
	else if (
 | 
						|
		_variable.visibility() >= VariableDeclaration::Visibility::Public &&
 | 
						|
		!FunctionType(_variable).interfaceFunctionType()
 | 
						|
	)
 | 
						|
		m_errorReporter.typeError(_variable.location(), "Internal type is not allowed for public state variables.");
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(EnumDefinition const& _enum)
 | 
						|
{
 | 
						|
	if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
 | 
						|
		m_errorReporter.typeError(_enum.location(), "Enumerable cannot be declared in interfaces.");
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::visitManually(
 | 
						|
	ModifierInvocation const& _modifier,
 | 
						|
	vector<ContractDefinition const*> const& _bases
 | 
						|
)
 | 
						|
{
 | 
						|
	std::vector<ASTPointer<Expression>> const& arguments = _modifier.arguments();
 | 
						|
	for (ASTPointer<Expression> const& argument: arguments)
 | 
						|
		argument->accept(*this);
 | 
						|
	_modifier.name()->accept(*this);
 | 
						|
 | 
						|
	auto const* declaration = &dereference(*_modifier.name());
 | 
						|
	vector<ASTPointer<VariableDeclaration>> emptyParameterList;
 | 
						|
	vector<ASTPointer<VariableDeclaration>> const* parameters = nullptr;
 | 
						|
	if (auto modifierDecl = dynamic_cast<ModifierDefinition const*>(declaration))
 | 
						|
		parameters = &modifierDecl->parameters();
 | 
						|
	else
 | 
						|
		// check parameters for Base constructors
 | 
						|
		for (ContractDefinition const* base: _bases)
 | 
						|
			if (declaration == base)
 | 
						|
			{
 | 
						|
				if (auto referencedConstructor = base->constructor())
 | 
						|
					parameters = &referencedConstructor->parameters();
 | 
						|
				else
 | 
						|
					parameters = &emptyParameterList;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
	if (!parameters)
 | 
						|
	{
 | 
						|
		m_errorReporter.typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class.");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	if (parameters->size() != arguments.size())
 | 
						|
	{
 | 
						|
		m_errorReporter.typeError(
 | 
						|
			_modifier.location(),
 | 
						|
			"Wrong argument count for modifier invocation: " +
 | 
						|
			toString(arguments.size()) +
 | 
						|
			" arguments given but expected " +
 | 
						|
			toString(parameters->size()) +
 | 
						|
			"."
 | 
						|
		);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	for (size_t i = 0; i < _modifier.arguments().size(); ++i)
 | 
						|
		if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i])))
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				arguments[i]->location(),
 | 
						|
				"Invalid type for argument in modifier invocation. "
 | 
						|
				"Invalid implicit conversion from " +
 | 
						|
				type(*arguments[i])->toString() +
 | 
						|
				" to " +
 | 
						|
				type(*(*parameters)[i])->toString() +
 | 
						|
				" requested."
 | 
						|
			);
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(EventDefinition const& _eventDef)
 | 
						|
{
 | 
						|
	unsigned numIndexed = 0;
 | 
						|
	for (ASTPointer<VariableDeclaration> const& var: _eventDef.parameters())
 | 
						|
	{
 | 
						|
		if (var->isIndexed())
 | 
						|
			numIndexed++;
 | 
						|
		if (_eventDef.isAnonymous() && numIndexed > 4)
 | 
						|
			m_errorReporter.typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event.");
 | 
						|
		else if (!_eventDef.isAnonymous() && numIndexed > 3)
 | 
						|
			m_errorReporter.typeError(_eventDef.location(), "More than 3 indexed arguments for event.");
 | 
						|
		if (!type(*var)->canLiveOutsideStorage())
 | 
						|
			m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
 | 
						|
		if (!type(*var)->interfaceType(false))
 | 
						|
			m_errorReporter.typeError(var->location(), "Internal type is not allowed as event parameter type.");
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::endVisit(FunctionTypeName const& _funType)
 | 
						|
{
 | 
						|
	FunctionType const& fun = dynamic_cast<FunctionType const&>(*_funType.annotation().type);
 | 
						|
	if (fun.kind() == FunctionType::Kind::External)
 | 
						|
		if (!fun.canBeUsedExternally(false))
 | 
						|
			m_errorReporter.typeError(_funType.location(), "External function type uses internal types.");
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(InlineAssembly const& _inlineAssembly)
 | 
						|
{
 | 
						|
	// External references have already been resolved in a prior stage and stored in the annotation.
 | 
						|
	// We run the resolve step again regardless.
 | 
						|
	julia::ExternalIdentifierAccess::Resolver identifierAccess = [&](
 | 
						|
		assembly::Identifier const& _identifier,
 | 
						|
		julia::IdentifierContext _context,
 | 
						|
		bool
 | 
						|
	)
 | 
						|
	{
 | 
						|
		auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier);
 | 
						|
		if (ref == _inlineAssembly.annotation().externalReferences.end())
 | 
						|
			return size_t(-1);
 | 
						|
		Declaration const* declaration = ref->second.declaration;
 | 
						|
		solAssert(!!declaration, "");
 | 
						|
		if (auto var = dynamic_cast<VariableDeclaration const*>(declaration))
 | 
						|
		{
 | 
						|
			if (ref->second.isSlot || ref->second.isOffset)
 | 
						|
			{
 | 
						|
				if (!var->isStateVariable() && !var->type()->dataStoredIn(DataLocation::Storage))
 | 
						|
				{
 | 
						|
					m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
 | 
						|
					return size_t(-1);
 | 
						|
				}
 | 
						|
				else if (_context != julia::IdentifierContext::RValue)
 | 
						|
				{
 | 
						|
					m_errorReporter.typeError(_identifier.location, "Storage variables cannot be assigned to.");
 | 
						|
					return size_t(-1);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (var->isConstant())
 | 
						|
			{
 | 
						|
				m_errorReporter.typeError(_identifier.location, "Constant variables not supported by inline assembly.");
 | 
						|
				return size_t(-1);
 | 
						|
			}
 | 
						|
			else if (!var->isLocalVariable())
 | 
						|
			{
 | 
						|
				m_errorReporter.typeError(_identifier.location, "Only local variables are supported. To access storage variables, use the _slot and _offset suffixes.");
 | 
						|
				return size_t(-1);
 | 
						|
			}
 | 
						|
			else if (var->type()->dataStoredIn(DataLocation::Storage))
 | 
						|
			{
 | 
						|
				m_errorReporter.typeError(_identifier.location, "You have to use the _slot or _offset prefix to access storage reference variables.");
 | 
						|
				return size_t(-1);
 | 
						|
			}
 | 
						|
			else if (var->type()->sizeOnStack() != 1)
 | 
						|
			{
 | 
						|
				m_errorReporter.typeError(_identifier.location, "Only types that use one stack slot are supported.");
 | 
						|
				return size_t(-1);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if (_context == julia::IdentifierContext::LValue)
 | 
						|
		{
 | 
						|
			m_errorReporter.typeError(_identifier.location, "Only local variables can be assigned to in inline assembly.");
 | 
						|
			return size_t(-1);
 | 
						|
		}
 | 
						|
 | 
						|
		if (_context == julia::IdentifierContext::RValue)
 | 
						|
		{
 | 
						|
			solAssert(!!declaration->type(), "Type of declaration required but not yet determined.");
 | 
						|
			if (dynamic_cast<FunctionDefinition const*>(declaration))
 | 
						|
			{
 | 
						|
			}
 | 
						|
			else if (dynamic_cast<VariableDeclaration const*>(declaration))
 | 
						|
			{
 | 
						|
			}
 | 
						|
			else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
 | 
						|
			{
 | 
						|
				if (!contract->isLibrary())
 | 
						|
				{
 | 
						|
					m_errorReporter.typeError(_identifier.location, "Expected a library.");
 | 
						|
					return size_t(-1);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else
 | 
						|
				return size_t(-1);
 | 
						|
		}
 | 
						|
		ref->second.valueSize = 1;
 | 
						|
		return size_t(1);
 | 
						|
	};
 | 
						|
	solAssert(!_inlineAssembly.annotation().analysisInfo, "");
 | 
						|
	_inlineAssembly.annotation().analysisInfo = make_shared<assembly::AsmAnalysisInfo>();
 | 
						|
	assembly::AsmAnalyzer analyzer(
 | 
						|
		*_inlineAssembly.annotation().analysisInfo,
 | 
						|
		m_errorReporter,
 | 
						|
		false,
 | 
						|
		identifierAccess
 | 
						|
	);
 | 
						|
	if (!analyzer.analyze(_inlineAssembly.operations()))
 | 
						|
		return false;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(IfStatement const& _ifStatement)
 | 
						|
{
 | 
						|
	expectType(_ifStatement.condition(), BoolType());
 | 
						|
	_ifStatement.trueStatement().accept(*this);
 | 
						|
	if (_ifStatement.falseStatement())
 | 
						|
		_ifStatement.falseStatement()->accept(*this);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(WhileStatement const& _whileStatement)
 | 
						|
{
 | 
						|
	expectType(_whileStatement.condition(), BoolType());
 | 
						|
	_whileStatement.body().accept(*this);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(ForStatement const& _forStatement)
 | 
						|
{
 | 
						|
	if (_forStatement.initializationExpression())
 | 
						|
		_forStatement.initializationExpression()->accept(*this);
 | 
						|
	if (_forStatement.condition())
 | 
						|
		expectType(*_forStatement.condition(), BoolType());
 | 
						|
	if (_forStatement.loopExpression())
 | 
						|
		_forStatement.loopExpression()->accept(*this);
 | 
						|
	_forStatement.body().accept(*this);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::endVisit(Return const& _return)
 | 
						|
{
 | 
						|
	if (!_return.expression())
 | 
						|
		return;
 | 
						|
	ParameterList const* params = _return.annotation().functionReturnParameters;
 | 
						|
	if (!params)
 | 
						|
	{
 | 
						|
		m_errorReporter.typeError(_return.location(), "Return arguments not allowed.");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	TypePointers returnTypes;
 | 
						|
	for (auto const& var: params->parameters())
 | 
						|
		returnTypes.push_back(type(*var));
 | 
						|
	if (auto tupleType = dynamic_cast<TupleType const*>(type(*_return.expression()).get()))
 | 
						|
	{
 | 
						|
		if (tupleType->components().size() != params->parameters().size())
 | 
						|
			m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
 | 
						|
		else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes)))
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_return.expression()->location(),
 | 
						|
				"Return argument type " +
 | 
						|
				type(*_return.expression())->toString() +
 | 
						|
				" is not implicitly convertible to expected type " +
 | 
						|
				TupleType(returnTypes).toString(false) +
 | 
						|
				"."
 | 
						|
			);
 | 
						|
	}
 | 
						|
	else if (params->parameters().size() != 1)
 | 
						|
		m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
 | 
						|
	else
 | 
						|
	{
 | 
						|
		TypePointer const& expected = type(*params->parameters().front());
 | 
						|
		if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected))
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_return.expression()->location(),
 | 
						|
				"Return argument type " +
 | 
						|
				type(*_return.expression())->toString() +
 | 
						|
				" is not implicitly convertible to expected type (type of first return variable) " +
 | 
						|
				expected->toString() +
 | 
						|
				"."
 | 
						|
			);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(VariableDeclarationStatement const& _statement)
 | 
						|
{
 | 
						|
	if (!_statement.initialValue())
 | 
						|
	{
 | 
						|
		// No initial value is only permitted for single variables with specified type.
 | 
						|
		if (_statement.declarations().size() != 1 || !_statement.declarations().front())
 | 
						|
			m_errorReporter.fatalTypeError(_statement.location(), "Assignment necessary for type detection.");
 | 
						|
		VariableDeclaration const& varDecl = *_statement.declarations().front();
 | 
						|
		if (!varDecl.annotation().type)
 | 
						|
			m_errorReporter.fatalTypeError(_statement.location(), "Assignment necessary for type detection.");
 | 
						|
		if (auto ref = dynamic_cast<ReferenceType const*>(type(varDecl).get()))
 | 
						|
		{
 | 
						|
			if (ref->dataStoredIn(DataLocation::Storage))
 | 
						|
			{
 | 
						|
				string errorText{"Uninitialized storage pointer."};
 | 
						|
				if (varDecl.referenceLocation() == VariableDeclaration::Location::Default)
 | 
						|
					errorText += " Did you mean '<type> memory " + varDecl.name() + "'?";
 | 
						|
				m_errorReporter.warning(varDecl.location(), errorText);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if (dynamic_cast<MappingType const*>(type(varDecl).get()))
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				varDecl.location(),
 | 
						|
				"Uninitialized mapping. Mappings cannot be created dynamically, you have to assign them from a state variable."
 | 
						|
			);
 | 
						|
		varDecl.accept(*this);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	// Here we have an initial value and might have to derive some types before we can visit
 | 
						|
	// the variable declaration(s).
 | 
						|
 | 
						|
	_statement.initialValue()->accept(*this);
 | 
						|
	TypePointers valueTypes;
 | 
						|
	if (auto tupleType = dynamic_cast<TupleType const*>(type(*_statement.initialValue()).get()))
 | 
						|
		valueTypes = tupleType->components();
 | 
						|
	else
 | 
						|
		valueTypes = TypePointers{type(*_statement.initialValue())};
 | 
						|
 | 
						|
	// Determine which component is assigned to which variable.
 | 
						|
	// If numbers do not match, fill up if variables begin or end empty (not both).
 | 
						|
	vector<VariableDeclaration const*>& assignments = _statement.annotation().assignments;
 | 
						|
	assignments.resize(valueTypes.size(), nullptr);
 | 
						|
	vector<ASTPointer<VariableDeclaration>> const& variables = _statement.declarations();
 | 
						|
	if (variables.empty())
 | 
						|
	{
 | 
						|
		if (!valueTypes.empty())
 | 
						|
			m_errorReporter.fatalTypeError(
 | 
						|
				_statement.location(),
 | 
						|
				"Too many components (" +
 | 
						|
				toString(valueTypes.size()) +
 | 
						|
				") in value for variable assignment (0) needed"
 | 
						|
			);
 | 
						|
	}
 | 
						|
	else if (valueTypes.size() != variables.size() && !variables.front() && !variables.back())
 | 
						|
		m_errorReporter.fatalTypeError(
 | 
						|
			_statement.location(),
 | 
						|
			"Wildcard both at beginning and end of variable declaration list is only allowed "
 | 
						|
			"if the number of components is equal."
 | 
						|
		);
 | 
						|
	size_t minNumValues = variables.size();
 | 
						|
	if (!variables.empty() && (!variables.back() || !variables.front()))
 | 
						|
		--minNumValues;
 | 
						|
	if (valueTypes.size() < minNumValues)
 | 
						|
		m_errorReporter.fatalTypeError(
 | 
						|
			_statement.location(),
 | 
						|
			"Not enough components (" +
 | 
						|
			toString(valueTypes.size()) +
 | 
						|
			") in value to assign all variables (" +
 | 
						|
			toString(minNumValues) + ")."
 | 
						|
		);
 | 
						|
	if (valueTypes.size() > variables.size() && variables.front() && variables.back())
 | 
						|
		m_errorReporter.fatalTypeError(
 | 
						|
			_statement.location(),
 | 
						|
			"Too many components (" +
 | 
						|
			toString(valueTypes.size()) +
 | 
						|
			") in value for variable assignment (" +
 | 
						|
			toString(minNumValues) +
 | 
						|
			" needed)."
 | 
						|
		);
 | 
						|
	bool fillRight = !variables.empty() && (!variables.back() || variables.front());
 | 
						|
	for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i)
 | 
						|
		if (fillRight)
 | 
						|
			assignments[i] = variables[i].get();
 | 
						|
		else
 | 
						|
			assignments[assignments.size() - i - 1] = variables[variables.size() - i - 1].get();
 | 
						|
 | 
						|
	for (size_t i = 0; i < assignments.size(); ++i)
 | 
						|
	{
 | 
						|
		if (!assignments[i])
 | 
						|
			continue;
 | 
						|
		VariableDeclaration const& var = *assignments[i];
 | 
						|
		solAssert(!var.value(), "Value has to be tied to statement.");
 | 
						|
		TypePointer const& valueComponentType = valueTypes[i];
 | 
						|
		solAssert(!!valueComponentType, "");
 | 
						|
		if (!var.annotation().type)
 | 
						|
		{
 | 
						|
			// Infer type from value.
 | 
						|
			solAssert(!var.typeName(), "");
 | 
						|
			var.annotation().type = valueComponentType->mobileType();
 | 
						|
			if (!var.annotation().type)
 | 
						|
			{
 | 
						|
				if (valueComponentType->category() == Type::Category::RationalNumber)
 | 
						|
					m_errorReporter.fatalTypeError(
 | 
						|
						_statement.initialValue()->location(),
 | 
						|
						"Invalid rational " +
 | 
						|
						valueComponentType->toString() +
 | 
						|
						" (absolute value too large or divison by zero)."
 | 
						|
					);
 | 
						|
				else
 | 
						|
					solAssert(false, "");
 | 
						|
			}
 | 
						|
			else if (*var.annotation().type == TupleType())
 | 
						|
				m_errorReporter.typeError(
 | 
						|
					var.location(),
 | 
						|
					"Cannot declare variable with void (empty tuple) type."
 | 
						|
				);
 | 
						|
			else if (valueComponentType->category() == Type::Category::RationalNumber)
 | 
						|
			{
 | 
						|
				string typeName = var.annotation().type->toString(true);
 | 
						|
				string extension;
 | 
						|
				if (auto type = dynamic_cast<IntegerType const*>(var.annotation().type.get()))
 | 
						|
				{
 | 
						|
					int numBits = type->numBits();
 | 
						|
					bool isSigned = type->isSigned();
 | 
						|
					string minValue;
 | 
						|
					string maxValue;
 | 
						|
					if (isSigned)
 | 
						|
					{
 | 
						|
						numBits--;
 | 
						|
						minValue = "-" + bigint(bigint(1) << numBits).str();
 | 
						|
					}
 | 
						|
					else
 | 
						|
						minValue = "0";
 | 
						|
					maxValue = bigint((bigint(1) << numBits) - 1).str();
 | 
						|
					extension = ", which can hold values between " + minValue + " and " + maxValue;
 | 
						|
				}
 | 
						|
				else
 | 
						|
					solAssert(dynamic_cast<FixedPointType const*>(var.annotation().type.get()), "Unknown type.");
 | 
						|
 | 
						|
				m_errorReporter.warning(
 | 
						|
					_statement.location(),
 | 
						|
					"The type of this variable was inferred as " +
 | 
						|
					typeName +
 | 
						|
					extension +
 | 
						|
					". This is probably not desired. Use an explicit type to silence this warning."
 | 
						|
				);
 | 
						|
			}
 | 
						|
 | 
						|
			var.accept(*this);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			var.accept(*this);
 | 
						|
			if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type))
 | 
						|
			{
 | 
						|
				if (
 | 
						|
					valueComponentType->category() == Type::Category::RationalNumber &&
 | 
						|
					dynamic_cast<RationalNumberType const&>(*valueComponentType).isFractional() &&
 | 
						|
					valueComponentType->mobileType()
 | 
						|
				)
 | 
						|
					m_errorReporter.typeError(
 | 
						|
						_statement.location(),
 | 
						|
						"Type " +
 | 
						|
						valueComponentType->toString() +
 | 
						|
						" is not implicitly convertible to expected type " +
 | 
						|
						var.annotation().type->toString() +
 | 
						|
						". Try converting to type " +
 | 
						|
						valueComponentType->mobileType()->toString() +
 | 
						|
						" or use an explicit conversion." 
 | 
						|
					);
 | 
						|
				else
 | 
						|
					m_errorReporter.typeError(
 | 
						|
						_statement.location(),
 | 
						|
						"Type " +
 | 
						|
						valueComponentType->toString() +
 | 
						|
						" is not implicitly convertible to expected type " +
 | 
						|
						var.annotation().type->toString() +
 | 
						|
						"."
 | 
						|
					);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::endVisit(ExpressionStatement const& _statement)
 | 
						|
{
 | 
						|
	if (type(_statement.expression())->category() == Type::Category::RationalNumber)
 | 
						|
		if (!dynamic_cast<RationalNumberType const&>(*type(_statement.expression())).mobileType())
 | 
						|
			m_errorReporter.typeError(_statement.expression().location(), "Invalid rational number.");
 | 
						|
 | 
						|
	if (auto call = dynamic_cast<FunctionCall const*>(&_statement.expression()))
 | 
						|
	{
 | 
						|
		if (auto callType = dynamic_cast<FunctionType const*>(type(call->expression()).get()))
 | 
						|
		{
 | 
						|
			auto kind = callType->kind();
 | 
						|
			if (
 | 
						|
				kind == FunctionType::Kind::Bare ||
 | 
						|
				kind == FunctionType::Kind::BareCallCode ||
 | 
						|
				kind == FunctionType::Kind::BareDelegateCall
 | 
						|
			)
 | 
						|
				m_errorReporter.warning(_statement.location(), "Return value of low-level calls not used.");
 | 
						|
			else if (kind == FunctionType::Kind::Send)
 | 
						|
				m_errorReporter.warning(_statement.location(), "Failure condition of 'send' ignored. Consider using 'transfer' instead.");
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(Conditional const& _conditional)
 | 
						|
{
 | 
						|
	expectType(_conditional.condition(), BoolType());
 | 
						|
 | 
						|
	_conditional.trueExpression().accept(*this);
 | 
						|
	_conditional.falseExpression().accept(*this);
 | 
						|
 | 
						|
	TypePointer trueType = type(_conditional.trueExpression())->mobileType();
 | 
						|
	TypePointer falseType = type(_conditional.falseExpression())->mobileType();
 | 
						|
	if (!trueType)
 | 
						|
		m_errorReporter.fatalTypeError(_conditional.trueExpression().location(), "Invalid mobile type.");
 | 
						|
	if (!falseType)
 | 
						|
		m_errorReporter.fatalTypeError(_conditional.falseExpression().location(), "Invalid mobile type.");
 | 
						|
 | 
						|
	TypePointer commonType = Type::commonType(trueType, falseType);
 | 
						|
	if (!commonType)
 | 
						|
	{
 | 
						|
		m_errorReporter.typeError(
 | 
						|
				_conditional.location(),
 | 
						|
				"True expression's type " +
 | 
						|
				trueType->toString() +
 | 
						|
				" doesn't match false expression's type " +
 | 
						|
				falseType->toString() +
 | 
						|
				"."
 | 
						|
		);
 | 
						|
		// even we can't find a common type, we have to set a type here,
 | 
						|
		// otherwise the upper statement will not be able to check the type.
 | 
						|
		commonType = trueType;
 | 
						|
	}
 | 
						|
 | 
						|
	_conditional.annotation().type = commonType;
 | 
						|
	_conditional.annotation().isPure =
 | 
						|
		_conditional.condition().annotation().isPure &&
 | 
						|
		_conditional.trueExpression().annotation().isPure &&
 | 
						|
		_conditional.falseExpression().annotation().isPure;
 | 
						|
 | 
						|
	if (_conditional.annotation().lValueRequested)
 | 
						|
		m_errorReporter.typeError(
 | 
						|
				_conditional.location(),
 | 
						|
				"Conditional expression as left value is not supported yet."
 | 
						|
		);
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(Assignment const& _assignment)
 | 
						|
{
 | 
						|
	requireLValue(_assignment.leftHandSide());
 | 
						|
	TypePointer t = type(_assignment.leftHandSide());
 | 
						|
	_assignment.annotation().type = t;
 | 
						|
	if (TupleType const* tupleType = dynamic_cast<TupleType const*>(t.get()))
 | 
						|
	{
 | 
						|
		if (_assignment.assignmentOperator() != Token::Assign)
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_assignment.location(),
 | 
						|
				"Compound assignment is not allowed for tuple types."
 | 
						|
			);
 | 
						|
		// Sequenced assignments of tuples is not valid, make the result a "void" type.
 | 
						|
		_assignment.annotation().type = make_shared<TupleType>();
 | 
						|
		expectType(_assignment.rightHandSide(), *tupleType);
 | 
						|
 | 
						|
		checkDoubleStorageAssignment(_assignment);
 | 
						|
	}
 | 
						|
	else if (t->category() == Type::Category::Mapping)
 | 
						|
	{
 | 
						|
		m_errorReporter.typeError(_assignment.location(), "Mappings cannot be assigned to.");
 | 
						|
		_assignment.rightHandSide().accept(*this);
 | 
						|
	}
 | 
						|
	else if (_assignment.assignmentOperator() == Token::Assign)
 | 
						|
		expectType(_assignment.rightHandSide(), *t);
 | 
						|
	else
 | 
						|
	{
 | 
						|
		// compound assignment
 | 
						|
		_assignment.rightHandSide().accept(*this);
 | 
						|
		TypePointer resultType = t->binaryOperatorResult(
 | 
						|
			Token::AssignmentToBinaryOp(_assignment.assignmentOperator()),
 | 
						|
			type(_assignment.rightHandSide())
 | 
						|
		);
 | 
						|
		if (!resultType || *resultType != *t)
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_assignment.location(),
 | 
						|
				"Operator " +
 | 
						|
				string(Token::toString(_assignment.assignmentOperator())) +
 | 
						|
				" not compatible with types " +
 | 
						|
				t->toString() +
 | 
						|
				" and " +
 | 
						|
				type(_assignment.rightHandSide())->toString()
 | 
						|
			);
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(TupleExpression const& _tuple)
 | 
						|
{
 | 
						|
	vector<ASTPointer<Expression>> const& components = _tuple.components();
 | 
						|
	TypePointers types;
 | 
						|
 | 
						|
	if (_tuple.annotation().lValueRequested)
 | 
						|
	{
 | 
						|
		if (_tuple.isInlineArray())
 | 
						|
			m_errorReporter.fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue.");
 | 
						|
		for (auto const& component: components)
 | 
						|
			if (component)
 | 
						|
			{
 | 
						|
				requireLValue(*component);
 | 
						|
				types.push_back(type(*component));
 | 
						|
			}
 | 
						|
			else
 | 
						|
				types.push_back(TypePointer());
 | 
						|
		if (components.size() == 1)
 | 
						|
			_tuple.annotation().type = type(*components[0]);
 | 
						|
		else
 | 
						|
			_tuple.annotation().type = make_shared<TupleType>(types);
 | 
						|
		// If some of the components are not LValues, the error is reported above.
 | 
						|
		_tuple.annotation().isLValue = true;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		bool isPure = true;
 | 
						|
		TypePointer inlineArrayType;
 | 
						|
		for (size_t i = 0; i < components.size(); ++i)
 | 
						|
		{
 | 
						|
			// Outside of an lvalue-context, the only situation where a component can be empty is (x,).
 | 
						|
			if (!components[i] && !(i == 1 && components.size() == 2))
 | 
						|
				m_errorReporter.fatalTypeError(_tuple.location(), "Tuple component cannot be empty.");
 | 
						|
			else if (components[i])
 | 
						|
			{
 | 
						|
				components[i]->accept(*this);
 | 
						|
				types.push_back(type(*components[i]));
 | 
						|
				if (_tuple.isInlineArray())
 | 
						|
					solAssert(!!types[i], "Inline array cannot have empty components");
 | 
						|
				if (_tuple.isInlineArray())
 | 
						|
				{
 | 
						|
					if ((i == 0 || inlineArrayType) && !types[i]->mobileType())
 | 
						|
						m_errorReporter.fatalTypeError(components[i]->location(), "Invalid mobile type.");
 | 
						|
 | 
						|
					if (i == 0)
 | 
						|
						inlineArrayType = types[i]->mobileType();
 | 
						|
					else if (inlineArrayType)
 | 
						|
						inlineArrayType = Type::commonType(inlineArrayType, types[i]);
 | 
						|
				}
 | 
						|
				if (!components[i]->annotation().isPure)
 | 
						|
					isPure = false;
 | 
						|
			}
 | 
						|
			else
 | 
						|
				types.push_back(TypePointer());
 | 
						|
		}
 | 
						|
		_tuple.annotation().isPure = isPure;
 | 
						|
		if (_tuple.isInlineArray())
 | 
						|
		{
 | 
						|
			if (!inlineArrayType) 
 | 
						|
				m_errorReporter.fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements.");
 | 
						|
			_tuple.annotation().type = make_shared<ArrayType>(DataLocation::Memory, inlineArrayType, types.size());
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			if (components.size() == 1)
 | 
						|
				_tuple.annotation().type = type(*components[0]);
 | 
						|
			else
 | 
						|
			{
 | 
						|
				if (components.size() == 2 && !components[1])
 | 
						|
					types.pop_back();
 | 
						|
				_tuple.annotation().type = make_shared<TupleType>(types);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(UnaryOperation const& _operation)
 | 
						|
{
 | 
						|
	// Inc, Dec, Add, Sub, Not, BitNot, Delete
 | 
						|
	Token::Value op = _operation.getOperator();
 | 
						|
	bool const modifying = (op == Token::Value::Inc || op == Token::Value::Dec || op == Token::Value::Delete);
 | 
						|
	if (modifying)
 | 
						|
		requireLValue(_operation.subExpression());
 | 
						|
	else
 | 
						|
		_operation.subExpression().accept(*this);
 | 
						|
	TypePointer const& subExprType = type(_operation.subExpression());
 | 
						|
	TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op);
 | 
						|
	if (!t)
 | 
						|
	{
 | 
						|
		m_errorReporter.typeError(
 | 
						|
			_operation.location(),
 | 
						|
			"Unary operator " +
 | 
						|
			string(Token::toString(op)) +
 | 
						|
			" cannot be applied to type " +
 | 
						|
			subExprType->toString()
 | 
						|
		);
 | 
						|
		t = subExprType;
 | 
						|
	}
 | 
						|
	_operation.annotation().type = t;
 | 
						|
	_operation.annotation().isPure = !modifying && _operation.subExpression().annotation().isPure;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::endVisit(BinaryOperation const& _operation)
 | 
						|
{
 | 
						|
	TypePointer const& leftType = type(_operation.leftExpression());
 | 
						|
	TypePointer const& rightType = type(_operation.rightExpression());
 | 
						|
	TypePointer commonType = leftType->binaryOperatorResult(_operation.getOperator(), rightType);
 | 
						|
	if (!commonType)
 | 
						|
	{
 | 
						|
		m_errorReporter.typeError(
 | 
						|
			_operation.location(),
 | 
						|
			"Operator " +
 | 
						|
			string(Token::toString(_operation.getOperator())) +
 | 
						|
			" not compatible with types " +
 | 
						|
			leftType->toString() +
 | 
						|
			" and " +
 | 
						|
			rightType->toString()
 | 
						|
		);
 | 
						|
		commonType = leftType;
 | 
						|
	}
 | 
						|
	_operation.annotation().commonType = commonType;
 | 
						|
	_operation.annotation().type =
 | 
						|
		Token::isCompareOp(_operation.getOperator()) ?
 | 
						|
		make_shared<BoolType>() :
 | 
						|
		commonType;
 | 
						|
	_operation.annotation().isPure =
 | 
						|
		_operation.leftExpression().annotation().isPure &&
 | 
						|
		_operation.rightExpression().annotation().isPure;
 | 
						|
 | 
						|
	if (_operation.getOperator() == Token::Exp)
 | 
						|
	{
 | 
						|
		if (
 | 
						|
			leftType->category() == Type::Category::RationalNumber &&
 | 
						|
			rightType->category() != Type::Category::RationalNumber
 | 
						|
		)
 | 
						|
			if ((
 | 
						|
				commonType->category() == Type::Category::Integer &&
 | 
						|
				dynamic_cast<IntegerType const&>(*commonType).numBits() != 256
 | 
						|
			) || (
 | 
						|
				commonType->category() == Type::Category::FixedPoint &&
 | 
						|
				dynamic_cast<FixedPointType const&>(*commonType).numBits() != 256
 | 
						|
			))
 | 
						|
				m_errorReporter.warning(
 | 
						|
					_operation.location(),
 | 
						|
					"Result of exponentiation has type " + commonType->toString() + " and thus "
 | 
						|
					"might overflow. Silence this warning by converting the literal to the "
 | 
						|
					"expected type."
 | 
						|
				);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(FunctionCall const& _functionCall)
 | 
						|
{
 | 
						|
	bool isPositionalCall = _functionCall.names().empty();
 | 
						|
	vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
 | 
						|
	vector<ASTPointer<ASTString>> const& argumentNames = _functionCall.names();
 | 
						|
 | 
						|
	bool isPure = true;
 | 
						|
 | 
						|
	// We need to check arguments' type first as they will be needed for overload resolution.
 | 
						|
	shared_ptr<TypePointers> argumentTypes;
 | 
						|
	if (isPositionalCall)
 | 
						|
		argumentTypes = make_shared<TypePointers>();
 | 
						|
	for (ASTPointer<Expression const> const& argument: arguments)
 | 
						|
	{
 | 
						|
		argument->accept(*this);
 | 
						|
		if (!argument->annotation().isPure)
 | 
						|
			isPure = false;
 | 
						|
		// only store them for positional calls
 | 
						|
		if (isPositionalCall)
 | 
						|
			argumentTypes->push_back(type(*argument));
 | 
						|
	}
 | 
						|
	if (isPositionalCall)
 | 
						|
		_functionCall.expression().annotation().argumentTypes = move(argumentTypes);
 | 
						|
 | 
						|
	_functionCall.expression().accept(*this);
 | 
						|
	TypePointer expressionType = type(_functionCall.expression());
 | 
						|
 | 
						|
	if (auto const* typeType = dynamic_cast<TypeType const*>(expressionType.get()))
 | 
						|
	{
 | 
						|
		if (typeType->actualType()->category() == Type::Category::Struct)
 | 
						|
			_functionCall.annotation().kind = FunctionCallKind::StructConstructorCall;
 | 
						|
		else
 | 
						|
			_functionCall.annotation().kind = FunctionCallKind::TypeConversion;
 | 
						|
 | 
						|
	}
 | 
						|
	else
 | 
						|
		_functionCall.annotation().kind = FunctionCallKind::FunctionCall;
 | 
						|
	solAssert(_functionCall.annotation().kind != FunctionCallKind::Unset, "");
 | 
						|
 | 
						|
	if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
 | 
						|
	{
 | 
						|
		TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
 | 
						|
		TypePointer resultType = t.actualType();
 | 
						|
		if (arguments.size() != 1)
 | 
						|
			m_errorReporter.typeError(_functionCall.location(), "Exactly one argument expected for explicit type conversion.");
 | 
						|
		else if (!isPositionalCall)
 | 
						|
			m_errorReporter.typeError(_functionCall.location(), "Type conversion cannot allow named arguments.");
 | 
						|
		else
 | 
						|
		{
 | 
						|
			TypePointer const& argType = type(*arguments.front());
 | 
						|
			if (auto argRefType = dynamic_cast<ReferenceType const*>(argType.get()))
 | 
						|
				// do not change the data location when converting
 | 
						|
				// (data location cannot yet be specified for type conversions)
 | 
						|
				resultType = ReferenceType::copyForLocationIfReference(argRefType->location(), resultType);
 | 
						|
			if (!argType->isExplicitlyConvertibleTo(*resultType))
 | 
						|
				m_errorReporter.typeError(_functionCall.location(), "Explicit type conversion not allowed.");
 | 
						|
		}
 | 
						|
		_functionCall.annotation().type = resultType;
 | 
						|
		_functionCall.annotation().isPure = isPure;
 | 
						|
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	// Actual function call or struct constructor call.
 | 
						|
 | 
						|
	FunctionTypePointer functionType;
 | 
						|
 | 
						|
	/// For error message: Struct members that were removed during conversion to memory.
 | 
						|
	set<string> membersRemovedForStructConstructor;
 | 
						|
	if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall)
 | 
						|
	{
 | 
						|
		TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
 | 
						|
		auto const& structType = dynamic_cast<StructType const&>(*t.actualType());
 | 
						|
		functionType = structType.constructorType();
 | 
						|
		membersRemovedForStructConstructor = structType.membersMissingInMemory();
 | 
						|
		_functionCall.annotation().isPure = isPure;
 | 
						|
	}
 | 
						|
	else if ((functionType = dynamic_pointer_cast<FunctionType const>(expressionType)))
 | 
						|
		_functionCall.annotation().isPure =
 | 
						|
			isPure &&
 | 
						|
			_functionCall.expression().annotation().isPure &&
 | 
						|
			functionType->isPure();
 | 
						|
 | 
						|
	if (!functionType)
 | 
						|
	{
 | 
						|
		m_errorReporter.typeError(_functionCall.location(), "Type is not callable");
 | 
						|
		_functionCall.annotation().type = make_shared<TupleType>();
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	else if (functionType->returnParameterTypes().size() == 1)
 | 
						|
		_functionCall.annotation().type = functionType->returnParameterTypes().front();
 | 
						|
	else
 | 
						|
		_functionCall.annotation().type = make_shared<TupleType>(functionType->returnParameterTypes());
 | 
						|
 | 
						|
	TypePointers parameterTypes = functionType->parameterTypes();
 | 
						|
	if (!functionType->takesArbitraryParameters() && parameterTypes.size() != arguments.size())
 | 
						|
	{
 | 
						|
		string msg =
 | 
						|
			"Wrong argument count for function call: " +
 | 
						|
			toString(arguments.size()) +
 | 
						|
			" arguments given but expected " +
 | 
						|
			toString(parameterTypes.size()) +
 | 
						|
			".";
 | 
						|
		// Extend error message in case we try to construct a struct with mapping member.
 | 
						|
		if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall && !membersRemovedForStructConstructor.empty())
 | 
						|
		{
 | 
						|
			msg += " Members that have to be skipped in memory:";
 | 
						|
			for (auto const& member: membersRemovedForStructConstructor)
 | 
						|
				msg += " " + member;
 | 
						|
		}
 | 
						|
		m_errorReporter.typeError(_functionCall.location(), msg);
 | 
						|
	}
 | 
						|
	else if (isPositionalCall)
 | 
						|
	{
 | 
						|
		// call by positional arguments
 | 
						|
		for (size_t i = 0; i < arguments.size(); ++i)
 | 
						|
		{
 | 
						|
			auto const& argType = type(*arguments[i]);
 | 
						|
			if (functionType->takesArbitraryParameters())
 | 
						|
			{
 | 
						|
				if (auto t = dynamic_cast<RationalNumberType const*>(argType.get()))
 | 
						|
					if (!t->mobileType())
 | 
						|
						m_errorReporter.typeError(arguments[i]->location(), "Invalid rational number (too large or division by zero).");
 | 
						|
			}
 | 
						|
			else if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
 | 
						|
				m_errorReporter.typeError(
 | 
						|
					arguments[i]->location(),
 | 
						|
					"Invalid type for argument in function call. "
 | 
						|
					"Invalid implicit conversion from " +
 | 
						|
					type(*arguments[i])->toString() +
 | 
						|
					" to " +
 | 
						|
					parameterTypes[i]->toString() +
 | 
						|
					" requested."
 | 
						|
				);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		// call by named arguments
 | 
						|
		auto const& parameterNames = functionType->parameterNames();
 | 
						|
		if (functionType->takesArbitraryParameters())
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_functionCall.location(),
 | 
						|
				"Named arguments cannnot be used for functions that take arbitrary parameters."
 | 
						|
			);
 | 
						|
		else if (parameterNames.size() > argumentNames.size())
 | 
						|
			m_errorReporter.typeError(_functionCall.location(), "Some argument names are missing.");
 | 
						|
		else if (parameterNames.size() < argumentNames.size())
 | 
						|
			m_errorReporter.typeError(_functionCall.location(), "Too many arguments.");
 | 
						|
		else
 | 
						|
		{
 | 
						|
			// check duplicate names
 | 
						|
			bool duplication = false;
 | 
						|
			for (size_t i = 0; i < argumentNames.size(); i++)
 | 
						|
				for (size_t j = i + 1; j < argumentNames.size(); j++)
 | 
						|
					if (*argumentNames[i] == *argumentNames[j])
 | 
						|
					{
 | 
						|
						duplication = true;
 | 
						|
						m_errorReporter.typeError(arguments[i]->location(), "Duplicate named argument.");
 | 
						|
					}
 | 
						|
 | 
						|
			// check actual types
 | 
						|
			if (!duplication)
 | 
						|
				for (size_t i = 0; i < argumentNames.size(); i++)
 | 
						|
				{
 | 
						|
					bool found = false;
 | 
						|
					for (size_t j = 0; j < parameterNames.size(); j++)
 | 
						|
						if (parameterNames[j] == *argumentNames[i])
 | 
						|
						{
 | 
						|
							found = true;
 | 
						|
							// check type convertible
 | 
						|
							if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[j]))
 | 
						|
								m_errorReporter.typeError(
 | 
						|
									arguments[i]->location(),
 | 
						|
									"Invalid type for argument in function call. "
 | 
						|
									"Invalid implicit conversion from " +
 | 
						|
									type(*arguments[i])->toString() +
 | 
						|
									" to " +
 | 
						|
									parameterTypes[i]->toString() +
 | 
						|
									" requested."
 | 
						|
								);
 | 
						|
							break;
 | 
						|
						}
 | 
						|
 | 
						|
					if (!found)
 | 
						|
						m_errorReporter.typeError(
 | 
						|
							_functionCall.location(),
 | 
						|
							"Named argument does not match function declaration."
 | 
						|
						);
 | 
						|
				}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::endVisit(NewExpression const& _newExpression)
 | 
						|
{
 | 
						|
	TypePointer type = _newExpression.typeName().annotation().type;
 | 
						|
	solAssert(!!type, "Type name not resolved.");
 | 
						|
 | 
						|
	if (auto contractName = dynamic_cast<UserDefinedTypeName const*>(&_newExpression.typeName()))
 | 
						|
	{
 | 
						|
		auto contract = dynamic_cast<ContractDefinition const*>(&dereference(*contractName));
 | 
						|
 | 
						|
		if (!contract)
 | 
						|
			m_errorReporter.fatalTypeError(_newExpression.location(), "Identifier is not a contract.");
 | 
						|
		if (!contract->annotation().isFullyImplemented)
 | 
						|
			m_errorReporter.typeError(_newExpression.location(), "Trying to create an instance of an abstract contract.");
 | 
						|
		if (!contract->constructorIsPublic())
 | 
						|
			m_errorReporter.typeError(_newExpression.location(), "Contract with internal constructor cannot be created directly.");
 | 
						|
 | 
						|
		solAssert(!!m_scope, "");
 | 
						|
		m_scope->annotation().contractDependencies.insert(contract);
 | 
						|
		solAssert(
 | 
						|
			!contract->annotation().linearizedBaseContracts.empty(),
 | 
						|
			"Linearized base contracts not yet available."
 | 
						|
		);
 | 
						|
		if (contractDependenciesAreCyclic(*m_scope))
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_newExpression.location(),
 | 
						|
				"Circular reference for contract creation (cannot create instance of derived or same contract)."
 | 
						|
			);
 | 
						|
 | 
						|
		_newExpression.annotation().type = FunctionType::newExpressionType(*contract);
 | 
						|
	}
 | 
						|
	else if (type->category() == Type::Category::Array)
 | 
						|
	{
 | 
						|
		if (!type->canLiveOutsideStorage())
 | 
						|
			m_errorReporter.fatalTypeError(
 | 
						|
				_newExpression.typeName().location(),
 | 
						|
				"Type cannot live outside storage."
 | 
						|
			);
 | 
						|
		if (!type->isDynamicallySized())
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_newExpression.typeName().location(),
 | 
						|
				"Length has to be placed in parentheses after the array type for new expression."
 | 
						|
			);
 | 
						|
		type = ReferenceType::copyForLocationIfReference(DataLocation::Memory, type);
 | 
						|
		_newExpression.annotation().type = make_shared<FunctionType>(
 | 
						|
			TypePointers{make_shared<IntegerType>(256)},
 | 
						|
			TypePointers{type},
 | 
						|
			strings(),
 | 
						|
			strings(),
 | 
						|
			FunctionType::Kind::ObjectCreation
 | 
						|
		);
 | 
						|
		_newExpression.annotation().isPure = true;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		m_errorReporter.fatalTypeError(_newExpression.location(), "Contract or array type expected.");
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(MemberAccess const& _memberAccess)
 | 
						|
{
 | 
						|
	_memberAccess.expression().accept(*this);
 | 
						|
	TypePointer exprType = type(_memberAccess.expression());
 | 
						|
	ASTString const& memberName = _memberAccess.memberName();
 | 
						|
 | 
						|
	// Retrieve the types of the arguments if this is used to call a function.
 | 
						|
	auto const& argumentTypes = _memberAccess.annotation().argumentTypes;
 | 
						|
	MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName);
 | 
						|
	if (possibleMembers.size() > 1 && argumentTypes)
 | 
						|
	{
 | 
						|
		// do overload resolution
 | 
						|
		for (auto it = possibleMembers.begin(); it != possibleMembers.end();)
 | 
						|
			if (
 | 
						|
				it->type->category() == Type::Category::Function &&
 | 
						|
				!dynamic_cast<FunctionType const&>(*it->type).canTakeArguments(*argumentTypes, exprType)
 | 
						|
			)
 | 
						|
				it = possibleMembers.erase(it);
 | 
						|
			else
 | 
						|
				++it;
 | 
						|
	}
 | 
						|
	if (possibleMembers.size() == 0)
 | 
						|
	{
 | 
						|
		auto storageType = ReferenceType::copyForLocationIfReference(
 | 
						|
			DataLocation::Storage,
 | 
						|
			exprType
 | 
						|
		);
 | 
						|
		if (!storageType->members(m_scope).membersByName(memberName).empty())
 | 
						|
			m_errorReporter.fatalTypeError(
 | 
						|
				_memberAccess.location(),
 | 
						|
				"Member \"" + memberName + "\" is not available in " +
 | 
						|
				exprType->toString() +
 | 
						|
				" outside of storage."
 | 
						|
			);
 | 
						|
		m_errorReporter.fatalTypeError(
 | 
						|
			_memberAccess.location(),
 | 
						|
			"Member \"" + memberName + "\" not found or not visible "
 | 
						|
			"after argument-dependent lookup in " + exprType->toString() +
 | 
						|
			(memberName == "value" ? " - did you forget the \"payable\" modifier?" : "")
 | 
						|
		);
 | 
						|
	}
 | 
						|
	else if (possibleMembers.size() > 1)
 | 
						|
		m_errorReporter.fatalTypeError(
 | 
						|
			_memberAccess.location(),
 | 
						|
			"Member \"" + memberName + "\" not unique "
 | 
						|
			"after argument-dependent lookup in " + exprType->toString() +
 | 
						|
			(memberName == "value" ? " - did you forget the \"payable\" modifier?" : "")
 | 
						|
		);
 | 
						|
 | 
						|
	auto& annotation = _memberAccess.annotation();
 | 
						|
	annotation.referencedDeclaration = possibleMembers.front().declaration;
 | 
						|
	annotation.type = possibleMembers.front().type;
 | 
						|
 | 
						|
	if (auto funType = dynamic_cast<FunctionType const*>(annotation.type.get()))
 | 
						|
		if (funType->bound() && !exprType->isImplicitlyConvertibleTo(*funType->selfType()))
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_memberAccess.location(),
 | 
						|
				"Function \"" + memberName + "\" cannot be called on an object of type " +
 | 
						|
				exprType->toString() + " (expected " + funType->selfType()->toString() + ")"
 | 
						|
			);
 | 
						|
 | 
						|
	if (exprType->category() == Type::Category::Struct)
 | 
						|
		annotation.isLValue = true;
 | 
						|
	else if (exprType->category() == Type::Category::Array)
 | 
						|
	{
 | 
						|
		auto const& arrayType(dynamic_cast<ArrayType const&>(*exprType));
 | 
						|
		annotation.isLValue = (
 | 
						|
			memberName == "length" &&
 | 
						|
			arrayType.location() == DataLocation::Storage &&
 | 
						|
			arrayType.isDynamicallySized()
 | 
						|
		);
 | 
						|
	}
 | 
						|
	else if (exprType->category() == Type::Category::FixedBytes)
 | 
						|
		annotation.isLValue = false;
 | 
						|
	else if (TypeType const* typeType = dynamic_cast<decltype(typeType)>(exprType.get()))
 | 
						|
	{
 | 
						|
		if (ContractType const* contractType = dynamic_cast<decltype(contractType)>(typeType->actualType().get()))
 | 
						|
			annotation.isLValue = annotation.referencedDeclaration->isLValue();
 | 
						|
	}
 | 
						|
 | 
						|
	// TODO some members might be pure, but for example `address(0x123).balance` is not pure
 | 
						|
	// although every subexpression is, so leaving this limited for now.
 | 
						|
	if (auto tt = dynamic_cast<TypeType const*>(exprType.get()))
 | 
						|
		if (tt->actualType()->category() == Type::Category::Enum)
 | 
						|
			annotation.isPure = true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(IndexAccess const& _access)
 | 
						|
{
 | 
						|
	_access.baseExpression().accept(*this);
 | 
						|
	TypePointer baseType = type(_access.baseExpression());
 | 
						|
	TypePointer resultType;
 | 
						|
	bool isLValue = false;
 | 
						|
	bool isPure = _access.baseExpression().annotation().isPure;
 | 
						|
	Expression const* index = _access.indexExpression();
 | 
						|
	switch (baseType->category())
 | 
						|
	{
 | 
						|
	case Type::Category::Array:
 | 
						|
	{
 | 
						|
		ArrayType const& actualType = dynamic_cast<ArrayType const&>(*baseType);
 | 
						|
		if (!index)
 | 
						|
			m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
 | 
						|
		else if (actualType.isString())
 | 
						|
		{
 | 
						|
			m_errorReporter.typeError(_access.location(), "Index access for string is not possible.");
 | 
						|
			index->accept(*this);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			expectType(*index, IntegerType(256));
 | 
						|
			if (auto numberType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
 | 
						|
			{
 | 
						|
				if (!numberType->isFractional()) // error is reported above
 | 
						|
					if (!actualType.isDynamicallySized() && actualType.length() <= numberType->literalValue(nullptr))
 | 
						|
						m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
 | 
						|
			}
 | 
						|
		}
 | 
						|
		resultType = actualType.baseType();
 | 
						|
		isLValue = actualType.location() != DataLocation::CallData;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Type::Category::Mapping:
 | 
						|
	{
 | 
						|
		MappingType const& actualType = dynamic_cast<MappingType const&>(*baseType);
 | 
						|
		if (!index)
 | 
						|
			m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
 | 
						|
		else
 | 
						|
			expectType(*index, *actualType.keyType());
 | 
						|
		resultType = actualType.valueType();
 | 
						|
		isLValue = true;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Type::Category::TypeType:
 | 
						|
	{
 | 
						|
		TypeType const& typeType = dynamic_cast<TypeType const&>(*baseType);
 | 
						|
		if (!index)
 | 
						|
			resultType = make_shared<TypeType>(make_shared<ArrayType>(DataLocation::Memory, typeType.actualType()));
 | 
						|
		else
 | 
						|
		{
 | 
						|
			expectType(*index, IntegerType(256));
 | 
						|
			if (auto length = dynamic_cast<RationalNumberType const*>(type(*index).get()))
 | 
						|
				resultType = make_shared<TypeType>(make_shared<ArrayType>(
 | 
						|
					DataLocation::Memory,
 | 
						|
					typeType.actualType(),
 | 
						|
					length->literalValue(nullptr)
 | 
						|
				));
 | 
						|
			else
 | 
						|
				m_errorReporter.fatalTypeError(index->location(), "Integer constant expected.");
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Type::Category::FixedBytes:
 | 
						|
	{
 | 
						|
		FixedBytesType const& bytesType = dynamic_cast<FixedBytesType const&>(*baseType);
 | 
						|
		if (!index)
 | 
						|
			m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
 | 
						|
		else
 | 
						|
		{
 | 
						|
			expectType(*index, IntegerType(256));
 | 
						|
			if (auto integerType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
 | 
						|
				if (bytesType.numBytes() <= integerType->literalValue(nullptr))
 | 
						|
					m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
 | 
						|
		}
 | 
						|
		resultType = make_shared<FixedBytesType>(1);
 | 
						|
		isLValue = false; // @todo this heavily depends on how it is embedded
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	default:
 | 
						|
		m_errorReporter.fatalTypeError(
 | 
						|
			_access.baseExpression().location(),
 | 
						|
			"Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")"
 | 
						|
		);
 | 
						|
	}
 | 
						|
	_access.annotation().type = move(resultType);
 | 
						|
	_access.annotation().isLValue = isLValue;
 | 
						|
	if (index && !index->annotation().isPure)
 | 
						|
		isPure = false;
 | 
						|
	_access.annotation().isPure = isPure;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::visit(Identifier const& _identifier)
 | 
						|
{
 | 
						|
	IdentifierAnnotation& annotation = _identifier.annotation();
 | 
						|
	if (!annotation.referencedDeclaration)
 | 
						|
	{
 | 
						|
		if (!annotation.argumentTypes)
 | 
						|
		{
 | 
						|
			// The identifier should be a public state variable shadowing other functions
 | 
						|
			vector<Declaration const*> candidates;
 | 
						|
 | 
						|
			for (Declaration const* declaration: annotation.overloadedDeclarations)
 | 
						|
			{
 | 
						|
				if (VariableDeclaration const* variableDeclaration = dynamic_cast<decltype(variableDeclaration)>(declaration))
 | 
						|
					candidates.push_back(declaration);
 | 
						|
			}
 | 
						|
			if (candidates.empty())
 | 
						|
				m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup.");
 | 
						|
			else if (candidates.size() == 1)
 | 
						|
				annotation.referencedDeclaration = candidates.front();
 | 
						|
			else
 | 
						|
				m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup.");
 | 
						|
		}
 | 
						|
		else if (annotation.overloadedDeclarations.empty())
 | 
						|
			m_errorReporter.fatalTypeError(_identifier.location(), "No candidates for overload resolution found.");
 | 
						|
		else if (annotation.overloadedDeclarations.size() == 1)
 | 
						|
			annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();
 | 
						|
		else
 | 
						|
		{
 | 
						|
			vector<Declaration const*> candidates;
 | 
						|
 | 
						|
			for (Declaration const* declaration: annotation.overloadedDeclarations)
 | 
						|
			{
 | 
						|
				TypePointer function = declaration->type();
 | 
						|
				solAssert(!!function, "Requested type not present.");
 | 
						|
				auto const* functionType = dynamic_cast<FunctionType const*>(function.get());
 | 
						|
				if (functionType && functionType->canTakeArguments(*annotation.argumentTypes))
 | 
						|
					candidates.push_back(declaration);
 | 
						|
			}
 | 
						|
			if (candidates.empty())
 | 
						|
				m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup.");
 | 
						|
			else if (candidates.size() == 1)
 | 
						|
				annotation.referencedDeclaration = candidates.front();
 | 
						|
			else
 | 
						|
				m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup.");
 | 
						|
		}
 | 
						|
	}
 | 
						|
	solAssert(
 | 
						|
		!!annotation.referencedDeclaration,
 | 
						|
		"Referenced declaration is null after overload resolution."
 | 
						|
	);
 | 
						|
	annotation.isLValue = annotation.referencedDeclaration->isLValue();
 | 
						|
	annotation.type = annotation.referencedDeclaration->type();
 | 
						|
	if (!annotation.type)
 | 
						|
		m_errorReporter.fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined.");
 | 
						|
	if (auto variableDeclaration = dynamic_cast<VariableDeclaration const*>(annotation.referencedDeclaration))
 | 
						|
		annotation.isPure = annotation.isConstant = variableDeclaration->isConstant();
 | 
						|
	else if (dynamic_cast<MagicVariableDeclaration const*>(annotation.referencedDeclaration))
 | 
						|
		if (dynamic_cast<FunctionType const*>(annotation.type.get()))
 | 
						|
			annotation.isPure = true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr)
 | 
						|
{
 | 
						|
	_expr.annotation().type = make_shared<TypeType>(Type::fromElementaryTypeName(_expr.typeName()));
 | 
						|
	_expr.annotation().isPure = true;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::endVisit(Literal const& _literal)
 | 
						|
{
 | 
						|
	if (_literal.looksLikeAddress())
 | 
						|
	{
 | 
						|
		if (_literal.passesAddressChecksum())
 | 
						|
			_literal.annotation().type = make_shared<IntegerType>(0, IntegerType::Modifier::Address);
 | 
						|
		else
 | 
						|
			m_errorReporter.warning(
 | 
						|
				_literal.location(),
 | 
						|
				"This looks like an address but has an invalid checksum. "
 | 
						|
				"If this is not used as an address, please prepend '00'."
 | 
						|
			);
 | 
						|
	}
 | 
						|
	if (!_literal.annotation().type)
 | 
						|
		_literal.annotation().type = Type::forLiteral(_literal);
 | 
						|
 | 
						|
	if (!_literal.annotation().type)
 | 
						|
		m_errorReporter.fatalTypeError(_literal.location(), "Invalid literal value.");
 | 
						|
 | 
						|
	_literal.annotation().isPure = true;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeChecker::contractDependenciesAreCyclic(
 | 
						|
	ContractDefinition const& _contract,
 | 
						|
	std::set<ContractDefinition const*> const& _seenContracts
 | 
						|
) const
 | 
						|
{
 | 
						|
	// Naive depth-first search that remembers nodes already seen.
 | 
						|
	if (_seenContracts.count(&_contract))
 | 
						|
		return true;
 | 
						|
	set<ContractDefinition const*> seen(_seenContracts);
 | 
						|
	seen.insert(&_contract);
 | 
						|
	for (auto const* c: _contract.annotation().contractDependencies)
 | 
						|
		if (contractDependenciesAreCyclic(*c, seen))
 | 
						|
			return true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
Declaration const& TypeChecker::dereference(Identifier const& _identifier) const
 | 
						|
{
 | 
						|
	solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored.");
 | 
						|
	return *_identifier.annotation().referencedDeclaration;
 | 
						|
}
 | 
						|
 | 
						|
Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const
 | 
						|
{
 | 
						|
	solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored.");
 | 
						|
	return *_typeName.annotation().referencedDeclaration;
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::expectType(Expression const& _expression, Type const& _expectedType)
 | 
						|
{
 | 
						|
	_expression.accept(*this);
 | 
						|
	if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType))
 | 
						|
	{
 | 
						|
		if (
 | 
						|
			type(_expression)->category() == Type::Category::RationalNumber &&
 | 
						|
			dynamic_pointer_cast<RationalNumberType const>(type(_expression))->isFractional() &&
 | 
						|
			type(_expression)->mobileType()
 | 
						|
		)
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_expression.location(),
 | 
						|
				"Type " +
 | 
						|
				type(_expression)->toString() +
 | 
						|
				" is not implicitly convertible to expected type " +
 | 
						|
				_expectedType.toString() +
 | 
						|
				". Try converting to type " +
 | 
						|
				type(_expression)->mobileType()->toString() +
 | 
						|
				" or use an explicit conversion."
 | 
						|
			);
 | 
						|
		else
 | 
						|
			m_errorReporter.typeError(
 | 
						|
				_expression.location(),
 | 
						|
				"Type " +
 | 
						|
				type(_expression)->toString() +
 | 
						|
				" is not implicitly convertible to expected type " +
 | 
						|
				_expectedType.toString() +
 | 
						|
				"."
 | 
						|
			);
 | 
						|
	}
 | 
						|
 | 
						|
	if (
 | 
						|
		type(_expression)->category() == Type::Category::RationalNumber &&
 | 
						|
		_expectedType.category() == Type::Category::FixedBytes
 | 
						|
	)
 | 
						|
	{
 | 
						|
		auto literal = dynamic_cast<Literal const*>(&_expression);
 | 
						|
 | 
						|
		if (literal && !literal->isHexNumber())
 | 
						|
			m_errorReporter.warning(
 | 
						|
				_expression.location(),
 | 
						|
				"Decimal literal assigned to bytesXX variable will be left-aligned. "
 | 
						|
				"Use an explicit conversion to silence this warning."
 | 
						|
			);
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void TypeChecker::requireLValue(Expression const& _expression)
 | 
						|
{
 | 
						|
	_expression.annotation().lValueRequested = true;
 | 
						|
	_expression.accept(*this);
 | 
						|
 | 
						|
	if (_expression.annotation().isConstant)
 | 
						|
		m_errorReporter.typeError(_expression.location(), "Cannot assign to a constant variable.");
 | 
						|
	else if (!_expression.annotation().isLValue)
 | 
						|
		m_errorReporter.typeError(_expression.location(), "Expression has to be an lvalue.");
 | 
						|
}
 | 
						|
 |