mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
318 lines
9.0 KiB
C++
318 lines
9.0 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <tools/yulPhaser/Mutations.h>
|
|
|
|
#include <tools/yulPhaser/SimulationRNG.h>
|
|
|
|
#include <libsolutil/CommonData.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace std;
|
|
using namespace solidity;
|
|
using namespace solidity::phaser;
|
|
|
|
function<Mutation> phaser::geneRandomisation(double _chance)
|
|
{
|
|
return [=](Chromosome const& _chromosome)
|
|
{
|
|
vector<string> optimisationSteps;
|
|
for (auto const& step: _chromosome.optimisationSteps())
|
|
optimisationSteps.push_back(
|
|
SimulationRNG::bernoulliTrial(_chance) ?
|
|
Chromosome::randomOptimisationStep() :
|
|
step
|
|
);
|
|
|
|
return Chromosome(move(optimisationSteps));
|
|
};
|
|
}
|
|
|
|
function<Mutation> phaser::geneDeletion(double _chance)
|
|
{
|
|
return [=](Chromosome const& _chromosome)
|
|
{
|
|
vector<string> optimisationSteps;
|
|
for (auto const& step: _chromosome.optimisationSteps())
|
|
if (!SimulationRNG::bernoulliTrial(_chance))
|
|
optimisationSteps.push_back(step);
|
|
|
|
return Chromosome(move(optimisationSteps));
|
|
};
|
|
}
|
|
|
|
function<Mutation> phaser::geneAddition(double _chance)
|
|
{
|
|
return [=](Chromosome const& _chromosome)
|
|
{
|
|
vector<string> optimisationSteps;
|
|
|
|
if (SimulationRNG::bernoulliTrial(_chance))
|
|
optimisationSteps.push_back(Chromosome::randomOptimisationStep());
|
|
|
|
for (auto const& step: _chromosome.optimisationSteps())
|
|
{
|
|
optimisationSteps.push_back(step);
|
|
if (SimulationRNG::bernoulliTrial(_chance))
|
|
optimisationSteps.push_back(Chromosome::randomOptimisationStep());
|
|
}
|
|
|
|
return Chromosome(move(optimisationSteps));
|
|
};
|
|
}
|
|
|
|
function<Mutation> phaser::alternativeMutations(
|
|
double _firstMutationChance,
|
|
function<Mutation> _mutation1,
|
|
function<Mutation> _mutation2
|
|
)
|
|
{
|
|
return [=](Chromosome const& _chromosome)
|
|
{
|
|
if (SimulationRNG::bernoulliTrial(_firstMutationChance))
|
|
return _mutation1(_chromosome);
|
|
else
|
|
return _mutation2(_chromosome);
|
|
};
|
|
}
|
|
|
|
function<Mutation> phaser::mutationSequence(vector<function<Mutation>> _mutations)
|
|
{
|
|
return [=](Chromosome const& _chromosome)
|
|
{
|
|
Chromosome mutatedChromosome = _chromosome;
|
|
for (size_t i = 0; i < _mutations.size(); ++i)
|
|
mutatedChromosome = _mutations[i](move(mutatedChromosome));
|
|
|
|
return mutatedChromosome;
|
|
};
|
|
}
|
|
|
|
namespace
|
|
{
|
|
|
|
ChromosomePair fixedPointSwap(
|
|
Chromosome const& _chromosome1,
|
|
Chromosome const& _chromosome2,
|
|
size_t _crossoverPoint
|
|
)
|
|
{
|
|
assert(_crossoverPoint <= _chromosome1.length());
|
|
assert(_crossoverPoint <= _chromosome2.length());
|
|
|
|
auto begin1 = _chromosome1.optimisationSteps().begin();
|
|
auto begin2 = _chromosome2.optimisationSteps().begin();
|
|
auto end1 = _chromosome1.optimisationSteps().end();
|
|
auto end2 = _chromosome2.optimisationSteps().end();
|
|
|
|
return {
|
|
Chromosome(
|
|
vector<string>(begin1, begin1 + _crossoverPoint) +
|
|
vector<string>(begin2 + _crossoverPoint, end2)
|
|
),
|
|
Chromosome(
|
|
vector<string>(begin2, begin2 + _crossoverPoint) +
|
|
vector<string>(begin1 + _crossoverPoint, end1)
|
|
),
|
|
};
|
|
}
|
|
|
|
}
|
|
|
|
function<Crossover> phaser::randomPointCrossover()
|
|
{
|
|
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
|
|
{
|
|
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
|
|
|
|
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
|
|
size_t minPoint = (minLength > 0? 1 : 0);
|
|
assert(minPoint <= minLength);
|
|
|
|
size_t randomPoint = SimulationRNG::uniformInt(minPoint, minLength);
|
|
return get<0>(fixedPointSwap(_chromosome1, _chromosome2, randomPoint));
|
|
};
|
|
}
|
|
|
|
function<SymmetricCrossover> phaser::symmetricRandomPointCrossover()
|
|
{
|
|
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
|
|
{
|
|
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
|
|
|
|
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
|
|
size_t minPoint = (minLength > 0? 1 : 0);
|
|
assert(minPoint <= minLength);
|
|
|
|
size_t randomPoint = SimulationRNG::uniformInt(minPoint, minLength);
|
|
return fixedPointSwap(_chromosome1, _chromosome2, randomPoint);
|
|
};
|
|
}
|
|
|
|
function<Crossover> phaser::fixedPointCrossover(double _crossoverPoint)
|
|
{
|
|
assert(0.0 <= _crossoverPoint && _crossoverPoint <= 1.0);
|
|
|
|
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
|
|
{
|
|
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
|
|
size_t concretePoint = static_cast<size_t>(round(minLength * _crossoverPoint));
|
|
|
|
return get<0>(fixedPointSwap(_chromosome1, _chromosome2, concretePoint));
|
|
};
|
|
}
|
|
|
|
namespace
|
|
{
|
|
|
|
ChromosomePair fixedTwoPointSwap(
|
|
Chromosome const& _chromosome1,
|
|
Chromosome const& _chromosome2,
|
|
size_t _crossoverPoint1,
|
|
size_t _crossoverPoint2
|
|
)
|
|
{
|
|
assert(_crossoverPoint1 <= _chromosome1.length());
|
|
assert(_crossoverPoint1 <= _chromosome2.length());
|
|
assert(_crossoverPoint2 <= _chromosome1.length());
|
|
assert(_crossoverPoint2 <= _chromosome2.length());
|
|
|
|
size_t lowPoint = min(_crossoverPoint1, _crossoverPoint2);
|
|
size_t highPoint = max(_crossoverPoint1, _crossoverPoint2);
|
|
|
|
auto begin1 = _chromosome1.optimisationSteps().begin();
|
|
auto begin2 = _chromosome2.optimisationSteps().begin();
|
|
auto end1 = _chromosome1.optimisationSteps().end();
|
|
auto end2 = _chromosome2.optimisationSteps().end();
|
|
|
|
return {
|
|
Chromosome(
|
|
vector<string>(begin1, begin1 + lowPoint) +
|
|
vector<string>(begin2 + lowPoint, begin2 + highPoint) +
|
|
vector<string>(begin1 + highPoint, end1)
|
|
),
|
|
Chromosome(
|
|
vector<string>(begin2, begin2 + lowPoint) +
|
|
vector<string>(begin1 + lowPoint, begin1 + highPoint) +
|
|
vector<string>(begin2 + highPoint, end2)
|
|
),
|
|
};
|
|
}
|
|
|
|
}
|
|
|
|
function<Crossover> phaser::randomTwoPointCrossover()
|
|
{
|
|
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
|
|
{
|
|
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
|
|
|
|
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
|
|
size_t minPoint = (minLength > 0 ? 1 : 0);
|
|
assert(minPoint <= minLength);
|
|
|
|
size_t randomPoint1 = SimulationRNG::uniformInt(minPoint, minLength);
|
|
size_t randomPoint2 = SimulationRNG::uniformInt(randomPoint1, minLength);
|
|
return get<0>(fixedTwoPointSwap(_chromosome1, _chromosome2, randomPoint1, randomPoint2));
|
|
};
|
|
}
|
|
|
|
function<SymmetricCrossover> phaser::symmetricRandomTwoPointCrossover()
|
|
{
|
|
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
|
|
{
|
|
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
|
|
|
|
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
|
|
size_t minPoint = (minLength > 0 ? 1 : 0);
|
|
assert(minPoint <= minLength);
|
|
|
|
size_t randomPoint1 = SimulationRNG::uniformInt(minPoint, minLength);
|
|
size_t randomPoint2 = SimulationRNG::uniformInt(randomPoint1, minLength);
|
|
return fixedTwoPointSwap(_chromosome1, _chromosome2, randomPoint1, randomPoint2);
|
|
};
|
|
}
|
|
|
|
namespace
|
|
{
|
|
|
|
ChromosomePair uniformSwap(Chromosome const& _chromosome1, Chromosome const& _chromosome2, double _swapChance)
|
|
{
|
|
vector<string> steps1;
|
|
vector<string> steps2;
|
|
|
|
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
|
|
for (size_t i = 0; i < minLength; ++i)
|
|
if (SimulationRNG::bernoulliTrial(_swapChance))
|
|
{
|
|
steps1.push_back(_chromosome2.optimisationSteps()[i]);
|
|
steps2.push_back(_chromosome1.optimisationSteps()[i]);
|
|
}
|
|
else
|
|
{
|
|
steps1.push_back(_chromosome1.optimisationSteps()[i]);
|
|
steps2.push_back(_chromosome2.optimisationSteps()[i]);
|
|
}
|
|
|
|
auto begin1 = _chromosome1.optimisationSteps().begin();
|
|
auto begin2 = _chromosome2.optimisationSteps().begin();
|
|
auto end1 = _chromosome1.optimisationSteps().end();
|
|
auto end2 = _chromosome2.optimisationSteps().end();
|
|
|
|
bool swapTail = SimulationRNG::bernoulliTrial(_swapChance);
|
|
if (_chromosome1.length() > minLength)
|
|
{
|
|
if (swapTail)
|
|
steps2.insert(steps2.end(), begin1 + minLength, end1);
|
|
else
|
|
steps1.insert(steps1.end(), begin1 + minLength, end1);
|
|
}
|
|
|
|
if (_chromosome2.length() > minLength)
|
|
{
|
|
if (swapTail)
|
|
steps1.insert(steps1.end(), begin2 + minLength, end2);
|
|
else
|
|
steps2.insert(steps2.end(), begin2 + minLength, end2);
|
|
}
|
|
|
|
return {Chromosome(steps1), Chromosome(steps2)};
|
|
}
|
|
|
|
}
|
|
|
|
function<Crossover> phaser::uniformCrossover(double _swapChance)
|
|
{
|
|
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
|
|
{
|
|
return get<0>(uniformSwap(_chromosome1, _chromosome2, _swapChance));
|
|
};
|
|
}
|
|
|
|
function<SymmetricCrossover> phaser::symmetricUniformCrossover(double _swapChance)
|
|
{
|
|
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
|
|
{
|
|
return uniformSwap(_chromosome1, _chromosome2, _swapChance);
|
|
};
|
|
}
|