mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
969 lines
23 KiB
C++
969 lines
23 KiB
C++
/*
|
|
This file is part of cpp-ethereum.
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
cpp-ethereum is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/**
|
|
* @author Christian <c@ethdev.com>
|
|
* @date 2014
|
|
* Tests for the Solidity optimizer.
|
|
*/
|
|
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <memory>
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/lexical_cast.hpp>
|
|
#include <test/libsolidity/solidityExecutionFramework.h>
|
|
#include <libevmasm/CommonSubexpressionEliminator.h>
|
|
#include <libevmasm/ControlFlowGraph.h>
|
|
#include <libevmasm/Assembly.h>
|
|
#include <libevmasm/BlockDeduplicator.h>
|
|
|
|
using namespace std;
|
|
using namespace dev::eth;
|
|
|
|
namespace dev
|
|
{
|
|
namespace solidity
|
|
{
|
|
namespace test
|
|
{
|
|
|
|
class OptimizerTestFramework: public ExecutionFramework
|
|
{
|
|
public:
|
|
OptimizerTestFramework() { }
|
|
/// Compiles the source code with and without optimizing.
|
|
void compileBothVersions(
|
|
std::string const& _sourceCode,
|
|
u256 const& _value = 0,
|
|
std::string const& _contractName = ""
|
|
)
|
|
{
|
|
m_optimize = false;
|
|
bytes nonOptimizedBytecode = compileAndRun(_sourceCode, _value, _contractName);
|
|
m_nonOptimizedContract = m_contractAddress;
|
|
m_optimize = true;
|
|
bytes optimizedBytecode = compileAndRun(_sourceCode, _value, _contractName);
|
|
size_t nonOptimizedSize = 0;
|
|
eth::eachInstruction(nonOptimizedBytecode, [&](Instruction, u256 const&) {
|
|
nonOptimizedSize++;
|
|
});
|
|
size_t optimizedSize = 0;
|
|
eth::eachInstruction(optimizedBytecode, [&](Instruction, u256 const&) {
|
|
optimizedSize++;
|
|
});
|
|
BOOST_CHECK_MESSAGE(
|
|
nonOptimizedSize > optimizedSize,
|
|
"Optimizer did not reduce bytecode size."
|
|
);
|
|
m_optimizedContract = m_contractAddress;
|
|
}
|
|
|
|
template <class... Args>
|
|
void compareVersions(std::string _sig, Args const&... _arguments)
|
|
{
|
|
m_contractAddress = m_nonOptimizedContract;
|
|
bytes nonOptimizedOutput = callContractFunction(_sig, _arguments...);
|
|
m_contractAddress = m_optimizedContract;
|
|
bytes optimizedOutput = callContractFunction(_sig, _arguments...);
|
|
BOOST_CHECK_MESSAGE(nonOptimizedOutput == optimizedOutput, "Computed values do not match."
|
|
"\nNon-Optimized: " + toHex(nonOptimizedOutput) +
|
|
"\nOptimized: " + toHex(optimizedOutput));
|
|
}
|
|
|
|
AssemblyItems addDummyLocations(AssemblyItems const& _input)
|
|
{
|
|
// add dummy locations to each item so that we can check that they are not deleted
|
|
AssemblyItems input = _input;
|
|
for (AssemblyItem& item: input)
|
|
item.setLocation(SourceLocation(1, 3, make_shared<string>("")));
|
|
return input;
|
|
}
|
|
|
|
eth::KnownState createInitialState(AssemblyItems const& _input)
|
|
{
|
|
eth::KnownState state;
|
|
for (auto const& item: addDummyLocations(_input))
|
|
state.feedItem(item);
|
|
return state;
|
|
}
|
|
|
|
AssemblyItems getCSE(AssemblyItems const& _input, eth::KnownState const& _state = eth::KnownState())
|
|
{
|
|
AssemblyItems input = addDummyLocations(_input);
|
|
|
|
eth::CommonSubexpressionEliminator cse(_state);
|
|
BOOST_REQUIRE(cse.feedItems(input.begin(), input.end()) == input.end());
|
|
AssemblyItems output = cse.getOptimizedItems();
|
|
|
|
for (AssemblyItem const& item: output)
|
|
{
|
|
BOOST_CHECK(item == Instruction::POP || !item.getLocation().isEmpty());
|
|
}
|
|
return output;
|
|
}
|
|
|
|
void checkCSE(
|
|
AssemblyItems const& _input,
|
|
AssemblyItems const& _expectation,
|
|
KnownState const& _state = eth::KnownState()
|
|
)
|
|
{
|
|
AssemblyItems output = getCSE(_input, _state);
|
|
BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
|
|
}
|
|
|
|
AssemblyItems getCFG(AssemblyItems const& _input)
|
|
{
|
|
AssemblyItems output = _input;
|
|
// Running it four times should be enough for these tests.
|
|
for (unsigned i = 0; i < 4; ++i)
|
|
{
|
|
ControlFlowGraph cfg(output);
|
|
AssemblyItems optItems;
|
|
for (BasicBlock const& block: cfg.optimisedBlocks())
|
|
copy(output.begin() + block.begin, output.begin() + block.end,
|
|
back_inserter(optItems));
|
|
output = move(optItems);
|
|
}
|
|
return output;
|
|
}
|
|
|
|
void checkCFG(AssemblyItems const& _input, AssemblyItems const& _expectation)
|
|
{
|
|
AssemblyItems output = getCFG(_input);
|
|
BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
|
|
}
|
|
|
|
protected:
|
|
Address m_optimizedContract;
|
|
Address m_nonOptimizedContract;
|
|
};
|
|
|
|
BOOST_FIXTURE_TEST_SUITE(SolidityOptimizer, OptimizerTestFramework)
|
|
|
|
BOOST_AUTO_TEST_CASE(smoke_test)
|
|
{
|
|
char const* sourceCode = R"(
|
|
contract test {
|
|
function f(uint a) returns (uint b) {
|
|
return a;
|
|
}
|
|
})";
|
|
compileBothVersions(sourceCode);
|
|
compareVersions("f(uint256)", u256(7));
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(identities)
|
|
{
|
|
char const* sourceCode = R"(
|
|
contract test {
|
|
function f(int a) returns (int b) {
|
|
return int(0) | (int(1) * (int(0) ^ (0 + a)));
|
|
}
|
|
})";
|
|
compileBothVersions(sourceCode);
|
|
compareVersions("f(uint256)", u256(0x12334664));
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(unused_expressions)
|
|
{
|
|
char const* sourceCode = R"(
|
|
contract test {
|
|
uint data;
|
|
function f() returns (uint a, uint b) {
|
|
10 + 20;
|
|
data;
|
|
}
|
|
})";
|
|
compileBothVersions(sourceCode);
|
|
compareVersions("f()");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(constant_folding_both_sides)
|
|
{
|
|
// if constants involving the same associative and commutative operator are applied from both
|
|
// sides, the operator should be applied only once, because the expression compiler pushes
|
|
// literals as late as possible
|
|
char const* sourceCode = R"(
|
|
contract test {
|
|
function f(uint x) returns (uint y) {
|
|
return 98 ^ (7 * ((1 | (x | 1000)) * 40) ^ 102);
|
|
}
|
|
})";
|
|
compileBothVersions(sourceCode);
|
|
compareVersions("f(uint256)");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(storage_access)
|
|
{
|
|
char const* sourceCode = R"(
|
|
contract test {
|
|
uint8[40] data;
|
|
function f(uint x) returns (uint y) {
|
|
data[2] = data[7] = uint8(x);
|
|
data[4] = data[2] * 10 + data[3];
|
|
}
|
|
}
|
|
)";
|
|
compileBothVersions(sourceCode);
|
|
compareVersions("f(uint256)");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(array_copy)
|
|
{
|
|
char const* sourceCode = R"(
|
|
contract test {
|
|
bytes2[] data1;
|
|
bytes5[] data2;
|
|
function f(uint x) returns (uint l, uint y) {
|
|
for (uint i = 0; i < msg.data.length; ++i)
|
|
data1[i] = msg.data[i];
|
|
data2 = data1;
|
|
l = data2.length;
|
|
y = uint(data2[x]);
|
|
}
|
|
}
|
|
)";
|
|
compileBothVersions(sourceCode);
|
|
compareVersions("f(uint256)", 0);
|
|
compareVersions("f(uint256)", 10);
|
|
compareVersions("f(uint256)", 36);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(function_calls)
|
|
{
|
|
char const* sourceCode = R"(
|
|
contract test {
|
|
function f1(uint x) returns (uint) { return x*x; }
|
|
function f(uint x) returns (uint) { return f1(7+x) - this.f1(x**9); }
|
|
}
|
|
)";
|
|
compileBothVersions(sourceCode);
|
|
compareVersions("f(uint256)", 0);
|
|
compareVersions("f(uint256)", 10);
|
|
compareVersions("f(uint256)", 36);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(storage_write_in_loops)
|
|
{
|
|
char const* sourceCode = R"(
|
|
contract test {
|
|
uint d;
|
|
function f(uint a) returns (uint r) {
|
|
var x = d;
|
|
for (uint i = 1; i < a * a; i++) {
|
|
r = d;
|
|
d = i;
|
|
}
|
|
|
|
}
|
|
}
|
|
)";
|
|
compileBothVersions(sourceCode);
|
|
compareVersions("f(uint256)", 0);
|
|
compareVersions("f(uint256)", 10);
|
|
compareVersions("f(uint256)", 36);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(retain_information_in_branches)
|
|
{
|
|
// This tests that the optimizer knows that we already have "z == sha3(y)" inside both branches.
|
|
char const* sourceCode = R"(
|
|
contract c {
|
|
bytes32 d;
|
|
uint a;
|
|
function f(uint x, bytes32 y) returns (uint r_a, bytes32 r_d) {
|
|
bytes32 z = sha3(y);
|
|
if (x > 8) {
|
|
z = sha3(y);
|
|
a = x;
|
|
} else {
|
|
z = sha3(y);
|
|
a = x;
|
|
}
|
|
r_a = a;
|
|
r_d = d;
|
|
}
|
|
}
|
|
)";
|
|
compileBothVersions(sourceCode);
|
|
compareVersions("f(uint256,bytes32)", 0, "abc");
|
|
compareVersions("f(uint256,bytes32)", 8, "def");
|
|
compareVersions("f(uint256,bytes32)", 10, "ghi");
|
|
|
|
m_optimize = true;
|
|
bytes optimizedBytecode = compileAndRun(sourceCode, 0, "c");
|
|
size_t numSHA3s = 0;
|
|
eth::eachInstruction(optimizedBytecode, [&](Instruction _instr, u256 const&) {
|
|
if (_instr == eth::Instruction::SHA3)
|
|
numSHA3s++;
|
|
});
|
|
BOOST_CHECK_EQUAL(1, numSHA3s);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_intermediate_swap)
|
|
{
|
|
eth::KnownState state;
|
|
eth::CommonSubexpressionEliminator cse(state);
|
|
AssemblyItems input{
|
|
Instruction::SWAP1, Instruction::POP, Instruction::ADD, u256(0), Instruction::SWAP1,
|
|
Instruction::SLOAD, Instruction::SWAP1, u256(100), Instruction::EXP, Instruction::SWAP1,
|
|
Instruction::DIV, u256(0xff), Instruction::AND
|
|
};
|
|
BOOST_REQUIRE(cse.feedItems(input.begin(), input.end()) == input.end());
|
|
AssemblyItems output = cse.getOptimizedItems();
|
|
BOOST_CHECK(!output.empty());
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_negative_stack_access)
|
|
{
|
|
AssemblyItems input{Instruction::DUP2, u256(0)};
|
|
checkCSE(input, input);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_negative_stack_end)
|
|
{
|
|
AssemblyItems input{Instruction::ADD};
|
|
checkCSE(input, input);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_intermediate_negative_stack)
|
|
{
|
|
AssemblyItems input{Instruction::ADD, u256(1), Instruction::DUP1};
|
|
checkCSE(input, input);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_pop)
|
|
{
|
|
checkCSE({Instruction::POP}, {Instruction::POP});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_unneeded_items)
|
|
{
|
|
AssemblyItems input{
|
|
Instruction::ADD,
|
|
Instruction::SWAP1,
|
|
Instruction::POP,
|
|
u256(7),
|
|
u256(8),
|
|
};
|
|
checkCSE(input, input);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_constant_addition)
|
|
{
|
|
AssemblyItems input{u256(7), u256(8), Instruction::ADD};
|
|
checkCSE(input, {u256(7 + 8)});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_invariants)
|
|
{
|
|
AssemblyItems input{
|
|
Instruction::DUP1,
|
|
Instruction::DUP1,
|
|
u256(0),
|
|
Instruction::OR,
|
|
Instruction::OR
|
|
};
|
|
checkCSE(input, {Instruction::DUP1});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_subself)
|
|
{
|
|
checkCSE({Instruction::DUP1, Instruction::SUB}, {Instruction::POP, u256(0)});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_subother)
|
|
{
|
|
checkCSE({Instruction::SUB}, {Instruction::SUB});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_double_negation)
|
|
{
|
|
checkCSE({Instruction::DUP5, Instruction::NOT, Instruction::NOT}, {Instruction::DUP5});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_associativity)
|
|
{
|
|
AssemblyItems input{
|
|
Instruction::DUP1,
|
|
Instruction::DUP1,
|
|
u256(0),
|
|
Instruction::OR,
|
|
Instruction::OR
|
|
};
|
|
checkCSE(input, {Instruction::DUP1});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_associativity2)
|
|
{
|
|
AssemblyItems input{
|
|
u256(0),
|
|
Instruction::DUP2,
|
|
u256(2),
|
|
u256(1),
|
|
Instruction::DUP6,
|
|
Instruction::ADD,
|
|
u256(2),
|
|
Instruction::ADD,
|
|
Instruction::ADD,
|
|
Instruction::ADD,
|
|
Instruction::ADD
|
|
};
|
|
checkCSE(input, {Instruction::DUP2, Instruction::DUP2, Instruction::ADD, u256(5), Instruction::ADD});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_storage)
|
|
{
|
|
AssemblyItems input{
|
|
u256(0),
|
|
Instruction::SLOAD,
|
|
u256(0),
|
|
Instruction::SLOAD,
|
|
Instruction::ADD,
|
|
u256(0),
|
|
Instruction::SSTORE
|
|
};
|
|
checkCSE(input, {
|
|
u256(0),
|
|
Instruction::DUP1,
|
|
Instruction::SLOAD,
|
|
Instruction::DUP1,
|
|
Instruction::ADD,
|
|
Instruction::SWAP1,
|
|
Instruction::SSTORE
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_noninterleaved_storage)
|
|
{
|
|
// two stores to the same location should be replaced by only one store, even if we
|
|
// read in the meantime
|
|
AssemblyItems input{
|
|
u256(7),
|
|
Instruction::DUP2,
|
|
Instruction::SSTORE,
|
|
Instruction::DUP1,
|
|
Instruction::SLOAD,
|
|
u256(8),
|
|
Instruction::DUP3,
|
|
Instruction::SSTORE
|
|
};
|
|
checkCSE(input, {
|
|
u256(8),
|
|
Instruction::DUP2,
|
|
Instruction::SSTORE,
|
|
u256(7)
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_interleaved_storage)
|
|
{
|
|
// stores and reads to/from two unknown locations, should not optimize away the first store
|
|
AssemblyItems input{
|
|
u256(7),
|
|
Instruction::DUP2,
|
|
Instruction::SSTORE, // store to "DUP1"
|
|
Instruction::DUP2,
|
|
Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
|
|
u256(0),
|
|
Instruction::DUP3,
|
|
Instruction::SSTORE // store different value to "DUP1"
|
|
};
|
|
checkCSE(input, input);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_interleaved_storage_same_value)
|
|
{
|
|
// stores and reads to/from two unknown locations, should not optimize away the first store
|
|
// but it should optimize away the second, since we already know the value will be the same
|
|
AssemblyItems input{
|
|
u256(7),
|
|
Instruction::DUP2,
|
|
Instruction::SSTORE, // store to "DUP1"
|
|
Instruction::DUP2,
|
|
Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
|
|
u256(6),
|
|
u256(1),
|
|
Instruction::ADD,
|
|
Instruction::DUP3,
|
|
Instruction::SSTORE // store same value to "DUP1"
|
|
};
|
|
checkCSE(input, {
|
|
u256(7),
|
|
Instruction::DUP2,
|
|
Instruction::SSTORE,
|
|
Instruction::DUP2,
|
|
Instruction::SLOAD
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location)
|
|
{
|
|
// stores and reads to/from two known locations, should optimize away the first store,
|
|
// because we know that the location is different
|
|
AssemblyItems input{
|
|
u256(0x70),
|
|
u256(1),
|
|
Instruction::SSTORE, // store to 1
|
|
u256(2),
|
|
Instruction::SLOAD, // read from 2, is different from 1
|
|
u256(0x90),
|
|
u256(1),
|
|
Instruction::SSTORE // store different value at 1
|
|
};
|
|
checkCSE(input, {
|
|
u256(2),
|
|
Instruction::SLOAD,
|
|
u256(0x90),
|
|
u256(1),
|
|
Instruction::SSTORE
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location_offset)
|
|
{
|
|
// stores and reads to/from two locations which are known to be different,
|
|
// should optimize away the first store, because we know that the location is different
|
|
AssemblyItems input{
|
|
u256(0x70),
|
|
Instruction::DUP2,
|
|
u256(1),
|
|
Instruction::ADD,
|
|
Instruction::SSTORE, // store to "DUP1"+1
|
|
Instruction::DUP1,
|
|
u256(2),
|
|
Instruction::ADD,
|
|
Instruction::SLOAD, // read from "DUP1"+2, is different from "DUP1"+1
|
|
u256(0x90),
|
|
Instruction::DUP3,
|
|
u256(1),
|
|
Instruction::ADD,
|
|
Instruction::SSTORE // store different value at "DUP1"+1
|
|
};
|
|
checkCSE(input, {
|
|
u256(2),
|
|
Instruction::DUP2,
|
|
Instruction::ADD,
|
|
Instruction::SLOAD,
|
|
u256(0x90),
|
|
u256(1),
|
|
Instruction::DUP4,
|
|
Instruction::ADD,
|
|
Instruction::SSTORE
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_interleaved_memory_at_known_location_offset)
|
|
{
|
|
// stores and reads to/from two locations which are known to be different,
|
|
// should not optimize away the first store, because the location overlaps with the load,
|
|
// but it should optimize away the second, because we know that the location is different by 32
|
|
AssemblyItems input{
|
|
u256(0x50),
|
|
Instruction::DUP2,
|
|
u256(2),
|
|
Instruction::ADD,
|
|
Instruction::MSTORE, // ["DUP1"+2] = 0x50
|
|
u256(0x60),
|
|
Instruction::DUP2,
|
|
u256(32),
|
|
Instruction::ADD,
|
|
Instruction::MSTORE, // ["DUP1"+32] = 0x60
|
|
Instruction::DUP1,
|
|
Instruction::MLOAD, // read from "DUP1"
|
|
u256(0x70),
|
|
Instruction::DUP3,
|
|
u256(32),
|
|
Instruction::ADD,
|
|
Instruction::MSTORE, // ["DUP1"+32] = 0x70
|
|
u256(0x80),
|
|
Instruction::DUP3,
|
|
u256(2),
|
|
Instruction::ADD,
|
|
Instruction::MSTORE, // ["DUP1"+2] = 0x80
|
|
};
|
|
// If the actual code changes too much, we could also simply check that the output contains
|
|
// exactly 3 MSTORE and exactly 1 MLOAD instruction.
|
|
checkCSE(input, {
|
|
u256(0x50),
|
|
u256(2),
|
|
Instruction::DUP3,
|
|
Instruction::ADD,
|
|
Instruction::SWAP1,
|
|
Instruction::DUP2,
|
|
Instruction::MSTORE, // ["DUP1"+2] = 0x50
|
|
Instruction::DUP2,
|
|
Instruction::MLOAD, // read from "DUP1"
|
|
u256(0x70),
|
|
u256(32),
|
|
Instruction::DUP5,
|
|
Instruction::ADD,
|
|
Instruction::MSTORE, // ["DUP1"+32] = 0x70
|
|
u256(0x80),
|
|
Instruction::SWAP1,
|
|
Instruction::SWAP2,
|
|
Instruction::MSTORE // ["DUP1"+2] = 0x80
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_deep_stack)
|
|
{
|
|
AssemblyItems input{
|
|
Instruction::ADD,
|
|
Instruction::SWAP1,
|
|
Instruction::POP,
|
|
Instruction::SWAP8,
|
|
Instruction::POP,
|
|
Instruction::SWAP8,
|
|
Instruction::POP,
|
|
Instruction::SWAP8,
|
|
Instruction::SWAP5,
|
|
Instruction::POP,
|
|
Instruction::POP,
|
|
Instruction::POP,
|
|
Instruction::POP,
|
|
Instruction::POP,
|
|
};
|
|
checkCSE(input, {
|
|
Instruction::SWAP4,
|
|
Instruction::SWAP12,
|
|
Instruction::SWAP3,
|
|
Instruction::SWAP11,
|
|
Instruction::POP,
|
|
Instruction::SWAP1,
|
|
Instruction::SWAP3,
|
|
Instruction::ADD,
|
|
Instruction::SWAP8,
|
|
Instruction::POP,
|
|
Instruction::SWAP6,
|
|
Instruction::POP,
|
|
Instruction::POP,
|
|
Instruction::POP,
|
|
Instruction::POP,
|
|
Instruction::POP,
|
|
Instruction::POP,
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_jumpi_no_jump)
|
|
{
|
|
AssemblyItems input{
|
|
u256(0),
|
|
u256(1),
|
|
Instruction::DUP2,
|
|
AssemblyItem(PushTag, 1),
|
|
Instruction::JUMPI
|
|
};
|
|
checkCSE(input, {
|
|
u256(0),
|
|
u256(1)
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_jumpi_jump)
|
|
{
|
|
AssemblyItems input{
|
|
u256(1),
|
|
u256(1),
|
|
Instruction::DUP2,
|
|
AssemblyItem(PushTag, 1),
|
|
Instruction::JUMPI
|
|
};
|
|
checkCSE(input, {
|
|
u256(1),
|
|
Instruction::DUP1,
|
|
AssemblyItem(PushTag, 1),
|
|
Instruction::JUMP
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_empty_sha3)
|
|
{
|
|
AssemblyItems input{
|
|
u256(0),
|
|
Instruction::DUP2,
|
|
Instruction::SHA3
|
|
};
|
|
checkCSE(input, {
|
|
u256(sha3(bytesConstRef()))
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_partial_sha3)
|
|
{
|
|
AssemblyItems input{
|
|
u256(0xabcd) << (256 - 16),
|
|
u256(0),
|
|
Instruction::MSTORE,
|
|
u256(2),
|
|
u256(0),
|
|
Instruction::SHA3
|
|
};
|
|
checkCSE(input, {
|
|
u256(0xabcd) << (256 - 16),
|
|
u256(0),
|
|
Instruction::MSTORE,
|
|
u256(sha3(bytes{0xab, 0xcd}))
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_location)
|
|
{
|
|
// sha3 twice from same dynamic location
|
|
AssemblyItems input{
|
|
Instruction::DUP2,
|
|
Instruction::DUP1,
|
|
Instruction::MSTORE,
|
|
u256(64),
|
|
Instruction::DUP2,
|
|
Instruction::SHA3,
|
|
u256(64),
|
|
Instruction::DUP3,
|
|
Instruction::SHA3
|
|
};
|
|
checkCSE(input, {
|
|
Instruction::DUP2,
|
|
Instruction::DUP1,
|
|
Instruction::MSTORE,
|
|
u256(64),
|
|
Instruction::DUP2,
|
|
Instruction::SHA3,
|
|
Instruction::DUP1
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_content)
|
|
{
|
|
// sha3 twice from different dynamic location but with same content
|
|
AssemblyItems input{
|
|
Instruction::DUP1,
|
|
u256(0x80),
|
|
Instruction::MSTORE, // m[128] = DUP1
|
|
u256(0x20),
|
|
u256(0x80),
|
|
Instruction::SHA3, // sha3(m[128..(128+32)])
|
|
Instruction::DUP2,
|
|
u256(12),
|
|
Instruction::MSTORE, // m[12] = DUP1
|
|
u256(0x20),
|
|
u256(12),
|
|
Instruction::SHA3 // sha3(m[12..(12+32)])
|
|
};
|
|
checkCSE(input, {
|
|
u256(0x80),
|
|
Instruction::DUP2,
|
|
Instruction::DUP2,
|
|
Instruction::MSTORE,
|
|
u256(0x20),
|
|
Instruction::SWAP1,
|
|
Instruction::SHA3,
|
|
u256(12),
|
|
Instruction::DUP3,
|
|
Instruction::SWAP1,
|
|
Instruction::MSTORE,
|
|
Instruction::DUP1
|
|
});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_content_dynamic_store_in_between)
|
|
{
|
|
// sha3 twice from different dynamic location but with same content,
|
|
// dynamic mstore in between, which forces us to re-calculate the sha3
|
|
AssemblyItems input{
|
|
u256(0x80),
|
|
Instruction::DUP2,
|
|
Instruction::DUP2,
|
|
Instruction::MSTORE, // m[128] = DUP1
|
|
u256(0x20),
|
|
Instruction::DUP1,
|
|
Instruction::DUP3,
|
|
Instruction::SHA3, // sha3(m[128..(128+32)])
|
|
u256(12),
|
|
Instruction::DUP5,
|
|
Instruction::DUP2,
|
|
Instruction::MSTORE, // m[12] = DUP1
|
|
Instruction::DUP12,
|
|
Instruction::DUP14,
|
|
Instruction::MSTORE, // destroys memory knowledge
|
|
Instruction::SWAP2,
|
|
Instruction::SWAP1,
|
|
Instruction::SWAP2,
|
|
Instruction::SHA3 // sha3(m[12..(12+32)])
|
|
};
|
|
checkCSE(input, input);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_content_noninterfering_store_in_between)
|
|
{
|
|
// sha3 twice from different dynamic location but with same content,
|
|
// dynamic mstore in between, but does not force us to re-calculate the sha3
|
|
AssemblyItems input{
|
|
u256(0x80),
|
|
Instruction::DUP2,
|
|
Instruction::DUP2,
|
|
Instruction::MSTORE, // m[128] = DUP1
|
|
u256(0x20),
|
|
Instruction::DUP1,
|
|
Instruction::DUP3,
|
|
Instruction::SHA3, // sha3(m[128..(128+32)])
|
|
u256(12),
|
|
Instruction::DUP5,
|
|
Instruction::DUP2,
|
|
Instruction::MSTORE, // m[12] = DUP1
|
|
Instruction::DUP12,
|
|
u256(12 + 32),
|
|
Instruction::MSTORE, // does not destoy memory knowledge
|
|
Instruction::DUP13,
|
|
u256(128 - 32),
|
|
Instruction::MSTORE, // does not destoy memory knowledge
|
|
u256(0x20),
|
|
u256(12),
|
|
Instruction::SHA3 // sha3(m[12..(12+32)])
|
|
};
|
|
// if this changes too often, only count the number of SHA3 and MSTORE instructions
|
|
AssemblyItems output = getCSE(input);
|
|
BOOST_CHECK_EQUAL(4, count(output.begin(), output.end(), AssemblyItem(Instruction::MSTORE)));
|
|
BOOST_CHECK_EQUAL(1, count(output.begin(), output.end(), AssemblyItem(Instruction::SHA3)));
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_with_initially_known_stack)
|
|
{
|
|
eth::KnownState state = createInitialState(AssemblyItems{
|
|
u256(0x12),
|
|
u256(0x20),
|
|
Instruction::ADD
|
|
});
|
|
AssemblyItems input{
|
|
u256(0x12 + 0x20)
|
|
};
|
|
checkCSE(input, AssemblyItems{Instruction::DUP1}, state);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(cse_equality_on_initially_known_stack)
|
|
{
|
|
eth::KnownState state = createInitialState(AssemblyItems{Instruction::DUP1});
|
|
AssemblyItems input{
|
|
Instruction::EQ
|
|
};
|
|
AssemblyItems output = getCSE(input, state);
|
|
// check that it directly pushes 1 (true)
|
|
BOOST_CHECK(find(output.begin(), output.end(), AssemblyItem(u256(1))) != output.end());
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused)
|
|
{
|
|
// remove parts of the code that are unused
|
|
AssemblyItems input{
|
|
AssemblyItem(PushTag, 1),
|
|
Instruction::JUMP,
|
|
u256(7),
|
|
AssemblyItem(Tag, 1),
|
|
};
|
|
checkCFG(input, {});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused_loop)
|
|
{
|
|
AssemblyItems input{
|
|
AssemblyItem(PushTag, 3),
|
|
Instruction::JUMP,
|
|
AssemblyItem(Tag, 1),
|
|
u256(7),
|
|
AssemblyItem(PushTag, 2),
|
|
Instruction::JUMP,
|
|
AssemblyItem(Tag, 2),
|
|
u256(8),
|
|
AssemblyItem(PushTag, 1),
|
|
Instruction::JUMP,
|
|
AssemblyItem(Tag, 3),
|
|
u256(11)
|
|
};
|
|
checkCFG(input, {u256(11)});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(control_flow_graph_reconnect_single_jump_source)
|
|
{
|
|
// move code that has only one unconditional jump source
|
|
AssemblyItems input{
|
|
u256(1),
|
|
AssemblyItem(PushTag, 1),
|
|
Instruction::JUMP,
|
|
AssemblyItem(Tag, 2),
|
|
u256(2),
|
|
AssemblyItem(PushTag, 3),
|
|
Instruction::JUMP,
|
|
AssemblyItem(Tag, 1),
|
|
u256(3),
|
|
AssemblyItem(PushTag, 2),
|
|
Instruction::JUMP,
|
|
AssemblyItem(Tag, 3),
|
|
u256(4),
|
|
};
|
|
checkCFG(input, {u256(1), u256(3), u256(2), u256(4)});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(control_flow_graph_do_not_remove_returned_to)
|
|
{
|
|
// do not remove parts that are "returned to"
|
|
AssemblyItems input{
|
|
AssemblyItem(PushTag, 1),
|
|
AssemblyItem(PushTag, 2),
|
|
Instruction::JUMP,
|
|
AssemblyItem(Tag, 2),
|
|
Instruction::JUMP,
|
|
AssemblyItem(Tag, 1),
|
|
u256(2)
|
|
};
|
|
checkCFG(input, {u256(2)});
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(block_deduplicator)
|
|
{
|
|
AssemblyItems input{
|
|
AssemblyItem(PushTag, 2),
|
|
AssemblyItem(PushTag, 1),
|
|
AssemblyItem(PushTag, 3),
|
|
u256(6),
|
|
eth::Instruction::SWAP3,
|
|
eth::Instruction::JUMP,
|
|
AssemblyItem(Tag, 1),
|
|
u256(6),
|
|
eth::Instruction::SWAP3,
|
|
eth::Instruction::JUMP,
|
|
AssemblyItem(Tag, 2),
|
|
u256(6),
|
|
eth::Instruction::SWAP3,
|
|
eth::Instruction::JUMP,
|
|
AssemblyItem(Tag, 3)
|
|
};
|
|
BlockDeduplicator dedup(input);
|
|
dedup.deduplicate();
|
|
|
|
set<u256> pushTags;
|
|
for (AssemblyItem const& item: input)
|
|
if (item.type() == PushTag)
|
|
pushTags.insert(item.data());
|
|
BOOST_CHECK_EQUAL(pushTags.size(), 2);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|
|
|
|
}
|
|
}
|
|
} // end namespaces
|