solidity/libsolidity/ast/AST.cpp
2023-07-05 12:34:38 +02:00

1103 lines
31 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Solidity abstract syntax tree.
*/
#include <libsolidity/ast/AST.h>
#include <libsolidity/ast/CallGraph.h>
#include <libsolidity/ast/ASTVisitor.h>
#include <libsolidity/ast/AST_accept.h>
#include <libsolidity/ast/TypeProvider.h>
#include <libsolutil/FunctionSelector.h>
#include <libsolutil/Keccak256.h>
#include <range/v3/range/conversion.hpp>
#include <range/v3/view/tail.hpp>
#include <range/v3/view/zip.hpp>
#include <boost/algorithm/string.hpp>
#include <functional>
#include <utility>
#include <numeric>
#include <set>
using namespace std;
using namespace solidity;
using namespace solidity::frontend;
namespace
{
TryCatchClause const* findClause(vector<ASTPointer<TryCatchClause>> const& _clauses, optional<string> _errorName = {})
{
for (auto const& clause: ranges::views::tail(_clauses))
if (_errorName.has_value() ? clause->errorName() == _errorName : clause->errorName().empty())
return clause.get();
return nullptr;
}
}
ASTNode::ASTNode(int64_t _id, SourceLocation _location):
m_id(static_cast<size_t>(_id)),
m_location(std::move(_location))
{
}
Declaration const* ASTNode::referencedDeclaration(Expression const& _expression)
{
if (auto const* memberAccess = dynamic_cast<MemberAccess const*>(&_expression))
return memberAccess->annotation().referencedDeclaration;
else if (auto const* identifierPath = dynamic_cast<IdentifierPath const*>(&_expression))
return identifierPath->annotation().referencedDeclaration;
else if (auto const* identifier = dynamic_cast<Identifier const*>(&_expression))
return identifier->annotation().referencedDeclaration;
else
return nullptr;
}
FunctionDefinition const* ASTNode::resolveFunctionCall(FunctionCall const& _functionCall, ContractDefinition const* _mostDerivedContract)
{
auto const* functionDef = dynamic_cast<FunctionDefinition const*>(
ASTNode::referencedDeclaration(_functionCall.expression())
);
if (!functionDef)
return nullptr;
if (auto const* memberAccess = dynamic_cast<MemberAccess const*>(&_functionCall.expression()))
{
if (*memberAccess->annotation().requiredLookup == VirtualLookup::Super)
{
if (auto const typeType = dynamic_cast<TypeType const*>(memberAccess->expression().annotation().type))
if (auto const contractType = dynamic_cast<ContractType const*>(typeType->actualType()))
{
solAssert(_mostDerivedContract, "");
solAssert(contractType->isSuper(), "");
ContractDefinition const* superContract = contractType->contractDefinition().superContract(*_mostDerivedContract);
return &functionDef->resolveVirtual(
*_mostDerivedContract,
superContract
);
}
}
else
solAssert(*memberAccess->annotation().requiredLookup == VirtualLookup::Static, "");
}
else if (auto const* identifier = dynamic_cast<Identifier const*>(&_functionCall.expression()))
{
solAssert(*identifier->annotation().requiredLookup == VirtualLookup::Virtual, "");
if (functionDef->virtualSemantics())
{
solAssert(_mostDerivedContract, "");
return &functionDef->resolveVirtual(*_mostDerivedContract);
}
}
else
solAssert(false, "");
return functionDef;
}
ASTAnnotation& ASTNode::annotation() const
{
if (!m_annotation)
m_annotation = make_unique<ASTAnnotation>();
return *m_annotation;
}
SourceUnitAnnotation& SourceUnit::annotation() const
{
return initAnnotation<SourceUnitAnnotation>();
}
set<SourceUnit const*> SourceUnit::referencedSourceUnits(bool _recurse, set<SourceUnit const*> _skipList) const
{
set<SourceUnit const*> sourceUnits;
for (ImportDirective const* importDirective: filteredNodes<ImportDirective>(nodes()))
{
auto const& sourceUnit = importDirective->annotation().sourceUnit;
if (!_skipList.count(sourceUnit))
{
_skipList.insert(sourceUnit);
sourceUnits.insert(sourceUnit);
if (_recurse)
sourceUnits += sourceUnit->referencedSourceUnits(true, _skipList);
}
}
return sourceUnits;
}
ImportAnnotation& ImportDirective::annotation() const
{
return initAnnotation<ImportAnnotation>();
}
Type const* ImportDirective::type() const
{
solAssert(!!annotation().sourceUnit, "");
return TypeProvider::module(*annotation().sourceUnit);
}
bool ContractDefinition::derivesFrom(ContractDefinition const& _base) const
{
return util::contains(annotation().linearizedBaseContracts, &_base);
}
map<util::FixedHash<4>, FunctionTypePointer> ContractDefinition::interfaceFunctions(bool _includeInheritedFunctions) const
{
auto exportedFunctionList = interfaceFunctionList(_includeInheritedFunctions);
map<util::FixedHash<4>, FunctionTypePointer> exportedFunctions;
for (auto const& it: exportedFunctionList)
exportedFunctions.insert(it);
solAssert(
exportedFunctionList.size() == exportedFunctions.size(),
"Hash collision at Function Definition Hash calculation"
);
return exportedFunctions;
}
FunctionDefinition const* ContractDefinition::constructor() const
{
for (FunctionDefinition const* f: definedFunctions())
if (f->isConstructor())
return f;
return nullptr;
}
bool ContractDefinition::canBeDeployed() const
{
return !abstract() && !isInterface();
}
FunctionDefinition const* ContractDefinition::fallbackFunction() const
{
for (ContractDefinition const* contract: annotation().linearizedBaseContracts)
for (FunctionDefinition const* f: contract->definedFunctions())
if (f->isFallback())
return f;
return nullptr;
}
FunctionDefinition const* ContractDefinition::receiveFunction() const
{
for (ContractDefinition const* contract: annotation().linearizedBaseContracts)
for (FunctionDefinition const* f: contract->definedFunctions())
if (f->isReceive())
return f;
return nullptr;
}
vector<EventDefinition const*> const& ContractDefinition::definedInterfaceEvents() const
{
return m_interfaceEvents.init([&]{
set<string> eventsSeen;
vector<EventDefinition const*> interfaceEvents;
for (ContractDefinition const* contract: annotation().linearizedBaseContracts)
for (EventDefinition const* e: contract->events())
{
/// NOTE: this requires the "internal" version of an Event,
/// though here internal strictly refers to visibility,
/// and not to function encoding (jump vs. call)
FunctionType const* functionType = e->functionType(true);
solAssert(functionType, "");
string eventSignature = functionType->externalSignature();
if (eventsSeen.count(eventSignature) == 0)
{
eventsSeen.insert(eventSignature);
interfaceEvents.push_back(e);
}
}
return interfaceEvents;
});
}
vector<EventDefinition const*> const ContractDefinition::usedInterfaceEvents() const
{
solAssert(annotation().creationCallGraph.set(), "");
return util::convertContainer<std::vector<EventDefinition const*>>(
(*annotation().creationCallGraph)->emittedEvents +
(*annotation().deployedCallGraph)->emittedEvents
);
}
vector<EventDefinition const*> ContractDefinition::interfaceEvents(bool _requireCallGraph) const
{
set<EventDefinition const*, CompareByID> result;
for (ContractDefinition const* contract: annotation().linearizedBaseContracts)
result += contract->events();
solAssert(annotation().creationCallGraph.set() == annotation().deployedCallGraph.set());
if (_requireCallGraph)
solAssert(annotation().creationCallGraph.set());
if (annotation().creationCallGraph.set())
result += usedInterfaceEvents();
// We could filter out all events that do not have an external interface
// if _requireCallGraph is false.
return util::convertContainer<vector<EventDefinition const*>>(std::move(result));
}
vector<ErrorDefinition const*> ContractDefinition::interfaceErrors(bool _requireCallGraph) const
{
set<ErrorDefinition const*, CompareByID> result;
for (ContractDefinition const* contract: annotation().linearizedBaseContracts)
result += filteredNodes<ErrorDefinition>(contract->m_subNodes);
solAssert(annotation().creationCallGraph.set() == annotation().deployedCallGraph.set(), "");
if (_requireCallGraph)
solAssert(annotation().creationCallGraph.set(), "");
if (annotation().creationCallGraph.set())
result +=
(*annotation().creationCallGraph)->usedErrors +
(*annotation().deployedCallGraph)->usedErrors;
return util::convertContainer<vector<ErrorDefinition const*>>(std::move(result));
}
vector<pair<util::FixedHash<4>, FunctionTypePointer>> const& ContractDefinition::interfaceFunctionList(bool _includeInheritedFunctions) const
{
return m_interfaceFunctionList[_includeInheritedFunctions].init([&]{
set<string> signaturesSeen;
vector<pair<util::FixedHash<4>, FunctionTypePointer>> interfaceFunctionList;
for (ContractDefinition const* contract: annotation().linearizedBaseContracts)
{
if (_includeInheritedFunctions == false && contract != this)
continue;
vector<FunctionTypePointer> functions;
for (FunctionDefinition const* f: contract->definedFunctions())
if (f->isPartOfExternalInterface())
functions.push_back(TypeProvider::function(*f, FunctionType::Kind::External));
for (VariableDeclaration const* v: contract->stateVariables())
if (v->isPartOfExternalInterface())
functions.push_back(TypeProvider::function(*v));
for (FunctionTypePointer const& fun: functions)
{
if (!fun->interfaceFunctionType())
// Fails hopefully because we already registered the error
continue;
string functionSignature = fun->externalSignature();
if (signaturesSeen.count(functionSignature) == 0)
{
signaturesSeen.insert(functionSignature);
interfaceFunctionList.emplace_back(util::selectorFromSignatureH32(functionSignature), fun);
}
}
}
return interfaceFunctionList;
});
}
uint32_t ContractDefinition::interfaceId() const
{
uint32_t result{0};
for (auto const& function: interfaceFunctionList(false))
result ^= fromBigEndian<uint32_t>(function.first.ref());
return result;
}
Type const* ContractDefinition::type() const
{
return TypeProvider::typeType(TypeProvider::contract(*this));
}
ContractDefinitionAnnotation& ContractDefinition::annotation() const
{
return initAnnotation<ContractDefinitionAnnotation>();
}
ContractDefinition const* ContractDefinition::superContract(ContractDefinition const& _mostDerivedContract) const
{
auto const& hierarchy = _mostDerivedContract.annotation().linearizedBaseContracts;
auto it = find(hierarchy.begin(), hierarchy.end(), this);
solAssert(it != hierarchy.end(), "Base not found in inheritance hierarchy.");
++it;
if (it == hierarchy.end())
return nullptr;
else
{
solAssert(*it != this, "");
return *it;
}
}
FunctionDefinition const* ContractDefinition::nextConstructor(ContractDefinition const& _mostDerivedContract) const
{
ContractDefinition const* next = superContract(_mostDerivedContract);
if (next == nullptr)
return nullptr;
for (ContractDefinition const* c: _mostDerivedContract.annotation().linearizedBaseContracts)
if (c == next || next == nullptr)
{
if (c->constructor())
return c->constructor();
next = nullptr;
}
return nullptr;
}
multimap<std::string, FunctionDefinition const*> const& ContractDefinition::definedFunctionsByName() const
{
return m_definedFunctionsByName.init([&]{
std::multimap<std::string, FunctionDefinition const*> result;
for (FunctionDefinition const* fun: filteredNodes<FunctionDefinition>(m_subNodes))
result.insert({fun->name(), fun});
return result;
});
}
TypeNameAnnotation& TypeName::annotation() const
{
return initAnnotation<TypeNameAnnotation>();
}
Type const* UserDefinedValueTypeDefinition::type() const
{
solAssert(m_underlyingType->annotation().type, "");
return TypeProvider::typeType(TypeProvider::userDefinedValueType(*this));
}
TypeDeclarationAnnotation& UserDefinedValueTypeDefinition::annotation() const
{
return initAnnotation<TypeDeclarationAnnotation>();
}
std::vector<std::pair<ASTPointer<IdentifierPath>, std::optional<Token>>> UsingForDirective::functionsAndOperators() const
{
return ranges::zip_view(m_functionsOrLibrary, m_operators) | ranges::to<vector>;
}
void StructDefinition::insertEncodedSubtypes(std::set<std::string>& subtypes) const
{
for (size_t i = 0; i < m_members.size(); i++)
{
if (m_members[i]->type()->category() == Type::Category::Struct)
{
Declaration const* declaration = m_members[i]->type()->typeDefinition();
StructDefinition const* structDef = dynamic_cast<StructDefinition const*>(declaration);
solAssert(structDef != nullptr);
subtypes.insert(structDef->encodeTypeWithoutSubtypes());
structDef->insertEncodedSubtypes(subtypes);
}
}
}
std::string StructDefinition::encodeTypeWithoutSubtypes() const
{
std::string str = name() + "(";
for (size_t i = 0; i < m_members.size(); i++)
{
str += i == 0 ? "" : ",";
str += m_members[i]->type()->canonicalName() + " " + m_members[i]->name();
}
return str + ")";
}
std::string StructDefinition::encodeType() const
{
// std::set enables duplicates elimination and ordered enumeration
std::set<std::string> subtypes;
insertEncodedSubtypes(subtypes);
return std::accumulate(subtypes.begin(), subtypes.end(), encodeTypeWithoutSubtypes());
}
util::h256 StructDefinition::typehash() const
{
return util::keccak256(encodeType());
}
Type const* StructDefinition::type() const
{
solAssert(annotation().recursive.has_value(), "Requested struct type before DeclarationTypeChecker.");
return TypeProvider::typeType(TypeProvider::structType(*this, DataLocation::Storage));
}
StructDeclarationAnnotation& StructDefinition::annotation() const
{
return initAnnotation<StructDeclarationAnnotation>();
}
Type const* EnumValue::type() const
{
auto parentDef = dynamic_cast<EnumDefinition const*>(scope());
solAssert(parentDef, "Enclosing Scope of EnumValue was not set");
return TypeProvider::enumType(*parentDef);
}
Type const* EnumDefinition::type() const
{
return TypeProvider::typeType(TypeProvider::enumType(*this));
}
TypeDeclarationAnnotation& EnumDefinition::annotation() const
{
return initAnnotation<TypeDeclarationAnnotation>();
}
bool FunctionDefinition::libraryFunction() const
{
if (auto const* contractDef = dynamic_cast<ContractDefinition const*>(scope()))
return contractDef->isLibrary();
return false;
}
Visibility FunctionDefinition::defaultVisibility() const
{
solAssert(!isConstructor(), "");
return isFree() ? Visibility::Internal : Declaration::defaultVisibility();
}
FunctionTypePointer FunctionDefinition::functionType(bool _internal) const
{
if (_internal)
{
switch (visibility())
{
case Visibility::Default:
solAssert(false, "visibility() should not return Default");
case Visibility::Private:
case Visibility::Internal:
case Visibility::Public:
return TypeProvider::function(*this, FunctionType::Kind::Internal);
case Visibility::External:
return {};
}
}
else
{
switch (visibility())
{
case Visibility::Default:
solAssert(false, "visibility() should not return Default");
case Visibility::Private:
case Visibility::Internal:
return {};
case Visibility::Public:
case Visibility::External:
return TypeProvider::function(*this, FunctionType::Kind::External);
}
}
// To make the compiler happy
return {};
}
Type const* FunctionDefinition::type() const
{
solAssert(visibility() != Visibility::External, "");
return TypeProvider::function(*this, FunctionType::Kind::Internal);
}
Type const* FunctionDefinition::typeViaContractName() const
{
if (libraryFunction())
{
if (isPublic())
return FunctionType(*this).asExternallyCallableFunction(true);
else
return TypeProvider::function(*this, FunctionType::Kind::Internal);
}
else
return TypeProvider::function(*this, FunctionType::Kind::Declaration);
}
string FunctionDefinition::externalSignature() const
{
return TypeProvider::function(*this)->externalSignature();
}
string FunctionDefinition::externalIdentifierHex() const
{
return TypeProvider::function(*this)->externalIdentifierHex();
}
FunctionDefinitionAnnotation& FunctionDefinition::annotation() const
{
return initAnnotation<FunctionDefinitionAnnotation>();
}
FunctionDefinition const& FunctionDefinition::resolveVirtual(
ContractDefinition const& _mostDerivedContract,
ContractDefinition const* _searchStart
) const
{
solAssert(!isConstructor(), "");
solAssert(!name().empty(), "");
// If we are not doing super-lookup and the function is not virtual, we can stop here.
if (_searchStart == nullptr && !virtualSemantics())
return *this;
solAssert(!isFree(), "");
solAssert(isOrdinary(), "");
solAssert(!libraryFunction(), "");
// We actually do not want the externally callable function here.
// This is just to add an assertion since the comparison used to be less strict.
FunctionType const* externalFunctionType = TypeProvider::function(*this)->asExternallyCallableFunction(false);
bool foundSearchStart = (_searchStart == nullptr);
for (ContractDefinition const* c: _mostDerivedContract.annotation().linearizedBaseContracts)
{
if (!foundSearchStart && c != _searchStart)
continue;
else
foundSearchStart = true;
for (FunctionDefinition const* function: c->definedFunctions(name()))
if (
// With super lookup analysis guarantees that there is an implemented function in the chain.
// With virtual lookup there are valid cases where returning an unimplemented one is fine.
(function->isImplemented() || _searchStart == nullptr) &&
FunctionType(*function).asExternallyCallableFunction(false)->hasEqualParameterTypes(*externalFunctionType)
)
{
solAssert(FunctionType(*function).hasEqualParameterTypes(*TypeProvider::function(*this)));
return *function;
}
}
solAssert(false, "Virtual function " + name() + " not found.");
return *this; // not reached
}
Type const* ModifierDefinition::type() const
{
return TypeProvider::modifier(*this);
}
ModifierDefinitionAnnotation& ModifierDefinition::annotation() const
{
return initAnnotation<ModifierDefinitionAnnotation>();
}
ModifierDefinition const& ModifierDefinition::resolveVirtual(
ContractDefinition const& _mostDerivedContract,
ContractDefinition const* _searchStart
) const
{
// Super is not possible with modifiers
solAssert(_searchStart == nullptr, "Used super in connection with modifiers.");
// The modifier is not virtual, we can stop here.
if (!virtualSemantics())
return *this;
solAssert(!dynamic_cast<ContractDefinition const&>(*scope()).isLibrary(), "");
for (ContractDefinition const* c: _mostDerivedContract.annotation().linearizedBaseContracts)
for (ModifierDefinition const* modifier: c->functionModifiers())
if (modifier->name() == name())
return *modifier;
solAssert(false, "Virtual modifier " + name() + " not found.");
return *this; // not reached
}
Type const* EventDefinition::type() const
{
return TypeProvider::function(*this);
}
FunctionTypePointer EventDefinition::functionType(bool _internal) const
{
if (_internal)
return TypeProvider::function(*this);
else
return nullptr;
}
EventDefinitionAnnotation& EventDefinition::annotation() const
{
return initAnnotation<EventDefinitionAnnotation>();
}
Type const* ErrorDefinition::type() const
{
return TypeProvider::function(*this);
}
FunctionTypePointer ErrorDefinition::functionType(bool _internal) const
{
if (_internal)
return TypeProvider::function(*this);
else
return nullptr;
}
ErrorDefinitionAnnotation& ErrorDefinition::annotation() const
{
return initAnnotation<ErrorDefinitionAnnotation>();
}
SourceUnit const& Scopable::sourceUnit() const
{
ASTNode const* s = scope();
solAssert(s, "");
// will not always be a declaration
while (dynamic_cast<Scopable const*>(s) && dynamic_cast<Scopable const*>(s)->scope())
s = dynamic_cast<Scopable const*>(s)->scope();
return dynamic_cast<SourceUnit const&>(*s);
}
CallableDeclaration const* Scopable::functionOrModifierDefinition() const
{
ASTNode const* s = scope();
solAssert(s, "");
while (dynamic_cast<Scopable const*>(s))
{
if (auto funDef = dynamic_cast<FunctionDefinition const*>(s))
return funDef;
if (auto modDef = dynamic_cast<ModifierDefinition const*>(s))
return modDef;
s = dynamic_cast<Scopable const*>(s)->scope();
}
return nullptr;
}
string Scopable::sourceUnitName() const
{
return *sourceUnit().annotation().path;
}
bool Declaration::isEnumValue() const
{
solAssert(scope(), "");
return dynamic_cast<EnumDefinition const*>(scope());
}
bool Declaration::isStructMember() const
{
solAssert(scope(), "");
return dynamic_cast<StructDefinition const*>(scope());
}
bool Declaration::isEventOrErrorParameter() const
{
solAssert(scope(), "");
return dynamic_cast<EventDefinition const*>(scope()) || dynamic_cast<ErrorDefinition const*>(scope());
}
bool Declaration::isVisibleAsUnqualifiedName() const
{
if (!scope())
return true;
if (isStructMember() || isEnumValue() || isEventOrErrorParameter())
return false;
if (auto const* functionDefinition = dynamic_cast<FunctionDefinition const*>(scope()))
if (!functionDefinition->isImplemented())
return false; // parameter of a function without body
return true;
}
DeclarationAnnotation& Declaration::annotation() const
{
return initAnnotation<DeclarationAnnotation>();
}
bool VariableDeclaration::isLValue() const
{
// Constant declared variables are Read-Only
return !isConstant();
}
bool VariableDeclaration::isLocalVariable() const
{
auto s = scope();
return
dynamic_cast<FunctionTypeName const*>(s) ||
dynamic_cast<CallableDeclaration const*>(s) ||
dynamic_cast<Block const*>(s) ||
dynamic_cast<TryCatchClause const*>(s) ||
dynamic_cast<ForStatement const*>(s);
}
bool VariableDeclaration::isCallableOrCatchParameter() const
{
if (isReturnParameter() || isTryCatchParameter())
return true;
vector<ASTPointer<VariableDeclaration>> const* parameters = nullptr;
if (auto const* funTypeName = dynamic_cast<FunctionTypeName const*>(scope()))
parameters = &funTypeName->parameterTypes();
else if (auto const* callable = dynamic_cast<CallableDeclaration const*>(scope()))
parameters = &callable->parameters();
if (parameters)
for (auto const& variable: *parameters)
if (variable.get() == this)
return true;
return false;
}
bool VariableDeclaration::isLocalOrReturn() const
{
return isReturnParameter() || (isLocalVariable() && !isCallableOrCatchParameter());
}
bool VariableDeclaration::isReturnParameter() const
{
vector<ASTPointer<VariableDeclaration>> const* returnParameters = nullptr;
if (auto const* funTypeName = dynamic_cast<FunctionTypeName const*>(scope()))
returnParameters = &funTypeName->returnParameterTypes();
else if (auto const* callable = dynamic_cast<CallableDeclaration const*>(scope()))
if (callable->returnParameterList())
returnParameters = &callable->returnParameterList()->parameters();
if (returnParameters)
for (auto const& variable: *returnParameters)
if (variable.get() == this)
return true;
return false;
}
bool VariableDeclaration::isTryCatchParameter() const
{
return dynamic_cast<TryCatchClause const*>(scope());
}
bool VariableDeclaration::isExternalCallableParameter() const
{
if (!isCallableOrCatchParameter())
return false;
if (auto const* callable = dynamic_cast<CallableDeclaration const*>(scope()))
if (callable->visibility() == Visibility::External)
return !isReturnParameter();
return false;
}
bool VariableDeclaration::isPublicCallableParameter() const
{
if (!isCallableOrCatchParameter())
return false;
if (auto const* callable = dynamic_cast<CallableDeclaration const*>(scope()))
if (callable->visibility() == Visibility::Public)
return !isReturnParameter();
return false;
}
bool VariableDeclaration::isInternalCallableParameter() const
{
if (!isCallableOrCatchParameter())
return false;
if (auto const* funTypeName = dynamic_cast<FunctionTypeName const*>(scope()))
return funTypeName->visibility() == Visibility::Internal;
else if (auto const* callable = dynamic_cast<CallableDeclaration const*>(scope()))
return callable->visibility() <= Visibility::Internal;
return false;
}
bool VariableDeclaration::isConstructorParameter() const
{
if (!isCallableOrCatchParameter())
return false;
if (auto const* function = dynamic_cast<FunctionDefinition const*>(scope()))
return function->isConstructor();
return false;
}
bool VariableDeclaration::isLibraryFunctionParameter() const
{
if (!isCallableOrCatchParameter())
return false;
if (auto const* funDef = dynamic_cast<FunctionDefinition const*>(scope()))
return funDef->libraryFunction();
return false;
}
bool VariableDeclaration::hasReferenceOrMappingType() const
{
solAssert(typeName().annotation().type, "Can only be called after reference resolution");
Type const* type = typeName().annotation().type;
return type->category() == Type::Category::Mapping || dynamic_cast<ReferenceType const*>(type);
}
bool VariableDeclaration::isStateVariable() const
{
return dynamic_cast<ContractDefinition const*>(scope());
}
bool VariableDeclaration::isFileLevelVariable() const
{
return dynamic_cast<SourceUnit const*>(scope());
}
set<VariableDeclaration::Location> VariableDeclaration::allowedDataLocations() const
{
using Location = VariableDeclaration::Location;
if (!hasReferenceOrMappingType() || isStateVariable() || isEventOrErrorParameter())
return set<Location>{ Location::Unspecified };
else if (isCallableOrCatchParameter())
{
set<Location> locations{ Location::Memory };
if (
isConstructorParameter() ||
isInternalCallableParameter() ||
isLibraryFunctionParameter()
)
locations.insert(Location::Storage);
if (!isTryCatchParameter() && !isConstructorParameter())
locations.insert(Location::CallData);
return locations;
}
else if (isLocalVariable())
// Further restrictions will be imposed later on.
return set<Location>{ Location::Memory, Location::Storage, Location::CallData };
else
// Struct members etc.
return set<Location>{ Location::Unspecified };
}
string VariableDeclaration::externalIdentifierHex() const
{
solAssert(isStateVariable() && isPublic(), "Can only be called for public state variables");
return TypeProvider::function(*this)->externalIdentifierHex();
}
Type const* VariableDeclaration::type() const
{
return annotation().type;
}
FunctionTypePointer VariableDeclaration::functionType(bool _internal) const
{
if (_internal)
return nullptr;
switch (visibility())
{
case Visibility::Default:
solAssert(false, "visibility() should not return Default");
case Visibility::Private:
case Visibility::Internal:
return nullptr;
case Visibility::Public:
case Visibility::External:
return TypeProvider::function(*this);
}
// To make the compiler happy
return nullptr;
}
VariableDeclarationAnnotation& VariableDeclaration::annotation() const
{
return initAnnotation<VariableDeclarationAnnotation>();
}
StatementAnnotation& Statement::annotation() const
{
return initAnnotation<StatementAnnotation>();
}
InlineAssemblyAnnotation& InlineAssembly::annotation() const
{
return initAnnotation<InlineAssemblyAnnotation>();
}
BlockAnnotation& Block::annotation() const
{
return initAnnotation<BlockAnnotation>();
}
TryCatchClauseAnnotation& TryCatchClause::annotation() const
{
return initAnnotation<TryCatchClauseAnnotation>();
}
ForStatementAnnotation& ForStatement::annotation() const
{
return initAnnotation<ForStatementAnnotation>();
}
ReturnAnnotation& Return::annotation() const
{
return initAnnotation<ReturnAnnotation>();
}
ExpressionAnnotation& Expression::annotation() const
{
return initAnnotation<ExpressionAnnotation>();
}
MemberAccessAnnotation& MemberAccess::annotation() const
{
return initAnnotation<MemberAccessAnnotation>();
}
OperationAnnotation& UnaryOperation::annotation() const
{
return initAnnotation<OperationAnnotation>();
}
FunctionType const* UnaryOperation::userDefinedFunctionType() const
{
if (*annotation().userDefinedFunction == nullptr)
return nullptr;
FunctionDefinition const* userDefinedFunction = *annotation().userDefinedFunction;
return dynamic_cast<FunctionType const*>(
userDefinedFunction->libraryFunction() ?
userDefinedFunction->typeViaContractName() :
userDefinedFunction->type()
);
}
FunctionType const* BinaryOperation::userDefinedFunctionType() const
{
if (*annotation().userDefinedFunction == nullptr)
return nullptr;
FunctionDefinition const* userDefinedFunction = *annotation().userDefinedFunction;
return dynamic_cast<FunctionType const*>(
userDefinedFunction->libraryFunction() ?
userDefinedFunction->typeViaContractName() :
userDefinedFunction->type()
);
}
BinaryOperationAnnotation& BinaryOperation::annotation() const
{
return initAnnotation<BinaryOperationAnnotation>();
}
FunctionCallAnnotation& FunctionCall::annotation() const
{
return initAnnotation<FunctionCallAnnotation>();
}
vector<ASTPointer<Expression const>> FunctionCall::sortedArguments() const
{
// normal arguments
if (m_names.empty())
return arguments();
// named arguments
FunctionTypePointer functionType;
if (*annotation().kind == FunctionCallKind::StructConstructorCall)
{
auto const& type = dynamic_cast<TypeType const&>(*m_expression->annotation().type);
auto const& structType = dynamic_cast<StructType const&>(*type.actualType());
functionType = structType.constructorType();
}
else
functionType = dynamic_cast<FunctionType const*>(m_expression->annotation().type);
vector<ASTPointer<Expression const>> sorted;
for (auto const& parameterName: functionType->parameterNames())
{
bool found = false;
for (size_t j = 0; j < m_names.size() && !found; j++)
if ((found = (parameterName == *m_names.at(j))))
// we found the actual parameter position
sorted.push_back(m_arguments.at(j));
solAssert(found, "");
}
if (!functionType->takesArbitraryParameters())
{
solAssert(m_arguments.size() == functionType->parameterTypes().size(), "");
solAssert(m_arguments.size() == m_names.size(), "");
solAssert(m_arguments.size() == sorted.size(), "");
}
return sorted;
}
IdentifierAnnotation& Identifier::annotation() const
{
return initAnnotation<IdentifierAnnotation>();
}
ASTString Literal::valueWithoutUnderscores() const
{
return boost::erase_all_copy(value(), "_");
}
bool Literal::isHexNumber() const
{
if (token() != Token::Number)
return false;
return boost::starts_with(value(), "0x");
}
bool Literal::looksLikeAddress() const
{
if (subDenomination() != SubDenomination::None)
return false;
if (!isHexNumber())
return false;
return abs(int(valueWithoutUnderscores().length()) - 42) <= 1;
}
bool Literal::passesAddressChecksum() const
{
solAssert(isHexNumber(), "Expected hex number");
return util::passesAddressChecksum(valueWithoutUnderscores(), true);
}
string Literal::getChecksummedAddress() const
{
solAssert(isHexNumber(), "Expected hex number");
/// Pad literal to be a proper hex address.
string address = valueWithoutUnderscores().substr(2);
if (address.length() > 40)
return string();
address.insert(address.begin(), 40 - address.size(), '0');
return util::getChecksummedAddress(address);
}
TryCatchClause const* TryStatement::successClause() const
{
solAssert(m_clauses.size() > 0, "");
return m_clauses[0].get();
}
TryCatchClause const* TryStatement::panicClause() const {
return findClause(m_clauses, "Panic");
}
TryCatchClause const* TryStatement::errorClause() const {
return findClause(m_clauses, "Error");
}
TryCatchClause const* TryStatement::fallbackClause() const {
return findClause(m_clauses);
}