solidity/test/tools/ossfuzz/protoToAbiV2.cpp
2019-11-04 15:47:04 +01:00

1088 lines
29 KiB
C++

#include <test/tools/ossfuzz/protoToAbiV2.h>
using namespace std;
using namespace dev;
using namespace dev::test::abiv2fuzzer;
string ProtoConverter::getVarDecl(
string const& _type,
string const& _varName,
string const& _qualifier
)
{
// One level of indentation for state variable declarations
// Two levels of indentation for local variable declarations
return Whiskers(R"(
<?isLocalVar> </isLocalVar><type><?qual> <qualifier></qual> <varName>;)"
)
("isLocalVar", !m_isStateVar)
("type", _type)
("qual", !_qualifier.empty())
("qualifier", _qualifier)
("varName", _varName)
.render() +
"\n";
}
pair<string, string> ProtoConverter::visit(Type const& _type)
{
switch (_type.type_oneof_case())
{
case Type::kVtype:
return visit(_type.vtype());
case Type::kNvtype:
return visit(_type.nvtype());
case Type::TYPE_ONEOF_NOT_SET:
return make_pair("", "");
}
}
pair<string, string> ProtoConverter::visit(ValueType const& _type)
{
switch (_type.value_type_oneof_case())
{
case ValueType::kBoolty:
return visit(_type.boolty());
case ValueType::kInty:
return visit(_type.inty());
case ValueType::kByty:
return visit(_type.byty());
case ValueType::kAdty:
return visit(_type.adty());
case ValueType::VALUE_TYPE_ONEOF_NOT_SET:
return make_pair("", "");
}
}
pair<string, string> ProtoConverter::visit(NonValueType const& _type)
{
switch (_type.nonvalue_type_oneof_case())
{
case NonValueType::kDynbytearray:
return visit(_type.dynbytearray());
case NonValueType::kArrtype:
if (ValidityVisitor().visit(_type.arrtype()))
return visit(_type.arrtype());
else
return make_pair("", "");
case NonValueType::kStype:
if (ValidityVisitor().visit(_type.stype()))
return visit(_type.stype());
else
return make_pair("", "");
case NonValueType::NONVALUE_TYPE_ONEOF_NOT_SET:
return make_pair("", "");
}
}
pair<string, string> ProtoConverter::visit(BoolType const& _type)
{
return processType(_type, true);
}
pair<string, string> ProtoConverter::visit(IntegerType const& _type)
{
return processType(_type, true);
}
pair<string, string> ProtoConverter::visit(FixedByteType const& _type)
{
return processType(_type, true);
}
pair<string, string> ProtoConverter::visit(AddressType const& _type)
{
return processType(_type, true);
}
pair<string, string> ProtoConverter::visit(DynamicByteArrayType const& _type)
{
return processType(_type, false);
}
pair<string, string> ProtoConverter::visit(ArrayType const& _type)
{
return processType(_type, false);
}
pair<string, string> ProtoConverter::visit(StructType const& _type)
{
return processType(_type, false);
}
template <typename T>
pair<string, string> ProtoConverter::processType(T const& _type, bool _isValueType)
{
ostringstream local, global;
auto [varName, paramName] = newVarNames(getNextVarCounter());
string location{};
if (!m_isStateVar && !_isValueType)
location = "memory";
auto varDeclBuffers = varDecl(
varName,
paramName,
_type,
_isValueType,
location
);
global << varDeclBuffers.first;
local << varDeclBuffers.second;
auto assignCheckBuffers = assignChecker(varName, paramName, _type);
global << assignCheckBuffers.first;
local << assignCheckBuffers.second;
m_structCounter += m_numStructsAdded;
return make_pair(global.str(), local.str());
}
template <typename T>
pair<string, string> ProtoConverter::varDecl(
string const& _varName,
string const& _paramName,
T _type,
bool _isValueType,
string const& _location
)
{
ostringstream local, global;
TypeVisitor tVisitor(m_structCounter);
string typeStr = tVisitor.visit(_type);
if (typeStr.empty())
return make_pair("", "");
// Append struct defs
global << tVisitor.structDef();
m_numStructsAdded = tVisitor.numStructs();
// variable declaration
if (m_isStateVar)
global << getVarDecl(typeStr, _varName, _location);
else
local << getVarDecl(typeStr, _varName, _location);
// Add typed params for calling public and external functions with said type
appendTypedParams(
CalleeType::PUBLIC,
_isValueType,
typeStr,
_paramName,
((m_varCounter == 1) ? Delimiter::SKIP : Delimiter::ADD)
);
appendTypedParams(
CalleeType::EXTERNAL,
_isValueType,
typeStr,
_paramName,
((m_varCounter == 1) ? Delimiter::SKIP : Delimiter::ADD)
);
// Update dyn param only if necessary
if (tVisitor.isLastDynParamRightPadded())
m_isLastDynParamRightPadded = true;
return make_pair(global.str(), local.str());
}
template <typename T>
pair<string, string> ProtoConverter::assignChecker(
string const& _varName,
string const& _paramName,
T _type
)
{
ostringstream local;
AssignCheckVisitor acVisitor(
_varName,
_paramName,
m_returnValue,
m_isStateVar,
m_counter,
m_structCounter
);
pair<string, string> assignCheckStrPair = acVisitor.visit(_type);
m_returnValue += acVisitor.errorStmts();
m_counter += acVisitor.counted();
m_checks << assignCheckStrPair.second;
// State variables cannot be assigned in contract-scope
// Therefore, we buffer their assignments and
// render them in function scope later.
local << assignCheckStrPair.first;
return make_pair("", local.str());
}
pair<string, string> ProtoConverter::visit(VarDecl const& _x)
{
return visit(_x.type());
}
std::string ProtoConverter::equalityChecksAsString()
{
return m_checks.str();
}
std::string ProtoConverter::delimiterToString(Delimiter _delimiter)
{
switch (_delimiter)
{
case Delimiter::ADD:
return ", ";
case Delimiter::SKIP:
return "";
}
}
/* When a new variable is declared, we can invoke this function
* to prepare the typed param list to be passed to callee functions.
* We independently prepare this list for "public" and "external"
* callee functions.
*/
void ProtoConverter::appendTypedParams(
CalleeType _calleeType,
bool _isValueType,
std::string const& _typeString,
std::string const& _varName,
Delimiter _delimiter
)
{
switch (_calleeType)
{
case CalleeType::PUBLIC:
appendTypedParamsPublic(_isValueType, _typeString, _varName, _delimiter);
break;
case CalleeType::EXTERNAL:
appendTypedParamsExternal(_isValueType, _typeString, _varName, _delimiter);
break;
}
}
// Adds the qualifier "calldata" to non-value parameter of an external function.
void ProtoConverter::appendTypedParamsExternal(
bool _isValueType,
std::string const& _typeString,
std::string const& _varName,
Delimiter _delimiter
)
{
std::string qualifiedTypeString = (
_isValueType ?
_typeString :
_typeString + " calldata"
);
m_typedParamsExternal << Whiskers(R"(<delimiter><type> <varName>)")
("delimiter", delimiterToString(_delimiter))
("type", qualifiedTypeString)
("varName", _varName)
.render();
}
// Adds the qualifier "memory" to non-value parameter of an external function.
void ProtoConverter::appendTypedParamsPublic(
bool _isValueType,
std::string const& _typeString,
std::string const& _varName,
Delimiter _delimiter
)
{
std::string qualifiedTypeString = (
_isValueType ?
_typeString :
_typeString + " memory"
);
m_typedParamsPublic << Whiskers(R"(<delimiter><type> <varName>)")
("delimiter", delimiterToString(_delimiter))
("type", qualifiedTypeString)
("varName", _varName)
.render();
}
std::string ProtoConverter::typedParametersAsString(CalleeType _calleeType)
{
switch (_calleeType)
{
case CalleeType::PUBLIC:
return m_typedParamsPublic.str();
case CalleeType::EXTERNAL:
return m_typedParamsExternal.str();
}
}
// Test function to be called externally.
string ProtoConverter::visit(TestFunction const& _x, string const& _storageVarDefs)
{
// TODO: Support more than one but less than N local variables
auto localVarBuffers = visit(_x.local_vars());
string structTypeDecl = localVarBuffers.first;
string localVarDefs = localVarBuffers.second;
ostringstream testBuffer;
string functionDecl = "function test() public returns (uint)";
testBuffer << Whiskers(R"(<structTypeDecl>
<functionDecl> {
<storageVarDefs>
<localVarDefs>
<testCode>
})")
("structTypeDecl", structTypeDecl)
("functionDecl", functionDecl)
("storageVarDefs", _storageVarDefs)
("localVarDefs", localVarDefs)
("testCode", testCode(_x.invalid_encoding_length()))
.render();
return testBuffer.str();
}
string ProtoConverter::testCode(unsigned _invalidLength)
{
return Whiskers(R"(
uint returnVal = this.coder_public(<parameterNames>);
if (returnVal != 0)
return returnVal;
returnVal = this.coder_external(<parameterNames>);
if (returnVal != 0)
return uint(200000) + returnVal;
<?atLeastOneVar>
bytes memory argumentEncoding = abi.encode(<parameterNames>);
returnVal = checkEncodedCall(
this.coder_public.selector,
argumentEncoding,
<invalidLengthFuzz>,
<isRightPadded>
);
if (returnVal != 0)
return returnVal;
returnVal = checkEncodedCall(
this.coder_external.selector,
argumentEncoding,
<invalidLengthFuzz>,
<isRightPadded>
);
if (returnVal != 0)
return uint(200000) + returnVal;
</atLeastOneVar>
return 0;
)")
("parameterNames", dev::suffixedVariableNameList(s_varNamePrefix, 0, m_varCounter))
("invalidLengthFuzz", std::to_string(_invalidLength))
("isRightPadded", isLastDynParamRightPadded() ? "true" : "false")
("atLeastOneVar", m_varCounter > 0)
.render();
}
string ProtoConverter::helperFunctions()
{
stringstream helperFuncs;
helperFuncs << R"(
function bytesCompare(bytes memory a, bytes memory b) internal pure returns (bool) {
if(a.length != b.length)
return false;
for (uint i = 0; i < a.length; i++)
if (a[i] != b[i])
return false;
return true;
}
/// Accepts function selector, correct argument encoding, and length of
/// invalid encoding and returns the correct and incorrect abi encoding
/// for calling the function specified by the function selector.
function createEncoding(
bytes4 funcSelector,
bytes memory argumentEncoding,
uint invalidLengthFuzz,
bool isRightPadded
) internal pure returns (bytes memory, bytes memory)
{
bytes memory validEncoding = new bytes(4 + argumentEncoding.length);
// Ensure that invalidEncoding crops at least 32 bytes (padding length
// is at most 31 bytes) if `isRightPadded` is true.
// This is because shorter bytes/string values (whose encoding is right
// padded) can lead to successful decoding when fewer than 32 bytes have
// been cropped in the worst case. In other words, if `isRightPadded` is
// true, then
// 0 <= invalidLength <= argumentEncoding.length - 32
// otherwise
// 0 <= invalidLength <= argumentEncoding.length - 1
uint invalidLength;
if (isRightPadded)
invalidLength = invalidLengthFuzz % (argumentEncoding.length - 31);
else
invalidLength = invalidLengthFuzz % argumentEncoding.length;
bytes memory invalidEncoding = new bytes(4 + invalidLength);
for (uint i = 0; i < 4; i++)
validEncoding[i] = invalidEncoding[i] = funcSelector[i];
for (uint i = 0; i < argumentEncoding.length; i++)
validEncoding[i+4] = argumentEncoding[i];
for (uint i = 0; i < invalidLength; i++)
invalidEncoding[i+4] = argumentEncoding[i];
return (validEncoding, invalidEncoding);
}
/// Accepts function selector, correct argument encoding, and an invalid
/// encoding length as input. Returns a non-zero value if either call with
/// correct encoding fails or call with incorrect encoding succeeds.
/// Returns zero if both calls meet expectation.
function checkEncodedCall(
bytes4 funcSelector,
bytes memory argumentEncoding,
uint invalidLengthFuzz,
bool isRightPadded
) public returns (uint)
{
(bytes memory validEncoding, bytes memory invalidEncoding) = createEncoding(
funcSelector,
argumentEncoding,
invalidLengthFuzz,
isRightPadded
);
(bool success, bytes memory returnVal) = address(this).call(validEncoding);
uint returnCode = abi.decode(returnVal, (uint));
// Return non-zero value if call fails for correct encoding
if (success == false || returnCode != 0)
return 400000;
(success, ) = address(this).call(invalidEncoding);
// Return non-zero value if call succeeds for incorrect encoding
if (success == true)
return 400001;
return 0;
}
)";
// These are callee functions that encode from storage, decode to
// memory/calldata and check if decoded value matches storage value
// return true on successful match, false otherwise
helperFuncs << Whiskers(R"(
function coder_public(<parameters_memory>) public pure returns (uint) {
<equality_checks>
return 0;
}
function coder_external(<parameters_calldata>) external pure returns (uint) {
<equality_checks>
return 0;
}
)")
("parameters_memory", typedParametersAsString(CalleeType::PUBLIC))
("equality_checks", equalityChecksAsString())
("parameters_calldata", typedParametersAsString(CalleeType::EXTERNAL))
.render();
return helperFuncs.str();
}
void ProtoConverter::visit(Contract const& _x)
{
string pragmas = R"(pragma solidity >=0.0;
pragma experimental ABIEncoderV2;)";
// TODO: Support more than one but less than N state variables
auto storageBuffers = visit(_x.state_vars());
string storageVarDecls = storageBuffers.first;
string storageVarDefs = storageBuffers.second;
m_isStateVar = false;
string testFunction = visit(_x.testfunction(), storageVarDefs);
/* Structure of contract body
* - Storage variable declarations
* - Struct definitions
* - Test function
* - Storage variable assignments
* - Local variable definitions and assignments
* - Test code proper (calls public and external functions)
* - Helper functions
*/
ostringstream contractBody;
contractBody << storageVarDecls
<< testFunction
<< helperFunctions();
m_output << Whiskers(R"(<pragmas>
<contractStart>
<contractBody>
<contractEnd>)")
("pragmas", pragmas)
("contractStart", "contract C {")
("contractBody", contractBody.str())
("contractEnd", "}")
.render();
}
string ProtoConverter::contractToString(Contract const& _input)
{
visit(_input);
return m_output.str();
}
/// Type visitor
string TypeVisitor::visit(BoolType const&)
{
m_baseType = "bool";
return m_baseType;
}
string TypeVisitor::visit(IntegerType const& _type)
{
m_baseType = getIntTypeAsString(_type);
return m_baseType;
}
string TypeVisitor::visit(FixedByteType const& _type)
{
m_baseType = getFixedByteTypeAsString(_type);
return m_baseType;
}
string TypeVisitor::visit(AddressType const& _type)
{
m_baseType = getAddressTypeAsString(_type);
return m_baseType;
}
string TypeVisitor::visit(ArrayType const& _type)
{
if (!ValidityVisitor().visit(_type))
return "";
string baseType = visit(_type.t());
solAssert(!baseType.empty(), "");
string arrayBraces = _type.is_static() ?
string("[") +
to_string(getStaticArrayLengthFromFuzz(_type.length())) +
string("]") :
string("[]");
m_baseType += arrayBraces;
// If we don't know yet if the array will be dynamically encoded,
// check again. If we already know that it will be, there's no
// need to do anything.
if (!m_isLastDynParamRightPadded)
m_isLastDynParamRightPadded = DynParamVisitor().visit(_type);
return baseType + arrayBraces;
}
string TypeVisitor::visit(DynamicByteArrayType const& _type)
{
m_isLastDynParamRightPadded = true;
m_baseType = bytesArrayTypeAsString(_type);
return m_baseType;
}
void TypeVisitor::structDefinition(StructType const& _type)
{
// Return an empty string if struct is empty
solAssert(ValidityVisitor().visit(_type), "");
// Reset field counter and indentation
unsigned wasFieldCounter = m_structFieldCounter;
unsigned wasIndentation = m_indentation;
m_indentation = 1;
m_structFieldCounter = 0;
// Commence struct declaration
string structDef = lineString(
"struct " +
string(s_structNamePrefix) +
to_string(m_structCounter) +
" {"
);
// Increase indentation for struct fields
m_indentation++;
for (auto const& t: _type.t())
{
string type{};
if (!ValidityVisitor().visit(t))
continue;
TypeVisitor tVisitor(m_structCounter + 1);
type = tVisitor.visit(t);
m_structCounter += tVisitor.numStructs();
m_structDef << tVisitor.structDef();
solAssert(!type.empty(), "");
structDef += lineString(
Whiskers(R"(<type> <member>;)")
("type", type)
("member", "m" + to_string(m_structFieldCounter++))
.render()
);
}
m_indentation--;
structDef += lineString("}");
m_structCounter++;
m_structDef << structDef;
m_indentation = wasIndentation;
m_structFieldCounter = wasFieldCounter;
}
string TypeVisitor::visit(StructType const& _type)
{
if (ValidityVisitor().visit(_type))
{
// Add struct definition
structDefinition(_type);
// Set last dyn param if struct contains a dyn param e.g., bytes, array etc.
m_isLastDynParamRightPadded = DynParamVisitor().visit(_type);
// If top-level struct is a non-emtpy struct, assign the name S<suffix>
m_baseType = s_structTypeName + to_string(m_structStartCounter);
}
else
m_baseType = {};
return m_baseType;
}
/// AssignCheckVisitor implementation
pair<string, string> AssignCheckVisitor::visit(BoolType const& _type)
{
string value = ValueGetterVisitor(counter()).visit(_type);
return assignAndCheckStringPair(m_varName, m_paramName, value, value, DataType::VALUE);
}
pair<string, string> AssignCheckVisitor::visit(IntegerType const& _type)
{
string value = ValueGetterVisitor(counter()).visit(_type);
return assignAndCheckStringPair(m_varName, m_paramName, value, value, DataType::VALUE);
}
pair<string, string> AssignCheckVisitor::visit(FixedByteType const& _type)
{
string value = ValueGetterVisitor(counter()).visit(_type);
return assignAndCheckStringPair(m_varName, m_paramName, value, value, DataType::VALUE);
}
pair<string, string> AssignCheckVisitor::visit(AddressType const& _type)
{
string value = ValueGetterVisitor(counter()).visit(_type);
return assignAndCheckStringPair(m_varName, m_paramName, value, value, DataType::VALUE);
}
pair<string, string> AssignCheckVisitor::visit(DynamicByteArrayType const& _type)
{
string value = ValueGetterVisitor(counter()).visit(_type);
DataType dataType = _type.type() == DynamicByteArrayType::BYTES ? DataType::BYTES : DataType::STRING;
return assignAndCheckStringPair(m_varName, m_paramName, value, value, dataType);
}
pair<string, string> AssignCheckVisitor::visit(ArrayType const& _type)
{
if (!ValidityVisitor().visit(_type))
return make_pair("", "");
// Obtain type of array to be resized and initialized
string typeStr{};
unsigned wasStructCounter = m_structCounter;
TypeVisitor tVisitor(m_structCounter);
typeStr = tVisitor.visit(_type);
pair<string, string> resizeBuffer;
string lengthStr;
unsigned length;
// Resize dynamic arrays
if (!_type.is_static())
{
length = getDynArrayLengthFromFuzz(_type.length(), counter());
lengthStr = to_string(length);
if (m_stateVar)
resizeBuffer = assignAndCheckStringPair(
m_varName + ".length",
m_paramName + ".length",
lengthStr,
lengthStr,
DataType::VALUE
);
else
{
// Resizing memory arrays via the new operator
string resizeOp = Whiskers(R"(new <fullTypeStr>(<length>))")
("fullTypeStr", typeStr)
("length", lengthStr)
.render();
resizeBuffer = assignAndCheckStringPair(
m_varName,
m_paramName + ".length",
resizeOp,
lengthStr,
DataType::VALUE
);
}
}
else
{
length = getStaticArrayLengthFromFuzz(_type.length());
lengthStr = to_string(length);
// Add check on length
resizeBuffer.second = checkString(m_paramName + ".length", lengthStr, DataType::VALUE);
}
// Add assignCheckBuffer and check statements
pair<string, string> assignCheckBuffer;
string wasVarName = m_varName;
string wasParamName = m_paramName;
for (unsigned i = 0; i < length; i++)
{
m_varName = wasVarName + "[" + to_string(i) + "]";
m_paramName = wasParamName + "[" + to_string(i) + "]";
pair<string, string> assign = visit(_type.t());
assignCheckBuffer.first += assign.first;
assignCheckBuffer.second += assign.second;
if (i < length - 1)
m_structCounter = wasStructCounter;
}
// Since struct visitor won't be called for zero-length
// arrays, struct counter will not get incremented. Therefore,
// we need to manually force a recursive struct visit.
if (length == 0 && TypeVisitor().arrayOfStruct(_type))
visit(_type.t());
m_varName = wasVarName;
m_paramName = wasParamName;
// Compose resize and initialization assignment and check
return make_pair(
resizeBuffer.first + assignCheckBuffer.first,
resizeBuffer.second + assignCheckBuffer.second
);
}
pair<string, string> AssignCheckVisitor::visit(StructType const& _type)
{
if (!ValidityVisitor().visit(_type))
return make_pair("", "");
pair<string, string> assignCheckBuffer;
unsigned i = 0;
// Increment struct counter
m_structCounter++;
string wasVarName = m_varName;
string wasParamName = m_paramName;
for (auto const& t: _type.t())
{
m_varName = wasVarName + ".m" + to_string(i);
m_paramName = wasParamName + ".m" + to_string(i);
pair<string, string> assign = visit(t);
// If type is not well formed continue without
// updating state.
if (assign.first.empty() && assign.second.empty())
continue;
assignCheckBuffer.first += assign.first;
assignCheckBuffer.second += assign.second;
i++;
}
m_varName = wasVarName;
m_paramName = wasParamName;
return assignCheckBuffer;
}
pair<string, string> AssignCheckVisitor::assignAndCheckStringPair(
string const& _varRef,
string const& _checkRef,
string const& _assignValue,
string const& _checkValue,
DataType _type
)
{
return make_pair(assignString(_varRef, _assignValue), checkString(_checkRef, _checkValue, _type));
}
string AssignCheckVisitor::assignString(string const& _ref, string const& _value)
{
string assignStmt = Whiskers(R"(<ref> = <value>;)")
("ref", _ref)
("value", _value)
.render();
return indentation() + assignStmt + "\n";
}
string AssignCheckVisitor::checkString(string const& _ref, string const& _value, DataType _type)
{
string checkPred;
switch (_type)
{
case DataType::STRING:
checkPred = Whiskers(R"(!bytesCompare(bytes(<varName>), <value>))")
("varName", _ref)
("value", _value)
.render();
break;
case DataType::BYTES:
checkPred = Whiskers(R"(!bytesCompare(<varName>, <value>))")
("varName", _ref)
("value", _value)
.render();
break;
case DataType::VALUE:
checkPred = Whiskers(R"(<varName> != <value>)")
("varName", _ref)
("value", _value)
.render();
break;
case DataType::ARRAY:
solUnimplemented("Proto ABIv2 fuzzer: Invalid data type.");
}
string checkStmt = Whiskers(R"(if (<checkPred>) return <errCode>;)")
("checkPred", checkPred)
("errCode", to_string(m_errorCode++))
.render();
return indentation() + checkStmt + "\n";
}
/// ValueGetterVisitor
string ValueGetterVisitor::visit(BoolType const&)
{
return counter() % 2 ? "true" : "false";
}
string ValueGetterVisitor::visit(IntegerType const& _type)
{
return integerValueAsString(
_type.is_signed(),
getIntWidth(_type),
counter()
);
}
string ValueGetterVisitor::visit(FixedByteType const& _type)
{
return fixedByteValueAsString(
getFixedByteWidth(_type),
counter()
);
}
string ValueGetterVisitor::visit(AddressType const&)
{
return addressValueAsString(counter());
}
string ValueGetterVisitor::visit(DynamicByteArrayType const& _type)
{
return bytesArrayValueAsString(
counter(),
getDataTypeOfDynBytesType(_type) == DataType::BYTES
);
}
std::string ValueGetterVisitor::integerValueAsString(bool _sign, unsigned _width, unsigned _counter)
{
if (_sign)
return intValueAsString(_width, _counter);
else
return uintValueAsString(_width, _counter);
}
/* Input(s)
* - Unsigned integer to be hashed
* - Width of desired uint value
* Processing
* - Take hash of first parameter and mask it with the max unsigned value for given bit width
* Output
* - string representation of uint value
*/
std::string ValueGetterVisitor::uintValueAsString(unsigned _width, unsigned _counter)
{
solAssert(
(_width % 8 == 0),
"Proto ABIv2 Fuzzer: Unsigned integer width is not a multiple of 8"
);
return maskUnsignedIntToHex(_counter, _width/4);
}
/* Input(s)
* - counter to be hashed to derive a value for Integer type
* - Width of desired int value
* Processing
* - Take hash of first parameter and mask it with the max signed value for given bit width
* Output
* - string representation of int value
*/
std::string ValueGetterVisitor::intValueAsString(unsigned _width, unsigned _counter)
{
solAssert(
(_width % 8 == 0),
"Proto ABIv2 Fuzzer: Signed integer width is not a multiple of 8"
);
return maskUnsignedIntToHex(_counter, ((_width/4) - 1));
}
std::string ValueGetterVisitor::croppedString(
unsigned _numBytes,
unsigned _counter,
bool _isHexLiteral
)
{
solAssert(
_numBytes > 0 && _numBytes <= 32,
"Proto ABIv2 fuzzer: Too short or too long a cropped string"
);
// Number of masked nibbles is twice the number of bytes for a
// hex literal of _numBytes bytes. For a string literal, each nibble
// is treated as a character.
unsigned numMaskNibbles = _isHexLiteral ? _numBytes * 2 : _numBytes;
// Start position of substring equals totalHexStringLength - numMaskNibbles
// totalHexStringLength = 64 + 2 = 66
// e.g., 0x12345678901234567890123456789012 is a total of 66 characters
// |---------------------^-----------|
// <--- start position---><--numMask->
// <-----------total length --------->
// Note: This assumes that maskUnsignedIntToHex() invokes toHex(..., HexPrefix::Add)
unsigned startPos = 66 - numMaskNibbles;
// Extracts the least significant numMaskNibbles from the result
// of maskUnsignedIntToHex().
return maskUnsignedIntToHex(
_counter,
numMaskNibbles
).substr(startPos, numMaskNibbles);
}
std::string ValueGetterVisitor::hexValueAsString(
unsigned _numBytes,
unsigned _counter,
bool _isHexLiteral,
bool _decorate
)
{
solAssert(_numBytes > 0 && _numBytes <= 32,
"Proto ABIv2 fuzzer: Invalid hex length"
);
// If _decorate is set, then we return a hex"" or a "" string.
if (_numBytes == 0)
return Whiskers(R"(<?decorate><?isHex>hex</isHex>""</decorate>)")
("decorate", _decorate)
("isHex", _isHexLiteral)
.render();
// This is needed because solidity interprets a 20-byte 0x prefixed hex literal as an address
// payable type.
return Whiskers(R"(<?decorate><?isHex>hex</isHex>"</decorate><value><?decorate>"</decorate>)")
("decorate", _decorate)
("isHex", _isHexLiteral)
("value", croppedString(_numBytes, _counter, _isHexLiteral))
.render();
}
std::string ValueGetterVisitor::fixedByteValueAsString(unsigned _width, unsigned _counter)
{
solAssert(
(_width >= 1 && _width <= 32),
"Proto ABIv2 Fuzzer: Fixed byte width is not between 1--32"
);
return hexValueAsString(_width, _counter, /*isHexLiteral=*/true);
}
std::string ValueGetterVisitor::addressValueAsString(unsigned _counter)
{
return Whiskers(R"(address(<value>))")
("value", uintValueAsString(160, _counter))
.render();
}
std::string ValueGetterVisitor::variableLengthValueAsString(
unsigned _numBytes,
unsigned _counter,
bool _isHexLiteral
)
{
// TODO: Move this to caller
// solAssert(_numBytes >= 0 && _numBytes <= s_maxDynArrayLength,
// "Proto ABIv2 fuzzer: Invalid hex length"
// );
if (_numBytes == 0)
return Whiskers(R"(<?isHex>hex</isHex>"")")
("isHex", _isHexLiteral)
.render();
unsigned numBytesRemaining = _numBytes;
// Stores the literal
string output{};
// If requested value is shorter than or exactly 32 bytes,
// the literal is the return value of hexValueAsString.
if (numBytesRemaining <= 32)
output = hexValueAsString(
numBytesRemaining,
_counter,
_isHexLiteral,
/*decorate=*/false
);
// If requested value is longer than 32 bytes, the literal
// is obtained by duplicating the return value of hexValueAsString
// until we reach a value of the requested size.
else
{
// Create a 32-byte value to be duplicated and
// update number of bytes to be appended.
// Stores the cached literal that saves us
// (expensive) calls to keccak256.
string cachedString = hexValueAsString(
/*numBytes=*/32,
_counter,
_isHexLiteral,
/*decorate=*/false
);
output = cachedString;
numBytesRemaining -= 32;
// Append bytes from cachedString until
// we create a value of desired length.
unsigned numAppendedBytes;
while (numBytesRemaining > 0)
{
// We append at most 32 bytes at a time
numAppendedBytes = numBytesRemaining >= 32 ? 32 : numBytesRemaining;
output += cachedString.substr(
0,
// Double the substring length for hex literals since each
// character is actually half a byte (or a nibble).
_isHexLiteral ? numAppendedBytes * 2 : numAppendedBytes
);
numBytesRemaining -= numAppendedBytes;
}
solAssert(
numBytesRemaining == 0,
"Proto ABIv2 fuzzer: Logic flaw in variable literal creation"
);
}
if (_isHexLiteral)
solAssert(
output.size() == 2 * _numBytes,
"Proto ABIv2 fuzzer: Generated hex literal is of incorrect length"
);
else
solAssert(
output.size() == _numBytes,
"Proto ABIv2 fuzzer: Generated string literal is of incorrect length"
);
// Decorate output
return Whiskers(R"(<?isHexLiteral>hex</isHexLiteral>"<value>")")
("isHexLiteral", _isHexLiteral)
("value", output)
.render();
}
string ValueGetterVisitor::bytesArrayValueAsString(unsigned _counter, bool _isHexLiteral)
{
return variableLengthValueAsString(
getVarLength(_counter),
_counter,
_isHexLiteral
);
}