mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
791 lines
28 KiB
C++
791 lines
28 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <tools/yulPhaser/Phaser.h>
|
|
|
|
#include <tools/yulPhaser/AlgorithmRunner.h>
|
|
#include <tools/yulPhaser/Common.h>
|
|
#include <tools/yulPhaser/Exceptions.h>
|
|
#include <tools/yulPhaser/FitnessMetrics.h>
|
|
#include <tools/yulPhaser/GeneticAlgorithms.h>
|
|
#include <tools/yulPhaser/Program.h>
|
|
#include <tools/yulPhaser/SimulationRNG.h>
|
|
|
|
#include <liblangutil/CharStream.h>
|
|
|
|
#include <libsolutil/Assertions.h>
|
|
#include <libsolutil/CommonData.h>
|
|
#include <libsolutil/CommonIO.h>
|
|
|
|
#include <boost/filesystem.hpp>
|
|
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
using namespace solidity;
|
|
using namespace solidity::langutil;
|
|
using namespace solidity::util;
|
|
using namespace solidity::phaser;
|
|
|
|
namespace po = boost::program_options;
|
|
|
|
namespace
|
|
{
|
|
|
|
map<PhaserMode, string> const PhaserModeToStringMap =
|
|
{
|
|
{PhaserMode::RunAlgorithm, "run-algorithm"},
|
|
{PhaserMode::PrintOptimisedPrograms, "print-optimised-programs"},
|
|
{PhaserMode::PrintOptimisedASTs, "print-optimised-asts"},
|
|
};
|
|
map<string, PhaserMode> const StringToPhaserModeMap = invertMap(PhaserModeToStringMap);
|
|
|
|
map<Algorithm, string> const AlgorithmToStringMap =
|
|
{
|
|
{Algorithm::Random, "random"},
|
|
{Algorithm::GEWEP, "GEWEP"},
|
|
{Algorithm::Classic, "classic"},
|
|
};
|
|
map<string, Algorithm> const StringToAlgorithmMap = invertMap(AlgorithmToStringMap);
|
|
|
|
map<MetricChoice, string> MetricChoiceToStringMap =
|
|
{
|
|
{MetricChoice::CodeSize, "code-size"},
|
|
{MetricChoice::RelativeCodeSize, "relative-code-size"},
|
|
};
|
|
map<string, MetricChoice> const StringToMetricChoiceMap = invertMap(MetricChoiceToStringMap);
|
|
|
|
map<MetricAggregatorChoice, string> const MetricAggregatorChoiceToStringMap =
|
|
{
|
|
{MetricAggregatorChoice::Average, "average"},
|
|
{MetricAggregatorChoice::Sum, "sum"},
|
|
{MetricAggregatorChoice::Maximum, "maximum"},
|
|
{MetricAggregatorChoice::Minimum, "minimum"},
|
|
};
|
|
map<string, MetricAggregatorChoice> const StringToMetricAggregatorChoiceMap = invertMap(MetricAggregatorChoiceToStringMap);
|
|
|
|
map<CrossoverChoice, string> const CrossoverChoiceToStringMap =
|
|
{
|
|
{CrossoverChoice::SinglePoint, "single-point"},
|
|
{CrossoverChoice::TwoPoint, "two-point"},
|
|
{CrossoverChoice::Uniform, "uniform"},
|
|
};
|
|
map<string, CrossoverChoice> const StringToCrossoverChoiceMap = invertMap(CrossoverChoiceToStringMap);
|
|
|
|
}
|
|
|
|
istream& phaser::operator>>(istream& _inputStream, PhaserMode& _phaserMode) { return deserializeChoice(_inputStream, _phaserMode, StringToPhaserModeMap); }
|
|
ostream& phaser::operator<<(ostream& _outputStream, PhaserMode _phaserMode) { return serializeChoice(_outputStream, _phaserMode, PhaserModeToStringMap); }
|
|
istream& phaser::operator>>(istream& _inputStream, Algorithm& _algorithm) { return deserializeChoice(_inputStream, _algorithm, StringToAlgorithmMap); }
|
|
ostream& phaser::operator<<(ostream& _outputStream, Algorithm _algorithm) { return serializeChoice(_outputStream, _algorithm, AlgorithmToStringMap); }
|
|
istream& phaser::operator>>(istream& _inputStream, MetricChoice& _metric) { return deserializeChoice(_inputStream, _metric, StringToMetricChoiceMap); }
|
|
ostream& phaser::operator<<(ostream& _outputStream, MetricChoice _metric) { return serializeChoice(_outputStream, _metric, MetricChoiceToStringMap); }
|
|
istream& phaser::operator>>(istream& _inputStream, MetricAggregatorChoice& _aggregator) { return deserializeChoice(_inputStream, _aggregator, StringToMetricAggregatorChoiceMap); }
|
|
ostream& phaser::operator<<(ostream& _outputStream, MetricAggregatorChoice _aggregator) { return serializeChoice(_outputStream, _aggregator, MetricAggregatorChoiceToStringMap); }
|
|
istream& phaser::operator>>(istream& _inputStream, CrossoverChoice& _crossover) { return deserializeChoice(_inputStream, _crossover, StringToCrossoverChoiceMap); }
|
|
ostream& phaser::operator<<(ostream& _outputStream, CrossoverChoice _crossover) { return serializeChoice(_outputStream, _crossover, CrossoverChoiceToStringMap); }
|
|
|
|
GeneticAlgorithmFactory::Options GeneticAlgorithmFactory::Options::fromCommandLine(po::variables_map const& _arguments)
|
|
{
|
|
return {
|
|
_arguments["algorithm"].as<Algorithm>(),
|
|
_arguments["min-chromosome-length"].as<size_t>(),
|
|
_arguments["max-chromosome-length"].as<size_t>(),
|
|
_arguments["crossover"].as<CrossoverChoice>(),
|
|
_arguments["uniform-crossover-swap-chance"].as<double>(),
|
|
_arguments.count("random-elite-pool-size") > 0 ?
|
|
_arguments["random-elite-pool-size"].as<double>() :
|
|
optional<double>{},
|
|
_arguments["gewep-mutation-pool-size"].as<double>(),
|
|
_arguments["gewep-crossover-pool-size"].as<double>(),
|
|
_arguments["gewep-randomisation-chance"].as<double>(),
|
|
_arguments["gewep-deletion-vs-addition-chance"].as<double>(),
|
|
_arguments.count("gewep-genes-to-randomise") > 0 ?
|
|
_arguments["gewep-genes-to-randomise"].as<double>() :
|
|
optional<double>{},
|
|
_arguments.count("gewep-genes-to-add-or-delete") > 0 ?
|
|
_arguments["gewep-genes-to-add-or-delete"].as<double>() :
|
|
optional<double>{},
|
|
_arguments["classic-elite-pool-size"].as<double>(),
|
|
_arguments["classic-crossover-chance"].as<double>(),
|
|
_arguments["classic-mutation-chance"].as<double>(),
|
|
_arguments["classic-deletion-chance"].as<double>(),
|
|
_arguments["classic-addition-chance"].as<double>(),
|
|
};
|
|
}
|
|
|
|
unique_ptr<GeneticAlgorithm> GeneticAlgorithmFactory::build(
|
|
Options const& _options,
|
|
size_t _populationSize
|
|
)
|
|
{
|
|
assert(_populationSize > 0);
|
|
|
|
switch (_options.algorithm)
|
|
{
|
|
case Algorithm::Random:
|
|
{
|
|
double elitePoolSize = 1.0 / _populationSize;
|
|
|
|
if (_options.randomElitePoolSize.has_value())
|
|
elitePoolSize = _options.randomElitePoolSize.value();
|
|
|
|
return make_unique<RandomAlgorithm>(RandomAlgorithm::Options{
|
|
/* elitePoolSize = */ elitePoolSize,
|
|
/* minChromosomeLength = */ _options.minChromosomeLength,
|
|
/* maxChromosomeLength = */ _options.maxChromosomeLength,
|
|
});
|
|
}
|
|
case Algorithm::GEWEP:
|
|
{
|
|
double percentGenesToRandomise = 1.0 / _options.maxChromosomeLength;
|
|
double percentGenesToAddOrDelete = percentGenesToRandomise;
|
|
|
|
if (_options.gewepGenesToRandomise.has_value())
|
|
percentGenesToRandomise = _options.gewepGenesToRandomise.value();
|
|
if (_options.gewepGenesToAddOrDelete.has_value())
|
|
percentGenesToAddOrDelete = _options.gewepGenesToAddOrDelete.value();
|
|
|
|
return make_unique<GenerationalElitistWithExclusivePools>(GenerationalElitistWithExclusivePools::Options{
|
|
/* mutationPoolSize = */ _options.gewepMutationPoolSize,
|
|
/* crossoverPoolSize = */ _options.gewepCrossoverPoolSize,
|
|
/* randomisationChance = */ _options.gewepRandomisationChance,
|
|
/* deletionVsAdditionChance = */ _options.gewepDeletionVsAdditionChance,
|
|
/* percentGenesToRandomise = */ percentGenesToRandomise,
|
|
/* percentGenesToAddOrDelete = */ percentGenesToAddOrDelete,
|
|
/* crossover = */ _options.crossover,
|
|
/* uniformCrossoverSwapChance = */ _options.uniformCrossoverSwapChance,
|
|
});
|
|
}
|
|
case Algorithm::Classic:
|
|
{
|
|
return make_unique<ClassicGeneticAlgorithm>(ClassicGeneticAlgorithm::Options{
|
|
/* elitePoolSize = */ _options.classicElitePoolSize,
|
|
/* crossoverChance = */ _options.classicCrossoverChance,
|
|
/* mutationChance = */ _options.classicMutationChance,
|
|
/* deletionChance = */ _options.classicDeletionChance,
|
|
/* additionChance = */ _options.classicAdditionChance,
|
|
/* crossover = */ _options.crossover,
|
|
/* uniformCrossoverSwapChance = */ _options.uniformCrossoverSwapChance,
|
|
});
|
|
}
|
|
default:
|
|
assertThrow(false, solidity::util::Exception, "Invalid Algorithm value.");
|
|
}
|
|
}
|
|
|
|
FitnessMetricFactory::Options FitnessMetricFactory::Options::fromCommandLine(po::variables_map const& _arguments)
|
|
{
|
|
return {
|
|
_arguments["metric"].as<MetricChoice>(),
|
|
_arguments["metric-aggregator"].as<MetricAggregatorChoice>(),
|
|
_arguments["relative-metric-scale"].as<size_t>(),
|
|
_arguments["chromosome-repetitions"].as<size_t>(),
|
|
};
|
|
}
|
|
|
|
unique_ptr<FitnessMetric> FitnessMetricFactory::build(
|
|
Options const& _options,
|
|
vector<Program> _programs,
|
|
vector<shared_ptr<ProgramCache>> _programCaches
|
|
)
|
|
{
|
|
assert(_programCaches.size() == _programs.size());
|
|
assert(_programs.size() > 0 && "Validations should prevent this from being executed with zero files.");
|
|
|
|
vector<shared_ptr<FitnessMetric>> metrics;
|
|
switch (_options.metric)
|
|
{
|
|
case MetricChoice::CodeSize:
|
|
{
|
|
for (size_t i = 0; i < _programs.size(); ++i)
|
|
metrics.push_back(make_unique<ProgramSize>(
|
|
_programCaches[i] != nullptr ? optional<Program>{} : move(_programs[i]),
|
|
move(_programCaches[i]),
|
|
_options.chromosomeRepetitions
|
|
));
|
|
|
|
break;
|
|
}
|
|
case MetricChoice::RelativeCodeSize:
|
|
{
|
|
for (size_t i = 0; i < _programs.size(); ++i)
|
|
metrics.push_back(make_unique<RelativeProgramSize>(
|
|
_programCaches[i] != nullptr ? optional<Program>{} : move(_programs[i]),
|
|
move(_programCaches[i]),
|
|
_options.relativeMetricScale,
|
|
_options.chromosomeRepetitions
|
|
));
|
|
break;
|
|
}
|
|
default:
|
|
assertThrow(false, solidity::util::Exception, "Invalid MetricChoice value.");
|
|
}
|
|
|
|
switch (_options.metricAggregator)
|
|
{
|
|
case MetricAggregatorChoice::Average:
|
|
return make_unique<FitnessMetricAverage>(move(metrics));
|
|
case MetricAggregatorChoice::Sum:
|
|
return make_unique<FitnessMetricSum>(move(metrics));
|
|
case MetricAggregatorChoice::Maximum:
|
|
return make_unique<FitnessMetricMaximum>(move(metrics));
|
|
case MetricAggregatorChoice::Minimum:
|
|
return make_unique<FitnessMetricMinimum>(move(metrics));
|
|
default:
|
|
assertThrow(false, solidity::util::Exception, "Invalid MetricAggregatorChoice value.");
|
|
}
|
|
}
|
|
|
|
PopulationFactory::Options PopulationFactory::Options::fromCommandLine(po::variables_map const& _arguments)
|
|
{
|
|
return {
|
|
_arguments["min-chromosome-length"].as<size_t>(),
|
|
_arguments["max-chromosome-length"].as<size_t>(),
|
|
_arguments.count("population") > 0 ?
|
|
_arguments["population"].as<vector<string>>() :
|
|
vector<string>{},
|
|
_arguments.count("random-population") > 0 ?
|
|
_arguments["random-population"].as<vector<size_t>>() :
|
|
vector<size_t>{},
|
|
_arguments.count("population-from-file") > 0 ?
|
|
_arguments["population-from-file"].as<vector<string>>() :
|
|
vector<string>{},
|
|
};
|
|
}
|
|
|
|
Population PopulationFactory::build(
|
|
Options const& _options,
|
|
shared_ptr<FitnessMetric> _fitnessMetric
|
|
)
|
|
{
|
|
Population population = buildFromStrings(_options.population, _fitnessMetric);
|
|
|
|
size_t combinedSize = 0;
|
|
for (size_t populationSize: _options.randomPopulation)
|
|
combinedSize += populationSize;
|
|
|
|
population = move(population) + buildRandom(
|
|
combinedSize,
|
|
_options.minChromosomeLength,
|
|
_options.maxChromosomeLength,
|
|
_fitnessMetric
|
|
);
|
|
|
|
for (string const& populationFilePath: _options.populationFromFile)
|
|
population = move(population) + buildFromFile(populationFilePath, _fitnessMetric);
|
|
|
|
return population;
|
|
}
|
|
|
|
Population PopulationFactory::buildFromStrings(
|
|
vector<string> const& _geneSequences,
|
|
shared_ptr<FitnessMetric> _fitnessMetric
|
|
)
|
|
{
|
|
vector<Chromosome> chromosomes;
|
|
for (string const& geneSequence: _geneSequences)
|
|
chromosomes.emplace_back(geneSequence);
|
|
|
|
return Population(move(_fitnessMetric), move(chromosomes));
|
|
}
|
|
|
|
Population PopulationFactory::buildRandom(
|
|
size_t _populationSize,
|
|
size_t _minChromosomeLength,
|
|
size_t _maxChromosomeLength,
|
|
shared_ptr<FitnessMetric> _fitnessMetric
|
|
)
|
|
{
|
|
return Population::makeRandom(
|
|
move(_fitnessMetric),
|
|
_populationSize,
|
|
_minChromosomeLength,
|
|
_maxChromosomeLength
|
|
);
|
|
}
|
|
|
|
Population PopulationFactory::buildFromFile(
|
|
string const& _filePath,
|
|
shared_ptr<FitnessMetric> _fitnessMetric
|
|
)
|
|
{
|
|
return buildFromStrings(readLinesFromFile(_filePath), move(_fitnessMetric));
|
|
}
|
|
|
|
ProgramCacheFactory::Options ProgramCacheFactory::Options::fromCommandLine(po::variables_map const& _arguments)
|
|
{
|
|
return {
|
|
_arguments["program-cache"].as<bool>(),
|
|
};
|
|
}
|
|
|
|
vector<shared_ptr<ProgramCache>> ProgramCacheFactory::build(
|
|
Options const& _options,
|
|
vector<Program> _programs
|
|
)
|
|
{
|
|
vector<shared_ptr<ProgramCache>> programCaches;
|
|
for (Program& program: _programs)
|
|
programCaches.push_back(_options.programCacheEnabled ? make_shared<ProgramCache>(move(program)) : nullptr);
|
|
|
|
return programCaches;
|
|
}
|
|
|
|
ProgramFactory::Options ProgramFactory::Options::fromCommandLine(po::variables_map const& _arguments)
|
|
{
|
|
return {
|
|
_arguments["input-files"].as<vector<string>>(),
|
|
_arguments["prefix"].as<string>(),
|
|
};
|
|
}
|
|
|
|
vector<Program> ProgramFactory::build(Options const& _options)
|
|
{
|
|
vector<Program> inputPrograms;
|
|
for (auto& path: _options.inputFiles)
|
|
{
|
|
CharStream sourceCode = loadSource(path);
|
|
variant<Program, ErrorList> programOrErrors = Program::load(sourceCode);
|
|
if (holds_alternative<ErrorList>(programOrErrors))
|
|
{
|
|
cerr << get<ErrorList>(programOrErrors) << endl;
|
|
assertThrow(false, InvalidProgram, "Failed to load program " + path);
|
|
}
|
|
|
|
get<Program>(programOrErrors).optimise(Chromosome(_options.prefix).optimisationSteps());
|
|
inputPrograms.push_back(move(get<Program>(programOrErrors)));
|
|
}
|
|
|
|
return inputPrograms;
|
|
}
|
|
|
|
CharStream ProgramFactory::loadSource(string const& _sourcePath)
|
|
{
|
|
assertThrow(boost::filesystem::exists(_sourcePath), MissingFile, "Source file does not exist: " + _sourcePath);
|
|
|
|
string sourceCode = readFileAsString(_sourcePath);
|
|
return CharStream(sourceCode, _sourcePath);
|
|
}
|
|
|
|
void Phaser::main(int _argc, char** _argv)
|
|
{
|
|
optional<po::variables_map> arguments = parseCommandLine(_argc, _argv);
|
|
if (!arguments.has_value())
|
|
return;
|
|
|
|
initialiseRNG(arguments.value());
|
|
|
|
runPhaser(arguments.value());
|
|
}
|
|
|
|
Phaser::CommandLineDescription Phaser::buildCommandLineDescription()
|
|
{
|
|
size_t const lineLength = po::options_description::m_default_line_length;
|
|
size_t const minDescriptionLength = lineLength - 23;
|
|
|
|
po::options_description keywordDescription(
|
|
"yul-phaser, a tool for finding the best sequence of Yul optimisation phases.\n"
|
|
"\n"
|
|
"Usage: yul-phaser [options] <file>\n"
|
|
"Reads <file> as Yul code and tries to find the best order in which to run optimisation"
|
|
" phases using a genetic algorithm.\n"
|
|
"Example:\n"
|
|
"yul-phaser program.yul\n"
|
|
"\n"
|
|
"Allowed options",
|
|
lineLength,
|
|
minDescriptionLength
|
|
);
|
|
|
|
po::options_description generalDescription("GENERAL", lineLength, minDescriptionLength);
|
|
generalDescription.add_options()
|
|
("help", "Show help message and exit.")
|
|
("input-files", po::value<vector<string>>()->required()->value_name("<PATH>"), "Input files.")
|
|
(
|
|
"prefix",
|
|
po::value<string>()->value_name("<CHROMOSOME>")->default_value(""),
|
|
"Initial optimisation steps automatically applied to every input program.\n"
|
|
"The result is treated as if it was the actual input, i.e. the steps are not considered "
|
|
"a part of the chromosomes and cannot be mutated. The values of relative metric values "
|
|
"are also relative to the fitness of a program with these steps applied rather than the "
|
|
"fitness of the original program.\n"
|
|
"Note that phaser always adds a 'hgo' prefix to ensure that chromosomes can "
|
|
"contain arbitrary optimisation steps. This implicit prefix cannot be changed or "
|
|
"or removed using this option. The value given here is applied after it."
|
|
)
|
|
("seed", po::value<uint32_t>()->value_name("<NUM>"), "Seed for the random number generator.")
|
|
(
|
|
"rounds",
|
|
po::value<size_t>()->value_name("<NUM>"),
|
|
"The number of rounds after which the algorithm should stop. (default=no limit)."
|
|
)
|
|
(
|
|
"mode",
|
|
po::value<PhaserMode>()->value_name("<NAME>")->default_value(PhaserMode::RunAlgorithm),
|
|
"Mode of operation. The default is to run the algorithm but you can also tell phaser "
|
|
"to do something else with its parameters, e.g. just print the optimised programs and exit."
|
|
)
|
|
;
|
|
keywordDescription.add(generalDescription);
|
|
|
|
po::options_description algorithmDescription("ALGORITHM", lineLength, minDescriptionLength);
|
|
algorithmDescription.add_options()
|
|
(
|
|
"algorithm",
|
|
po::value<Algorithm>()->value_name("<NAME>")->default_value(Algorithm::GEWEP),
|
|
"Algorithm"
|
|
)
|
|
(
|
|
"no-randomise-duplicates",
|
|
po::bool_switch(),
|
|
"By default, after each round of the algorithm duplicate chromosomes are removed from"
|
|
"the population and replaced with randomly generated ones. "
|
|
"This option disables this postprocessing."
|
|
)
|
|
(
|
|
"min-chromosome-length",
|
|
po::value<size_t>()->value_name("<NUM>")->default_value(12),
|
|
"Minimum length of randomly generated chromosomes."
|
|
)
|
|
(
|
|
"max-chromosome-length",
|
|
po::value<size_t>()->value_name("<NUM>")->default_value(30),
|
|
"Maximum length of randomly generated chromosomes."
|
|
)
|
|
(
|
|
"crossover",
|
|
po::value<CrossoverChoice>()->value_name("<NAME>")->default_value(CrossoverChoice::SinglePoint),
|
|
"Type of the crossover operator to use."
|
|
)
|
|
(
|
|
"uniform-crossover-swap-chance",
|
|
po::value<double>()->value_name("<PROBABILITY>")->default_value(0.5),
|
|
"Chance of two genes being swapped between chromosomes in uniform crossover."
|
|
)
|
|
;
|
|
keywordDescription.add(algorithmDescription);
|
|
|
|
po::options_description gewepAlgorithmDescription("GEWEP ALGORITHM", lineLength, minDescriptionLength);
|
|
gewepAlgorithmDescription.add_options()
|
|
(
|
|
"gewep-mutation-pool-size",
|
|
po::value<double>()->value_name("<FRACTION>")->default_value(0.25),
|
|
"Percentage of population to regenerate using mutations in each round."
|
|
)
|
|
(
|
|
"gewep-crossover-pool-size",
|
|
po::value<double>()->value_name("<FRACTION>")->default_value(0.25),
|
|
"Percentage of population to regenerate using crossover in each round."
|
|
)
|
|
(
|
|
"gewep-randomisation-chance",
|
|
po::value<double>()->value_name("<PROBABILITY>")->default_value(0.9),
|
|
"The chance of choosing gene randomisation as the mutation to perform."
|
|
)
|
|
(
|
|
"gewep-deletion-vs-addition-chance",
|
|
po::value<double>()->value_name("<PROBABILITY>")->default_value(0.5),
|
|
"The chance of choosing gene deletion as the mutation if randomisation was not chosen."
|
|
)
|
|
(
|
|
"gewep-genes-to-randomise",
|
|
po::value<double>()->value_name("<PROBABILITY>"),
|
|
"The chance of any given gene being mutated in gene randomisation. "
|
|
"(default=1/max-chromosome-length)"
|
|
)
|
|
(
|
|
"gewep-genes-to-add-or-delete",
|
|
po::value<double>()->value_name("<PROBABILITY>"),
|
|
"The chance of a gene being added (or deleted) in gene addition (or deletion). "
|
|
"(default=1/max-chromosome-length)"
|
|
)
|
|
;
|
|
keywordDescription.add(gewepAlgorithmDescription);
|
|
|
|
po::options_description classicGeneticAlgorithmDescription("CLASSIC GENETIC ALGORITHM", lineLength, minDescriptionLength);
|
|
classicGeneticAlgorithmDescription.add_options()
|
|
(
|
|
"classic-elite-pool-size",
|
|
po::value<double>()->value_name("<FRACTION>")->default_value(0),
|
|
"Percentage of population to regenerate using mutations in each round."
|
|
)
|
|
(
|
|
"classic-crossover-chance",
|
|
po::value<double>()->value_name("<FRACTION>")->default_value(0.75),
|
|
"Chance of a chromosome being selected for crossover."
|
|
)
|
|
(
|
|
"classic-mutation-chance",
|
|
po::value<double>()->value_name("<FRACTION>")->default_value(0.01),
|
|
"Chance of a gene being mutated."
|
|
)
|
|
(
|
|
"classic-deletion-chance",
|
|
po::value<double>()->value_name("<PROBABILITY>")->default_value(0.01),
|
|
"Chance of a gene being deleted."
|
|
)
|
|
(
|
|
"classic-addition-chance",
|
|
po::value<double>()->value_name("<PROBABILITY>")->default_value(0.01),
|
|
"Chance of a random gene being added."
|
|
)
|
|
;
|
|
keywordDescription.add(classicGeneticAlgorithmDescription);
|
|
|
|
po::options_description randomAlgorithmDescription("RANDOM ALGORITHM", lineLength, minDescriptionLength);
|
|
randomAlgorithmDescription.add_options()
|
|
(
|
|
"random-elite-pool-size",
|
|
po::value<double>()->value_name("<FRACTION>"),
|
|
"Percentage of the population preserved in each round. "
|
|
"(default=one individual, regardless of population size)"
|
|
)
|
|
;
|
|
keywordDescription.add(randomAlgorithmDescription);
|
|
|
|
po::options_description populationDescription("POPULATION", lineLength, minDescriptionLength);
|
|
populationDescription.add_options()
|
|
(
|
|
"population",
|
|
po::value<vector<string>>()->multitoken()->value_name("<CHROMOSOMES>"),
|
|
"List of chromosomes to be included in the initial population. "
|
|
"You can specify multiple values separated with spaces or invoke the option multiple times "
|
|
"and all the values will be included."
|
|
)
|
|
(
|
|
"random-population",
|
|
po::value<vector<size_t>>()->value_name("<SIZE>"),
|
|
"The number of randomly generated chromosomes to be included in the initial population."
|
|
)
|
|
(
|
|
"population-from-file",
|
|
po::value<vector<string>>()->value_name("<FILE>"),
|
|
"A text file with a list of chromosomes (one per line) to be included in the initial population."
|
|
)
|
|
(
|
|
"population-autosave",
|
|
po::value<string>()->value_name("<FILE>"),
|
|
"If specified, the population is saved in the specified file after each round. (default=autosave disabled)"
|
|
)
|
|
;
|
|
keywordDescription.add(populationDescription);
|
|
|
|
po::options_description metricsDescription("METRICS", lineLength, minDescriptionLength);
|
|
metricsDescription.add_options()
|
|
(
|
|
"metric",
|
|
po::value<MetricChoice>()->value_name("<NAME>")->default_value(MetricChoice::RelativeCodeSize),
|
|
"Metric used to evaluate the fitness of a chromosome."
|
|
)
|
|
(
|
|
"metric-aggregator",
|
|
po::value<MetricAggregatorChoice>()->value_name("<NAME>")->default_value(MetricAggregatorChoice::Average),
|
|
"Operator used to combine multiple fitness metric obtained by evaluating a chromosome "
|
|
"separately for each input program."
|
|
)
|
|
(
|
|
"relative-metric-scale",
|
|
po::value<size_t>()->value_name("<EXPONENT>")->default_value(3),
|
|
"Scaling factor for values produced by relative fitness metrics. \n"
|
|
"Since all metrics must produce integer values, the fractional part of the result is discarded. "
|
|
"To keep the numbers meaningful, a relative metric multiples its values by a scaling factor "
|
|
"and this option specifies the exponent of this factor. "
|
|
"For example with value of 3 the factor is 10^3 = 1000 and the metric will return "
|
|
"500 to represent 0.5, 1000 for 1.0, 2000 for 2.0 and so on. "
|
|
"Using a bigger factor allows discerning smaller relative differences between chromosomes "
|
|
"but makes the numbers less readable and may also lose precision if the numbers are very large."
|
|
)
|
|
(
|
|
"chromosome-repetitions",
|
|
po::value<size_t>()->value_name("<COUNT>")->default_value(1),
|
|
"Number of times to repeat the sequence optimisation steps represented by a chromosome."
|
|
)
|
|
;
|
|
keywordDescription.add(metricsDescription);
|
|
|
|
po::options_description cacheDescription("CACHE", lineLength, minDescriptionLength);
|
|
cacheDescription.add_options()
|
|
(
|
|
"program-cache",
|
|
po::bool_switch(),
|
|
"Enables caching of intermediate programs corresponding to chromosome prefixes.\n"
|
|
"This speeds up fitness evaluation by a lot but eats tons of memory if the chromosomes are long. "
|
|
"Disabled by default since there's currently no way to set an upper limit on memory usage but "
|
|
"highly recommended if your computer has enough RAM."
|
|
)
|
|
;
|
|
keywordDescription.add(cacheDescription);
|
|
|
|
po::options_description outputDescription("OUTPUT", lineLength, minDescriptionLength);
|
|
outputDescription.add_options()
|
|
(
|
|
"show-initial-population",
|
|
po::bool_switch(),
|
|
"Print the state of the population before the algorithm starts."
|
|
)
|
|
(
|
|
"show-only-top-chromosome",
|
|
po::bool_switch(),
|
|
"Print only the best chromosome found in each round rather than the whole population."
|
|
)
|
|
(
|
|
"hide-round",
|
|
po::bool_switch(),
|
|
"Hide information about the current round (round number and elapsed time)."
|
|
)
|
|
(
|
|
"show-cache-stats",
|
|
po::bool_switch(),
|
|
"Print information about cache size and effectiveness after each round."
|
|
)
|
|
(
|
|
"show-seed",
|
|
po::bool_switch(),
|
|
"Print the selected random seed."
|
|
)
|
|
;
|
|
keywordDescription.add(outputDescription);
|
|
|
|
po::positional_options_description positionalDescription;
|
|
positionalDescription.add("input-files", -1);
|
|
|
|
return {keywordDescription, positionalDescription};
|
|
}
|
|
|
|
optional<po::variables_map> Phaser::parseCommandLine(int _argc, char** _argv)
|
|
{
|
|
auto [keywordDescription, positionalDescription] = buildCommandLineDescription();
|
|
|
|
po::variables_map arguments;
|
|
po::notify(arguments);
|
|
|
|
po::command_line_parser parser(_argc, _argv);
|
|
parser.options(keywordDescription).positional(positionalDescription);
|
|
po::store(parser.run(), arguments);
|
|
|
|
if (arguments.count("help") > 0)
|
|
{
|
|
cout << keywordDescription << endl;
|
|
return nullopt;
|
|
}
|
|
|
|
if (arguments.count("input-files") == 0)
|
|
assertThrow(false, NoInputFiles, "Missing argument: input-files.");
|
|
|
|
return arguments;
|
|
}
|
|
|
|
void Phaser::initialiseRNG(po::variables_map const& _arguments)
|
|
{
|
|
uint32_t seed;
|
|
if (_arguments.count("seed") > 0)
|
|
seed = _arguments["seed"].as<uint32_t>();
|
|
else
|
|
seed = SimulationRNG::generateSeed();
|
|
|
|
SimulationRNG::reset(seed);
|
|
if (_arguments["show-seed"].as<bool>())
|
|
cout << "Random seed: " << seed << endl;
|
|
}
|
|
|
|
AlgorithmRunner::Options Phaser::buildAlgorithmRunnerOptions(po::variables_map const& _arguments)
|
|
{
|
|
return {
|
|
_arguments.count("rounds") > 0 ? static_cast<optional<size_t>>(_arguments["rounds"].as<size_t>()) : nullopt,
|
|
_arguments.count("population-autosave") > 0 ? static_cast<optional<string>>(_arguments["population-autosave"].as<string>()) : nullopt,
|
|
!_arguments["no-randomise-duplicates"].as<bool>(),
|
|
_arguments["min-chromosome-length"].as<size_t>(),
|
|
_arguments["max-chromosome-length"].as<size_t>(),
|
|
_arguments["show-initial-population"].as<bool>(),
|
|
_arguments["show-only-top-chromosome"].as<bool>(),
|
|
!_arguments["hide-round"].as<bool>(),
|
|
_arguments["show-cache-stats"].as<bool>(),
|
|
};
|
|
}
|
|
|
|
void Phaser::runPhaser(po::variables_map const& _arguments)
|
|
{
|
|
auto programOptions = ProgramFactory::Options::fromCommandLine(_arguments);
|
|
auto cacheOptions = ProgramCacheFactory::Options::fromCommandLine(_arguments);
|
|
auto metricOptions = FitnessMetricFactory::Options::fromCommandLine(_arguments);
|
|
auto populationOptions = PopulationFactory::Options::fromCommandLine(_arguments);
|
|
|
|
vector<Program> programs = ProgramFactory::build(programOptions);
|
|
vector<shared_ptr<ProgramCache>> programCaches = ProgramCacheFactory::build(cacheOptions, programs);
|
|
|
|
unique_ptr<FitnessMetric> fitnessMetric = FitnessMetricFactory::build(metricOptions, programs, programCaches);
|
|
Population population = PopulationFactory::build(populationOptions, move(fitnessMetric));
|
|
|
|
if (_arguments["mode"].as<PhaserMode>() == PhaserMode::RunAlgorithm)
|
|
runAlgorithm(_arguments, move(population), move(programCaches));
|
|
else
|
|
printOptimisedProgramsOrASTs(_arguments, population, move(programs), _arguments["mode"].as<PhaserMode>());
|
|
}
|
|
|
|
void Phaser::runAlgorithm(
|
|
po::variables_map const& _arguments,
|
|
Population _population,
|
|
vector<shared_ptr<ProgramCache>> _programCaches
|
|
)
|
|
{
|
|
auto algorithmOptions = GeneticAlgorithmFactory::Options::fromCommandLine(_arguments);
|
|
|
|
unique_ptr<GeneticAlgorithm> geneticAlgorithm = GeneticAlgorithmFactory::build(
|
|
algorithmOptions,
|
|
_population.individuals().size()
|
|
);
|
|
|
|
AlgorithmRunner algorithmRunner(move(_population), move(_programCaches), buildAlgorithmRunnerOptions(_arguments), cout);
|
|
algorithmRunner.run(*geneticAlgorithm);
|
|
}
|
|
|
|
void Phaser::printOptimisedProgramsOrASTs(
|
|
po::variables_map const& _arguments,
|
|
Population const& _population,
|
|
vector<Program> _programs,
|
|
PhaserMode phaserMode
|
|
)
|
|
{
|
|
assert(phaserMode == PhaserMode::PrintOptimisedPrograms || phaserMode == PhaserMode::PrintOptimisedASTs);
|
|
assert(_programs.size() == _arguments["input-files"].as<vector<string>>().size());
|
|
|
|
if (_population.individuals().size() == 0)
|
|
{
|
|
cout << "<EMPTY POPULATION>" << endl;
|
|
return;
|
|
}
|
|
|
|
vector<string> const& paths = _arguments["input-files"].as<vector<string>>();
|
|
for (auto& individual: _population.individuals())
|
|
{
|
|
cout << "Chromosome: " << individual.chromosome << endl;
|
|
|
|
for (size_t i = 0; i < _programs.size(); ++i)
|
|
{
|
|
for (size_t j = 0; j < _arguments["chromosome-repetitions"].as<size_t>(); ++j)
|
|
_programs[i].optimise(individual.chromosome.optimisationSteps());
|
|
|
|
cout << "Program: " << paths[i] << endl;
|
|
if (phaserMode == PhaserMode::PrintOptimisedPrograms)
|
|
cout << _programs[i] << endl;
|
|
else
|
|
cout << _programs[i].toJson() << endl;
|
|
}
|
|
}
|
|
}
|