solidity/Types.cpp
2015-01-29 21:26:11 +01:00

920 lines
28 KiB
C++

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Solidity data types
*/
#include <libdevcore/CommonIO.h>
#include <libdevcore/CommonData.h>
#include <libsolidity/Utils.h>
#include <libsolidity/Types.h>
#include <libsolidity/AST.h>
using namespace std;
namespace dev
{
namespace solidity
{
shared_ptr<Type const> Type::fromElementaryTypeName(Token::Value _typeToken)
{
solAssert(Token::isElementaryTypeName(_typeToken), "Elementary type name expected.");
if (Token::INT <= _typeToken && _typeToken <= Token::HASH256)
{
int offset = _typeToken - Token::INT;
int bytes = offset % 33;
if (bytes == 0)
bytes = 32;
int modifier = offset / 33;
return make_shared<IntegerType>(bytes * 8,
modifier == 0 ? IntegerType::Modifier::SIGNED :
modifier == 1 ? IntegerType::Modifier::UNSIGNED :
IntegerType::Modifier::HASH);
}
else if (_typeToken == Token::ADDRESS)
return make_shared<IntegerType>(0, IntegerType::Modifier::ADDRESS);
else if (_typeToken == Token::BOOL)
return make_shared<BoolType>();
else if (Token::STRING0 <= _typeToken && _typeToken <= Token::STRING32)
return make_shared<StaticStringType>(int(_typeToken) - int(Token::STRING0));
else
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unable to convert elementary typename " +
std::string(Token::toString(_typeToken)) + " to type."));
}
shared_ptr<Type const> Type::fromUserDefinedTypeName(UserDefinedTypeName const& _typeName)
{
Declaration const* declaration = _typeName.getReferencedDeclaration();
if (StructDefinition const* structDef = dynamic_cast<StructDefinition const*>(declaration))
return make_shared<StructType>(*structDef);
else if (FunctionDefinition const* function = dynamic_cast<FunctionDefinition const*>(declaration))
return make_shared<FunctionType>(*function);
else if (ContractDefinition const* contract = dynamic_cast<ContractDefinition const*>(declaration))
return make_shared<ContractType>(*contract);
return shared_ptr<Type const>();
}
shared_ptr<Type const> Type::fromMapping(Mapping const& _typeName)
{
shared_ptr<Type const> keyType = _typeName.getKeyType().toType();
if (!keyType)
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Error resolving type name."));
shared_ptr<Type const> valueType = _typeName.getValueType().toType();
if (!valueType)
BOOST_THROW_EXCEPTION(_typeName.getValueType().createTypeError("Invalid type name"));
return make_shared<MappingType>(keyType, valueType);
}
shared_ptr<Type const> Type::forLiteral(Literal const& _literal)
{
switch (_literal.getToken())
{
case Token::TRUE_LITERAL:
case Token::FALSE_LITERAL:
return make_shared<BoolType>();
case Token::NUMBER:
return IntegerConstantType::fromLiteral(_literal.getValue());
case Token::STRING_LITERAL:
//@todo put larger strings into dynamic strings
return StaticStringType::smallestTypeForLiteral(_literal.getValue());
default:
return shared_ptr<Type>();
}
}
TypePointer Type::commonType(TypePointer const& _a, TypePointer const& _b)
{
if (_b->isImplicitlyConvertibleTo(*_a))
return _a;
else if (_a->isImplicitlyConvertibleTo(*_b))
return _b;
else
return TypePointer();
}
const MemberList Type::EmptyMemberList = MemberList();
IntegerType::IntegerType(int _bits, IntegerType::Modifier _modifier):
m_bits(_bits), m_modifier(_modifier)
{
if (isAddress())
m_bits = 160;
solAssert(m_bits > 0 && m_bits <= 256 && m_bits % 8 == 0,
"Invalid bit number for integer type: " + dev::toString(_bits));
}
bool IntegerType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.getCategory() != getCategory())
return false;
IntegerType const& convertTo = dynamic_cast<IntegerType const&>(_convertTo);
if (convertTo.m_bits < m_bits)
return false;
if (isAddress())
return convertTo.isAddress();
else if (isHash())
return convertTo.isHash();
else if (isSigned())
return convertTo.isSigned();
else
return !convertTo.isSigned() || convertTo.m_bits > m_bits;
}
bool IntegerType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.getCategory() == Category::STRING)
{
StaticStringType const& convertTo = dynamic_cast<StaticStringType const&>(_convertTo);
return isHash() && (m_bits == convertTo.getNumBytes() * 8);
}
return _convertTo.getCategory() == getCategory() || _convertTo.getCategory() == Category::CONTRACT;
}
TypePointer IntegerType::unaryOperatorResult(Token::Value _operator) const
{
// "delete" is ok for all integer types
if (_operator == Token::DELETE)
return make_shared<VoidType>();
// no further unary operators for addresses
else if (isAddress())
return TypePointer();
// "~" is ok for all other types
else if (_operator == Token::BIT_NOT)
return shared_from_this();
// nothing else for hashes
else if (isHash())
return TypePointer();
// for non-hash integers, we allow +, -, ++ and --
else if (_operator == Token::ADD || _operator == Token::SUB ||
_operator == Token::INC || _operator == Token::DEC)
return shared_from_this();
else
return TypePointer();
}
bool IntegerType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
IntegerType const& other = dynamic_cast<IntegerType const&>(_other);
return other.m_bits == m_bits && other.m_modifier == m_modifier;
}
string IntegerType::toString() const
{
if (isAddress())
return "address";
string prefix = isHash() ? "hash" : (isSigned() ? "int" : "uint");
return prefix + dev::toString(m_bits);
}
TypePointer IntegerType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const
{
if (_other->getCategory() != Category::INTEGER_CONSTANT && _other->getCategory() != getCategory())
return TypePointer();
auto commonType = dynamic_pointer_cast<IntegerType const>(Type::commonType(shared_from_this(), _other));
if (!commonType)
return TypePointer();
// All integer types can be compared
if (Token::isCompareOp(_operator))
return commonType;
// Nothing else can be done with addresses, but hashes can receive bit operators
if (commonType->isAddress())
return TypePointer();
else if (commonType->isHash() && !Token::isBitOp(_operator))
return TypePointer();
else
return commonType;
}
const MemberList IntegerType::AddressMemberList =
MemberList({{"balance", make_shared<IntegerType >(256)},
{"callstring32", make_shared<FunctionType>(strings{"string32"}, strings{},
FunctionType::Location::BARE)},
{"callstring32string32", make_shared<FunctionType>(strings{"string32", "string32"},
strings{}, FunctionType::Location::BARE)},
{"send", make_shared<FunctionType>(strings{"uint"}, strings{}, FunctionType::Location::SEND)}});
shared_ptr<IntegerConstantType const> IntegerConstantType::fromLiteral(string const& _literal)
{
return make_shared<IntegerConstantType>(bigint(_literal));
}
bool IntegerConstantType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
TypePointer integerType = getIntegerType();
return integerType && integerType->isImplicitlyConvertibleTo(_convertTo);
}
bool IntegerConstantType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
TypePointer integerType = getIntegerType();
return integerType && integerType->isExplicitlyConvertibleTo(_convertTo);
}
TypePointer IntegerConstantType::unaryOperatorResult(Token::Value _operator) const
{
bigint value;
switch (_operator)
{
case Token::BIT_NOT:
value = ~m_value;
break;
case Token::ADD:
value = m_value;
break;
case Token::SUB:
value = -m_value;
break;
default:
return TypePointer();
}
return make_shared<IntegerConstantType>(value);
}
TypePointer IntegerConstantType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const
{
if (_other->getCategory() == Category::INTEGER)
{
shared_ptr<IntegerType const> integerType = getIntegerType();
if (!integerType)
return TypePointer();
return integerType->binaryOperatorResult(_operator, _other);
}
else if (_other->getCategory() != getCategory())
return TypePointer();
IntegerConstantType const& other = dynamic_cast<IntegerConstantType const&>(*_other);
if (Token::isCompareOp(_operator))
{
shared_ptr<IntegerType const> thisIntegerType = getIntegerType();
shared_ptr<IntegerType const> otherIntegerType = other.getIntegerType();
if (!thisIntegerType || !otherIntegerType)
return TypePointer();
return thisIntegerType->binaryOperatorResult(_operator, otherIntegerType);
}
else
{
bigint value;
switch (_operator)
{
case Token::BIT_OR:
value = m_value | other.m_value;
break;
case Token::BIT_XOR:
value = m_value ^ other.m_value;
break;
case Token::BIT_AND:
value = m_value & other.m_value;
break;
case Token::ADD:
value = m_value + other.m_value;
break;
case Token::SUB:
value = m_value - other.m_value;
break;
case Token::MUL:
value = m_value * other.m_value;
break;
case Token::DIV:
if (other.m_value == 0)
return TypePointer();
value = m_value / other.m_value;
break;
case Token::MOD:
if (other.m_value == 0)
return TypePointer();
value = m_value % other.m_value;
break;
default:
return TypePointer();
}
return make_shared<IntegerConstantType>(value);
}
}
bool IntegerConstantType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
return m_value == dynamic_cast<IntegerConstantType const&>(_other).m_value;
}
string IntegerConstantType::toString() const
{
return "int_const " + m_value.str();
}
u256 IntegerConstantType::literalValue(Literal const*) const
{
// we ignore the literal and hope that the type was correctly determined
solAssert(m_value <= u256(-1), "Integer constant too large.");
solAssert(m_value >= -(bigint(1) << 255), "Integer constant too small.");
if (m_value >= 0)
return u256(m_value);
else
return s2u(s256(m_value));
}
shared_ptr<IntegerType const> IntegerConstantType::getIntegerType() const
{
bigint value = m_value;
bool negative = (value < 0);
if (negative) // convert to positive number of same bit requirements
value = ((-value) - 1) << 1;
if (value > u256(-1))
return shared_ptr<IntegerType const>();
else
return make_shared<IntegerType>(max(bytesRequired(value), 1u) * 8,
negative ? IntegerType::Modifier::SIGNED
: IntegerType::Modifier::UNSIGNED);
}
shared_ptr<StaticStringType> StaticStringType::smallestTypeForLiteral(string const& _literal)
{
if (_literal.length() <= 32)
return make_shared<StaticStringType>(_literal.length());
return shared_ptr<StaticStringType>();
}
StaticStringType::StaticStringType(int _bytes): m_bytes(_bytes)
{
solAssert(m_bytes >= 0 && m_bytes <= 32,
"Invalid byte number for static string type: " + dev::toString(m_bytes));
}
bool StaticStringType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.getCategory() != getCategory())
return false;
StaticStringType const& convertTo = dynamic_cast<StaticStringType const&>(_convertTo);
return convertTo.m_bytes >= m_bytes;
}
bool StaticStringType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.getCategory() == Category::INTEGER)
{
IntegerType const& convertTo = dynamic_cast<IntegerType const&>(_convertTo);
if (convertTo.isHash() && (m_bytes * 8 == convertTo.getNumBits()))
return true;
}
return isImplicitlyConvertibleTo(_convertTo);
}
bool StaticStringType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
StaticStringType const& other = dynamic_cast<StaticStringType const&>(_other);
return other.m_bytes == m_bytes;
}
u256 StaticStringType::literalValue(const Literal* _literal) const
{
solAssert(_literal, "");
u256 value = 0;
for (char c: _literal->getValue())
value = (value << 8) | byte(c);
return value << ((32 - _literal->getValue().length()) * 8);
}
bool BoolType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
// conversion to integer is fine, but not to address
// this is an example of explicit conversions being not transitive (though implicit should be)
if (_convertTo.getCategory() == getCategory())
{
IntegerType const& convertTo = dynamic_cast<IntegerType const&>(_convertTo);
if (!convertTo.isAddress())
return true;
}
return isImplicitlyConvertibleTo(_convertTo);
}
u256 BoolType::literalValue(Literal const* _literal) const
{
solAssert(_literal, "");
if (_literal->getToken() == Token::TRUE_LITERAL)
return u256(1);
else if (_literal->getToken() == Token::FALSE_LITERAL)
return u256(0);
else
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Bool type constructed from non-boolean literal."));
}
TypePointer BoolType::unaryOperatorResult(Token::Value _operator) const
{
if (_operator == Token::DELETE)
return make_shared<VoidType>();
return (_operator == Token::NOT) ? shared_from_this() : TypePointer();
}
TypePointer BoolType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const
{
if (getCategory() != _other->getCategory())
return TypePointer();
if (Token::isCompareOp(_operator) || _operator == Token::AND || _operator == Token::OR)
return _other;
else
return TypePointer();
}
bool ContractType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (*this == _convertTo)
return true;
if (_convertTo.getCategory() == Category::INTEGER)
return dynamic_cast<IntegerType const&>(_convertTo).isAddress();
if (_convertTo.getCategory() == Category::CONTRACT)
{
auto const& bases = getContractDefinition().getLinearizedBaseContracts();
if (m_super && bases.size() <= 1)
return false;
return find(m_super ? ++bases.begin() : bases.begin(), bases.end(),
&dynamic_cast<ContractType const&>(_convertTo).getContractDefinition()) != bases.end();
}
return false;
}
bool ContractType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return isImplicitlyConvertibleTo(_convertTo) || _convertTo.getCategory() == Category::INTEGER ||
_convertTo.getCategory() == Category::CONTRACT;
}
TypePointer ContractType::unaryOperatorResult(Token::Value _operator) const
{
return _operator == Token::DELETE ? make_shared<VoidType>() : TypePointer();
}
bool ContractType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
ContractType const& other = dynamic_cast<ContractType const&>(_other);
return other.m_contract == m_contract && other.m_super == m_super;
}
string ContractType::toString() const
{
return "contract " + string(m_super ? "super " : "") + m_contract.getName();
}
MemberList const& ContractType::getMembers() const
{
// We need to lazy-initialize it because of recursive references.
if (!m_members)
{
// All address members and all interface functions
map<string, shared_ptr<Type const>> members(IntegerType::AddressMemberList.begin(),
IntegerType::AddressMemberList.end());
if (m_super)
{
for (ContractDefinition const* base: m_contract.getLinearizedBaseContracts())
for (ASTPointer<FunctionDefinition> const& function: base->getDefinedFunctions())
if (!function->isConstructor())
members.insert(make_pair(function->getName(), make_shared<FunctionType>(*function, true)));
}
else
for (auto const& it: m_contract.getInterfaceFunctions())
members[it.second->getDeclaration().getName()] = it.second;
m_members.reset(new MemberList(members));
}
return *m_members;
}
shared_ptr<FunctionType const> const& ContractType::getConstructorType() const
{
if (!m_constructorType)
{
FunctionDefinition const* constructor = m_contract.getConstructor();
if (constructor)
m_constructorType = make_shared<FunctionType>(*constructor);
else
m_constructorType = make_shared<FunctionType>(TypePointers(), TypePointers());
}
return m_constructorType;
}
u256 ContractType::getFunctionIdentifier(string const& _functionName) const
{
auto interfaceFunctions = m_contract.getInterfaceFunctions();
for (auto const& it: m_contract.getInterfaceFunctions())
if (it.second->getDeclaration().getName() == _functionName)
return FixedHash<4>::Arith(it.first);
return Invalid256;
}
TypePointer StructType::unaryOperatorResult(Token::Value _operator) const
{
return _operator == Token::DELETE ? make_shared<VoidType>() : TypePointer();
}
bool StructType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
StructType const& other = dynamic_cast<StructType const&>(_other);
return other.m_struct == m_struct;
}
u256 StructType::getStorageSize() const
{
u256 size = 0;
for (pair<string, shared_ptr<Type const>> const& member: getMembers())
size += member.second->getStorageSize();
return max<u256>(1, size);
}
bool StructType::canLiveOutsideStorage() const
{
for (pair<string, shared_ptr<Type const>> const& member: getMembers())
if (!member.second->canLiveOutsideStorage())
return false;
return true;
}
string StructType::toString() const
{
return string("struct ") + m_struct.getName();
}
MemberList const& StructType::getMembers() const
{
// We need to lazy-initialize it because of recursive references.
if (!m_members)
{
map<string, shared_ptr<Type const>> members;
for (ASTPointer<VariableDeclaration> const& variable: m_struct.getMembers())
members[variable->getName()] = variable->getType();
m_members.reset(new MemberList(members));
}
return *m_members;
}
u256 StructType::getStorageOffsetOfMember(string const& _name) const
{
//@todo cache member offset?
u256 offset;
for (ASTPointer<VariableDeclaration> variable: m_struct.getMembers())
{
if (variable->getName() == _name)
return offset;
offset += variable->getType()->getStorageSize();
}
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Storage offset of non-existing member requested."));
}
FunctionType::FunctionType(FunctionDefinition const& _function, bool _isInternal):
m_location(_isInternal ? Location::INTERNAL : Location::EXTERNAL),
m_isConstant(_function.isDeclaredConst()),
m_declaration(&_function)
{
TypePointers params;
vector<string> paramNames;
TypePointers retParams;
vector<string> retParamNames;
params.reserve(_function.getParameters().size());
paramNames.reserve(_function.getParameters().size());
for (ASTPointer<VariableDeclaration> const& var: _function.getParameters())
{
paramNames.push_back(var->getName());
params.push_back(var->getType());
}
retParams.reserve(_function.getReturnParameters().size());
retParamNames.reserve(_function.getReturnParameters().size());
for (ASTPointer<VariableDeclaration> const& var: _function.getReturnParameters())
{
retParamNames.push_back(var->getName());
retParams.push_back(var->getType());
}
swap(params, m_parameterTypes);
swap(paramNames, m_parameterNames);
swap(retParams, m_returnParameterTypes);
swap(retParamNames, m_returnParameterNames);
}
FunctionType::FunctionType(VariableDeclaration const& _varDecl):
m_location(Location::EXTERNAL), m_isConstant(true), m_declaration(&_varDecl)
{
TypePointers params({});
vector<string> paramNames({});
TypePointers retParams({_varDecl.getType()});
vector<string> retParamNames({ _varDecl.getName()});
// for now, no input parameters LTODO: change for some things like mapping
swap(params, m_parameterTypes);
swap(paramNames, m_parameterNames);
swap(retParams, m_returnParameterTypes);
swap(retParamNames, m_returnParameterNames);
}
FunctionType::FunctionType(const EventDefinition& _event):
m_location(Location::EVENT), m_declaration(&_event)
{
TypePointers params;
vector<string> paramNames;
params.reserve(_event.getParameters().size());
paramNames.reserve(_event.getParameters().size());
for (ASTPointer<VariableDeclaration> const& var: _event.getParameters())
{
paramNames.push_back(var->getName());
params.push_back(var->getType());
}
swap(params, m_parameterTypes);
swap(paramNames, m_parameterNames);
}
bool FunctionType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
FunctionType const& other = dynamic_cast<FunctionType const&>(_other);
if (m_location != other.m_location)
return false;
if (m_isConstant != other.isConstant())
return false;
if (m_parameterTypes.size() != other.m_parameterTypes.size() ||
m_returnParameterTypes.size() != other.m_returnParameterTypes.size())
return false;
auto typeCompare = [](TypePointer const& _a, TypePointer const& _b) -> bool { return *_a == *_b; };
if (!equal(m_parameterTypes.cbegin(), m_parameterTypes.cend(),
other.m_parameterTypes.cbegin(), typeCompare))
return false;
if (!equal(m_returnParameterTypes.cbegin(), m_returnParameterTypes.cend(),
other.m_returnParameterTypes.cbegin(), typeCompare))
return false;
//@todo this is ugly, but cannot be prevented right now
if (m_gasSet != other.m_gasSet || m_valueSet != other.m_valueSet)
return false;
return true;
}
string FunctionType::toString() const
{
string name = "function (";
for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it)
name += (*it)->toString() + (it + 1 == m_parameterTypes.end() ? "" : ",");
name += ") returns (";
for (auto it = m_returnParameterTypes.begin(); it != m_returnParameterTypes.end(); ++it)
name += (*it)->toString() + (it + 1 == m_returnParameterTypes.end() ? "" : ",");
return name + ")";
}
unsigned FunctionType::getSizeOnStack() const
{
unsigned size = 0;
if (m_location == Location::EXTERNAL)
size = 2;
else if (m_location == Location::INTERNAL || m_location == Location::BARE)
size = 1;
if (m_gasSet)
size++;
if (m_valueSet)
size++;
return size;
}
MemberList const& FunctionType::getMembers() const
{
switch (m_location)
{
case Location::EXTERNAL:
case Location::CREATION:
case Location::ECRECOVER:
case Location::SHA256:
case Location::RIPEMD160:
case Location::BARE:
if (!m_members)
{
map<string, TypePointer> members{
{"gas", make_shared<FunctionType>(parseElementaryTypeVector({"uint"}),
TypePointers{copyAndSetGasOrValue(true, false)},
Location::SET_GAS, m_gasSet, m_valueSet)},
{"value", make_shared<FunctionType>(parseElementaryTypeVector({"uint"}),
TypePointers{copyAndSetGasOrValue(false, true)},
Location::SET_VALUE, m_gasSet, m_valueSet)}};
if (m_location == Location::CREATION)
members.erase("gas");
m_members.reset(new MemberList(members));
}
return *m_members;
default:
return EmptyMemberList;
}
}
string FunctionType::getCanonicalSignature(std::string const& _name) const
{
std::string funcName = _name;
if (_name == "")
{
solAssert(m_declaration != nullptr, "Function type without name needs a declaration");
funcName = m_declaration->getName();
}
string ret = funcName + "(";
for (auto it = m_parameterTypes.cbegin(); it != m_parameterTypes.cend(); ++it)
ret += (*it)->toString() + (it + 1 == m_parameterTypes.cend() ? "" : ",");
return ret + ")";
}
TypePointers FunctionType::parseElementaryTypeVector(strings const& _types)
{
TypePointers pointers;
pointers.reserve(_types.size());
for (string const& type: _types)
pointers.push_back(Type::fromElementaryTypeName(Token::fromIdentifierOrKeyword(type)));
return pointers;
}
TypePointer FunctionType::copyAndSetGasOrValue(bool _setGas, bool _setValue) const
{
return make_shared<FunctionType>(m_parameterTypes, m_returnParameterTypes, m_location,
m_gasSet || _setGas, m_valueSet || _setValue);
}
vector<string> const FunctionType::getParameterTypeNames() const
{
vector<string> names;
for (TypePointer const& t: m_parameterTypes)
names.push_back(t->toString());
return names;
}
vector<string> const FunctionType::getReturnParameterTypeNames() const
{
vector<string> names;
for (TypePointer const& t: m_returnParameterTypes)
names.push_back(t->toString());
return names;
}
ASTPointer<ASTString> FunctionType::getDocumentation() const
{
auto function = dynamic_cast<Documented const*>(m_declaration);
if (function)
return function->getDocumentation();
return ASTPointer<ASTString>();
}
bool MappingType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
MappingType const& other = dynamic_cast<MappingType const&>(_other);
return *other.m_keyType == *m_keyType && *other.m_valueType == *m_valueType;
}
string MappingType::toString() const
{
return "mapping(" + getKeyType()->toString() + " => " + getValueType()->toString() + ")";
}
bool TypeType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
TypeType const& other = dynamic_cast<TypeType const&>(_other);
return *getActualType() == *other.getActualType();
}
MemberList const& TypeType::getMembers() const
{
// We need to lazy-initialize it because of recursive references.
if (!m_members)
{
map<string, TypePointer> members;
if (m_actualType->getCategory() == Category::CONTRACT && m_currentContract != nullptr)
{
ContractDefinition const& contract = dynamic_cast<ContractType const&>(*m_actualType).getContractDefinition();
vector<ContractDefinition const*> currentBases = m_currentContract->getLinearizedBaseContracts();
if (find(currentBases.begin(), currentBases.end(), &contract) != currentBases.end())
// We are accessing the type of a base contract, so add all public and private
// functions. Note that this does not add inherited functions on purpose.
for (ASTPointer<FunctionDefinition> const& f: contract.getDefinedFunctions())
if (!f->isConstructor())
members[f->getName()] = make_shared<FunctionType>(*f);
}
m_members.reset(new MemberList(members));
}
return *m_members;
}
ModifierType::ModifierType(const ModifierDefinition& _modifier)
{
TypePointers params;
params.reserve(_modifier.getParameters().size());
for (ASTPointer<VariableDeclaration> const& var: _modifier.getParameters())
params.push_back(var->getType());
swap(params, m_parameterTypes);
}
bool ModifierType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
ModifierType const& other = dynamic_cast<ModifierType const&>(_other);
if (m_parameterTypes.size() != other.m_parameterTypes.size())
return false;
auto typeCompare = [](TypePointer const& _a, TypePointer const& _b) -> bool { return *_a == *_b; };
if (!equal(m_parameterTypes.cbegin(), m_parameterTypes.cend(),
other.m_parameterTypes.cbegin(), typeCompare))
return false;
return true;
}
string ModifierType::toString() const
{
string name = "modifier (";
for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it)
name += (*it)->toString() + (it + 1 == m_parameterTypes.end() ? "" : ",");
return name + ")";
}
MagicType::MagicType(MagicType::Kind _kind):
m_kind(_kind)
{
switch (m_kind)
{
case Kind::BLOCK:
m_members = MemberList({{"coinbase", make_shared<IntegerType>(0, IntegerType::Modifier::ADDRESS)},
{"timestamp", make_shared<IntegerType>(256)},
{"blockhash", make_shared<FunctionType>(strings{"uint"}, strings{"hash"}, FunctionType::Location::BLOCKHASH)},
{"difficulty", make_shared<IntegerType>(256)},
{"number", make_shared<IntegerType>(256)},
{"gaslimit", make_shared<IntegerType>(256)}});
break;
case Kind::MSG:
m_members = MemberList({{"sender", make_shared<IntegerType>(0, IntegerType::Modifier::ADDRESS)},
{"gas", make_shared<IntegerType>(256)},
{"value", make_shared<IntegerType>(256)}});
break;
case Kind::TX:
m_members = MemberList({{"origin", make_shared<IntegerType>(0, IntegerType::Modifier::ADDRESS)},
{"gasprice", make_shared<IntegerType>(256)}});
break;
default:
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown kind of magic."));
}
}
bool MagicType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
MagicType const& other = dynamic_cast<MagicType const&>(_other);
return other.m_kind == m_kind;
}
string MagicType::toString() const
{
switch (m_kind)
{
case Kind::BLOCK:
return "block";
case Kind::MSG:
return "msg";
case Kind::TX:
return "tx";
default:
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown kind of magic."));
}
}
}
}