mirror of
				https://github.com/ethereum/solidity
				synced 2023-10-03 13:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2475 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2475 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | ||
| 	This file is part of solidity.
 | ||
| 
 | ||
| 	solidity is free software: you can redistribute it and/or modify
 | ||
| 	it under the terms of the GNU General Public License as published by
 | ||
| 	the Free Software Foundation, either version 3 of the License, or
 | ||
| 	(at your option) any later version.
 | ||
| 
 | ||
| 	solidity is distributed in the hope that it will be useful,
 | ||
| 	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
| 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | ||
| 	GNU General Public License for more details.
 | ||
| 
 | ||
| 	You should have received a copy of the GNU General Public License
 | ||
| 	along with solidity.  If not, see <http://www.gnu.org/licenses/>.
 | ||
| */
 | ||
| /**
 | ||
|  * @author Christian <c@ethdev.com>
 | ||
|  * @date 2015
 | ||
|  * Type analyzer and checker.
 | ||
|  */
 | ||
| 
 | ||
| #include <libsolidity/analysis/TypeChecker.h>
 | ||
| #include <memory>
 | ||
| #include <boost/algorithm/cxx11/all_of.hpp>
 | ||
| #include <boost/algorithm/string/predicate.hpp>
 | ||
| #include <boost/algorithm/string/join.hpp>
 | ||
| #include <boost/range/adaptor/reversed.hpp>
 | ||
| #include <libsolidity/ast/AST.h>
 | ||
| #include <libsolidity/inlineasm/AsmAnalysis.h>
 | ||
| #include <libsolidity/inlineasm/AsmAnalysisInfo.h>
 | ||
| #include <libsolidity/inlineasm/AsmData.h>
 | ||
| #include <libsolidity/interface/ErrorReporter.h>
 | ||
| #include <libdevcore/Algorithms.h>
 | ||
| 
 | ||
| using namespace std;
 | ||
| using namespace dev;
 | ||
| using namespace dev::solidity;
 | ||
| 
 | ||
| namespace
 | ||
| {
 | ||
| 
 | ||
| bool typeSupportedByOldABIEncoder(Type const& _type)
 | ||
| {
 | ||
| 	if (_type.dataStoredIn(DataLocation::Storage))
 | ||
| 		return true;
 | ||
| 	if (_type.category() == Type::Category::Struct)
 | ||
| 		return false;
 | ||
| 	if (_type.category() == Type::Category::Array)
 | ||
| 	{
 | ||
| 		auto const& arrayType = dynamic_cast<ArrayType const&>(_type);
 | ||
| 		auto base = arrayType.baseType();
 | ||
| 		if (!typeSupportedByOldABIEncoder(*base) || (base->category() == Type::Category::Array && base->isDynamicallySized()))
 | ||
| 			return false;
 | ||
| 	}
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| bool TypeChecker::checkTypeRequirements(ASTNode const& _contract)
 | ||
| {
 | ||
| 	_contract.accept(*this);
 | ||
| 	return Error::containsOnlyWarnings(m_errorReporter.errors());
 | ||
| }
 | ||
| 
 | ||
| TypePointer const& TypeChecker::type(Expression const& _expression) const
 | ||
| {
 | ||
| 	solAssert(!!_expression.annotation().type, "Type requested but not present.");
 | ||
| 	return _expression.annotation().type;
 | ||
| }
 | ||
| 
 | ||
| TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const
 | ||
| {
 | ||
| 	solAssert(!!_variable.annotation().type, "Type requested but not present.");
 | ||
| 	return _variable.annotation().type;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(ContractDefinition const& _contract)
 | ||
| {
 | ||
| 	m_scope = &_contract;
 | ||
| 
 | ||
| 	// We force our own visiting order here. The structs have to be excluded below.
 | ||
| 	set<ASTNode const*> visited;
 | ||
| 	for (auto const& s: _contract.definedStructs())
 | ||
| 		visited.insert(s);
 | ||
| 	ASTNode::listAccept(_contract.definedStructs(), *this);
 | ||
| 	ASTNode::listAccept(_contract.baseContracts(), *this);
 | ||
| 
 | ||
| 	checkContractDuplicateFunctions(_contract);
 | ||
| 	checkContractDuplicateEvents(_contract);
 | ||
| 	checkContractIllegalOverrides(_contract);
 | ||
| 	checkContractAbstractFunctions(_contract);
 | ||
| 	checkContractBaseConstructorArguments(_contract);
 | ||
| 
 | ||
| 	FunctionDefinition const* function = _contract.constructor();
 | ||
| 	if (function)
 | ||
| 	{
 | ||
| 		if (!function->returnParameters().empty())
 | ||
| 			m_errorReporter.typeError(function->returnParameterList()->location(), "Non-empty \"returns\" directive for constructor.");
 | ||
| 		if (function->stateMutability() != StateMutability::NonPayable && function->stateMutability() != StateMutability::Payable)
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				function->location(),
 | ||
| 				"Constructor must be payable or non-payable, but is \"" +
 | ||
| 				stateMutabilityToString(function->stateMutability()) +
 | ||
| 				"\"."
 | ||
| 			);
 | ||
| 		if (function->visibility() != FunctionDefinition::Visibility::Public && function->visibility() != FunctionDefinition::Visibility::Internal)
 | ||
| 			m_errorReporter.typeError(function->location(), "Constructor must be public or internal.");
 | ||
| 	}
 | ||
| 
 | ||
| 	for (FunctionDefinition const* function: _contract.definedFunctions())
 | ||
| 		if (function->isFallback())
 | ||
| 		{
 | ||
| 			if (_contract.isLibrary())
 | ||
| 				m_errorReporter.typeError(function->location(), "Libraries cannot have fallback functions.");
 | ||
| 			if (function->stateMutability() != StateMutability::NonPayable && function->stateMutability() != StateMutability::Payable)
 | ||
| 				m_errorReporter.typeError(
 | ||
| 					function->location(),
 | ||
| 					"Fallback function must be payable or non-payable, but is \"" +
 | ||
| 					stateMutabilityToString(function->stateMutability()) +
 | ||
| 					"\"."
 | ||
| 			);
 | ||
| 			if (!function->parameters().empty())
 | ||
| 				m_errorReporter.typeError(function->parameterList().location(), "Fallback function cannot take parameters.");
 | ||
| 			if (!function->returnParameters().empty())
 | ||
| 				m_errorReporter.typeError(function->returnParameterList()->location(), "Fallback function cannot return values.");
 | ||
| 			if (function->visibility() != FunctionDefinition::Visibility::External)
 | ||
| 				m_errorReporter.typeError(function->location(), "Fallback function must be defined as \"external\".");
 | ||
| 		}
 | ||
| 
 | ||
| 	for (auto const& n: _contract.subNodes())
 | ||
| 		if (!visited.count(n.get()))
 | ||
| 			n->accept(*this);
 | ||
| 
 | ||
| 	checkContractExternalTypeClashes(_contract);
 | ||
| 	// check for hash collisions in function signatures
 | ||
| 	set<FixedHash<4>> hashes;
 | ||
| 	for (auto const& it: _contract.interfaceFunctionList())
 | ||
| 	{
 | ||
| 		FixedHash<4> const& hash = it.first;
 | ||
| 		if (hashes.count(hash))
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_contract.location(),
 | ||
| 				string("Function signature hash collision for ") + it.second->externalSignature()
 | ||
| 			);
 | ||
| 		hashes.insert(hash);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (_contract.isLibrary())
 | ||
| 		checkLibraryRequirements(_contract);
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkContractDuplicateFunctions(ContractDefinition const& _contract)
 | ||
| {
 | ||
| 	/// Checks that two functions with the same name defined in this contract have different
 | ||
| 	/// argument types and that there is at most one constructor.
 | ||
| 	map<string, vector<FunctionDefinition const*>> functions;
 | ||
| 	FunctionDefinition const* constructor = nullptr;
 | ||
| 	FunctionDefinition const* fallback = nullptr;
 | ||
| 	for (FunctionDefinition const* function: _contract.definedFunctions())
 | ||
| 		if (function->isConstructor())
 | ||
| 		{
 | ||
| 			if (constructor)
 | ||
| 				m_errorReporter.declarationError(
 | ||
| 					function->location(),
 | ||
| 					SecondarySourceLocation().append("Another declaration is here:", constructor->location()),
 | ||
| 					"More than one constructor defined."
 | ||
| 				);
 | ||
| 			constructor = function;
 | ||
| 		}
 | ||
| 		else if (function->isFallback())
 | ||
| 		{
 | ||
| 			if (fallback)
 | ||
| 				m_errorReporter.declarationError(
 | ||
| 					function->location(),
 | ||
| 					SecondarySourceLocation().append("Another declaration is here:", fallback->location()),
 | ||
| 					"Only one fallback function is allowed."
 | ||
| 				);
 | ||
| 			fallback = function;
 | ||
| 		}
 | ||
| 		else
 | ||
| 		{
 | ||
| 			solAssert(!function->name().empty(), "");
 | ||
| 			functions[function->name()].push_back(function);
 | ||
| 		}
 | ||
| 
 | ||
| 	findDuplicateDefinitions(functions, "Function with same name and arguments defined twice.");
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkContractDuplicateEvents(ContractDefinition const& _contract)
 | ||
| {
 | ||
| 	/// Checks that two events with the same name defined in this contract have different
 | ||
| 	/// argument types
 | ||
| 	map<string, vector<EventDefinition const*>> events;
 | ||
| 	for (EventDefinition const* event: _contract.events())
 | ||
| 		events[event->name()].push_back(event);
 | ||
| 
 | ||
| 	findDuplicateDefinitions(events, "Event with same name and arguments defined twice.");
 | ||
| }
 | ||
| 
 | ||
| template <class T>
 | ||
| void TypeChecker::findDuplicateDefinitions(map<string, vector<T>> const& _definitions, string _message)
 | ||
| {
 | ||
| 	for (auto const& it: _definitions)
 | ||
| 	{
 | ||
| 		vector<T> const& overloads = it.second;
 | ||
| 		set<size_t> reported;
 | ||
| 		for (size_t i = 0; i < overloads.size() && !reported.count(i); ++i)
 | ||
| 		{
 | ||
| 			SecondarySourceLocation ssl;
 | ||
| 
 | ||
| 			for (size_t j = i + 1; j < overloads.size(); ++j)
 | ||
| 				if (FunctionType(*overloads[i]).hasEqualParameterTypes(FunctionType(*overloads[j])))
 | ||
| 				{
 | ||
| 					ssl.append("Other declaration is here:", overloads[j]->location());
 | ||
| 					reported.insert(j);
 | ||
| 				}
 | ||
| 
 | ||
| 			if (ssl.infos.size() > 0)
 | ||
| 			{
 | ||
| 				ssl.limitSize(_message);
 | ||
| 
 | ||
| 				m_errorReporter.declarationError(
 | ||
| 					overloads[i]->location(),
 | ||
| 					ssl,
 | ||
| 					_message
 | ||
| 				);
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkContractAbstractFunctions(ContractDefinition const& _contract)
 | ||
| {
 | ||
| 	// Mapping from name to function definition (exactly one per argument type equality class) and
 | ||
| 	// flag to indicate whether it is fully implemented.
 | ||
| 	using FunTypeAndFlag = std::pair<FunctionTypePointer, bool>;
 | ||
| 	map<string, vector<FunTypeAndFlag>> functions;
 | ||
| 
 | ||
| 	// Search from base to derived
 | ||
| 	for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.annotation().linearizedBaseContracts))
 | ||
| 		for (FunctionDefinition const* function: contract->definedFunctions())
 | ||
| 		{
 | ||
| 			// Take constructors out of overload hierarchy
 | ||
| 			if (function->isConstructor())
 | ||
| 				continue;
 | ||
| 			auto& overloads = functions[function->name()];
 | ||
| 			FunctionTypePointer funType = make_shared<FunctionType>(*function);
 | ||
| 			auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag)
 | ||
| 			{
 | ||
| 				return funType->hasEqualParameterTypes(*_funAndFlag.first);
 | ||
| 			});
 | ||
| 			if (it == overloads.end())
 | ||
| 				overloads.push_back(make_pair(funType, function->isImplemented()));
 | ||
| 			else if (it->second)
 | ||
| 			{
 | ||
| 				if (!function->isImplemented())
 | ||
| 					m_errorReporter.typeError(function->location(), "Redeclaring an already implemented function as abstract");
 | ||
| 			}
 | ||
| 			else if (function->isImplemented())
 | ||
| 				it->second = true;
 | ||
| 		}
 | ||
| 
 | ||
| 	// Set to not fully implemented if at least one flag is false.
 | ||
| 	for (auto const& it: functions)
 | ||
| 		for (auto const& funAndFlag: it.second)
 | ||
| 			if (!funAndFlag.second)
 | ||
| 			{
 | ||
| 				FunctionDefinition const* function = dynamic_cast<FunctionDefinition const*>(&funAndFlag.first->declaration());
 | ||
| 				solAssert(function, "");
 | ||
| 				_contract.annotation().unimplementedFunctions.push_back(function);
 | ||
| 				break;
 | ||
| 			}
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkContractBaseConstructorArguments(ContractDefinition const& _contract)
 | ||
| {
 | ||
| 	vector<ContractDefinition const*> const& bases = _contract.annotation().linearizedBaseContracts;
 | ||
| 
 | ||
| 	// Determine the arguments that are used for the base constructors.
 | ||
| 	for (ContractDefinition const* contract: bases)
 | ||
| 	{
 | ||
| 		if (FunctionDefinition const* constructor = contract->constructor())
 | ||
| 			for (auto const& modifier: constructor->modifiers())
 | ||
| 				if (auto baseContract = dynamic_cast<ContractDefinition const*>(&dereference(*modifier->name())))
 | ||
| 				{
 | ||
| 					if (modifier->arguments())
 | ||
| 					{
 | ||
| 						if (baseContract->constructor())
 | ||
| 							annotateBaseConstructorArguments(_contract, baseContract->constructor(), modifier.get());
 | ||
| 					}
 | ||
| 					else
 | ||
| 						m_errorReporter.declarationError(
 | ||
| 							modifier->location(),
 | ||
| 							"Modifier-style base constructor call without arguments."
 | ||
| 						);
 | ||
| 				}
 | ||
| 
 | ||
| 		for (ASTPointer<InheritanceSpecifier> const& base: contract->baseContracts())
 | ||
| 		{
 | ||
| 			auto baseContract = dynamic_cast<ContractDefinition const*>(&dereference(base->name()));
 | ||
| 			solAssert(baseContract, "");
 | ||
| 
 | ||
| 			if (baseContract->constructor() && base->arguments() && !base->arguments()->empty())
 | ||
| 				annotateBaseConstructorArguments(_contract, baseContract->constructor(), base.get());
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// check that we get arguments for all base constructors that need it.
 | ||
| 	// If not mark the contract as abstract (not fully implemented)
 | ||
| 	for (ContractDefinition const* contract: bases)
 | ||
| 		if (FunctionDefinition const* constructor = contract->constructor())
 | ||
| 			if (contract != &_contract && !constructor->parameters().empty())
 | ||
| 				if (!_contract.annotation().baseConstructorArguments.count(constructor))
 | ||
| 					_contract.annotation().unimplementedFunctions.push_back(constructor);
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::annotateBaseConstructorArguments(
 | ||
| 	ContractDefinition const& _currentContract,
 | ||
| 	FunctionDefinition const* _baseConstructor,
 | ||
| 	ASTNode const* _argumentNode
 | ||
| )
 | ||
| {
 | ||
| 	solAssert(_baseConstructor, "");
 | ||
| 	solAssert(_argumentNode, "");
 | ||
| 
 | ||
| 	auto insertionResult = _currentContract.annotation().baseConstructorArguments.insert(
 | ||
| 		std::make_pair(_baseConstructor, _argumentNode)
 | ||
| 	);
 | ||
| 	if (!insertionResult.second)
 | ||
| 	{
 | ||
| 		ASTNode const* previousNode = insertionResult.first->second;
 | ||
| 
 | ||
| 		SourceLocation const* mainLocation = nullptr;
 | ||
| 		SecondarySourceLocation ssl;
 | ||
| 
 | ||
| 		if (
 | ||
| 			_currentContract.location().contains(previousNode->location()) ||
 | ||
| 			_currentContract.location().contains(_argumentNode->location())
 | ||
| 		)
 | ||
| 		{
 | ||
| 			mainLocation = &previousNode->location();
 | ||
| 			ssl.append("Second constructor call is here:", _argumentNode->location());
 | ||
| 		}
 | ||
| 		else
 | ||
| 		{
 | ||
| 			mainLocation = &_currentContract.location();
 | ||
| 			ssl.append("First constructor call is here: ", _argumentNode->location());
 | ||
| 			ssl.append("Second constructor call is here: ", previousNode->location());
 | ||
| 		}
 | ||
| 
 | ||
| 		m_errorReporter.declarationError(
 | ||
| 			*mainLocation,
 | ||
| 			ssl,
 | ||
| 			"Base constructor arguments given twice."
 | ||
| 		);
 | ||
| 	}
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkContractIllegalOverrides(ContractDefinition const& _contract)
 | ||
| {
 | ||
| 	// TODO unify this at a later point. for this we need to put the constness and the access specifier
 | ||
| 	// into the types
 | ||
| 	map<string, vector<FunctionDefinition const*>> functions;
 | ||
| 	map<string, ModifierDefinition const*> modifiers;
 | ||
| 
 | ||
| 	// We search from derived to base, so the stored item causes the error.
 | ||
| 	for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
 | ||
| 	{
 | ||
| 		for (FunctionDefinition const* function: contract->definedFunctions())
 | ||
| 		{
 | ||
| 			if (function->isConstructor())
 | ||
| 				continue; // constructors can neither be overridden nor override anything
 | ||
| 			string const& name = function->name();
 | ||
| 			if (modifiers.count(name))
 | ||
| 				m_errorReporter.typeError(modifiers[name]->location(), "Override changes function to modifier.");
 | ||
| 
 | ||
| 			for (FunctionDefinition const* overriding: functions[name])
 | ||
| 				checkFunctionOverride(*overriding, *function);
 | ||
| 
 | ||
| 			functions[name].push_back(function);
 | ||
| 		}
 | ||
| 		for (ModifierDefinition const* modifier: contract->functionModifiers())
 | ||
| 		{
 | ||
| 			string const& name = modifier->name();
 | ||
| 			ModifierDefinition const*& override = modifiers[name];
 | ||
| 			if (!override)
 | ||
| 				override = modifier;
 | ||
| 			else if (ModifierType(*override) != ModifierType(*modifier))
 | ||
| 				m_errorReporter.typeError(override->location(), "Override changes modifier signature.");
 | ||
| 			if (!functions[name].empty())
 | ||
| 				m_errorReporter.typeError(override->location(), "Override changes modifier to function.");
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkFunctionOverride(FunctionDefinition const& function, FunctionDefinition const& super)
 | ||
| {
 | ||
| 	FunctionType functionType(function);
 | ||
| 	FunctionType superType(super);
 | ||
| 
 | ||
| 	if (!functionType.hasEqualParameterTypes(superType))
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (!function.annotation().superFunction)
 | ||
| 		function.annotation().superFunction = &super;
 | ||
| 
 | ||
| 	if (function.visibility() != super.visibility())
 | ||
| 	{
 | ||
| 		// visibility is enforced to be external in interfaces, but a contract can override that with public
 | ||
| 		if (
 | ||
| 			super.inContractKind() == ContractDefinition::ContractKind::Interface &&
 | ||
| 			function.inContractKind() != ContractDefinition::ContractKind::Interface &&
 | ||
| 			function.visibility() == FunctionDefinition::Visibility::Public
 | ||
| 		)
 | ||
| 			return;
 | ||
| 		overrideError(function, super, "Overriding function visibility differs.");
 | ||
| 	}
 | ||
| 
 | ||
| 	else if (function.stateMutability() != super.stateMutability())
 | ||
| 		overrideError(
 | ||
| 			function,
 | ||
| 			super,
 | ||
| 			"Overriding function changes state mutability from \"" +
 | ||
| 			stateMutabilityToString(super.stateMutability()) +
 | ||
| 			"\" to \"" +
 | ||
| 			stateMutabilityToString(function.stateMutability()) +
 | ||
| 			"\"."
 | ||
| 		);
 | ||
| 
 | ||
| 	else if (functionType != superType)
 | ||
| 		overrideError(function, super, "Overriding function return types differ.");
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::overrideError(FunctionDefinition const& function, FunctionDefinition const& super, string message)
 | ||
| {
 | ||
| 	m_errorReporter.typeError(
 | ||
| 		function.location(),
 | ||
| 		SecondarySourceLocation().append("Overridden function is here:", super.location()),
 | ||
| 		message
 | ||
| 	);
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkContractExternalTypeClashes(ContractDefinition const& _contract)
 | ||
| {
 | ||
| 	map<string, vector<pair<Declaration const*, FunctionTypePointer>>> externalDeclarations;
 | ||
| 	for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
 | ||
| 	{
 | ||
| 		for (FunctionDefinition const* f: contract->definedFunctions())
 | ||
| 			if (f->isPartOfExternalInterface())
 | ||
| 			{
 | ||
| 				auto functionType = make_shared<FunctionType>(*f);
 | ||
| 				// under non error circumstances this should be true
 | ||
| 				if (functionType->interfaceFunctionType())
 | ||
| 					externalDeclarations[functionType->externalSignature()].push_back(
 | ||
| 						make_pair(f, functionType)
 | ||
| 					);
 | ||
| 			}
 | ||
| 		for (VariableDeclaration const* v: contract->stateVariables())
 | ||
| 			if (v->isPartOfExternalInterface())
 | ||
| 			{
 | ||
| 				auto functionType = make_shared<FunctionType>(*v);
 | ||
| 				// under non error circumstances this should be true
 | ||
| 				if (functionType->interfaceFunctionType())
 | ||
| 					externalDeclarations[functionType->externalSignature()].push_back(
 | ||
| 						make_pair(v, functionType)
 | ||
| 					);
 | ||
| 			}
 | ||
| 	}
 | ||
| 	for (auto const& it: externalDeclarations)
 | ||
| 		for (size_t i = 0; i < it.second.size(); ++i)
 | ||
| 			for (size_t j = i + 1; j < it.second.size(); ++j)
 | ||
| 				if (!it.second[i].second->hasEqualParameterTypes(*it.second[j].second))
 | ||
| 					m_errorReporter.typeError(
 | ||
| 						it.second[j].first->location(),
 | ||
| 						"Function overload clash during conversion to external types for arguments."
 | ||
| 					);
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkLibraryRequirements(ContractDefinition const& _contract)
 | ||
| {
 | ||
| 	solAssert(_contract.isLibrary(), "");
 | ||
| 	if (!_contract.baseContracts().empty())
 | ||
| 		m_errorReporter.typeError(_contract.location(), "Library is not allowed to inherit.");
 | ||
| 
 | ||
| 	for (auto const& var: _contract.stateVariables())
 | ||
| 		if (!var->isConstant())
 | ||
| 			m_errorReporter.typeError(var->location(), "Library cannot have non-constant state variables");
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkDoubleStorageAssignment(Assignment const& _assignment)
 | ||
| {
 | ||
| 	TupleType const& lhs = dynamic_cast<TupleType const&>(*type(_assignment.leftHandSide()));
 | ||
| 	TupleType const& rhs = dynamic_cast<TupleType const&>(*type(_assignment.rightHandSide()));
 | ||
| 
 | ||
| 	if (lhs.components().size() != rhs.components().size())
 | ||
| 	{
 | ||
| 		solAssert(m_errorReporter.hasErrors(), "");
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	size_t storageToStorageCopies = 0;
 | ||
| 	size_t toStorageCopies = 0;
 | ||
| 	for (size_t i = 0; i < lhs.components().size(); ++i)
 | ||
| 	{
 | ||
| 		ReferenceType const* ref = dynamic_cast<ReferenceType const*>(lhs.components()[i].get());
 | ||
| 		if (!ref || !ref->dataStoredIn(DataLocation::Storage) || ref->isPointer())
 | ||
| 			continue;
 | ||
| 		toStorageCopies++;
 | ||
| 		if (rhs.components()[i]->dataStoredIn(DataLocation::Storage))
 | ||
| 			storageToStorageCopies++;
 | ||
| 	}
 | ||
| 	if (storageToStorageCopies >= 1 && toStorageCopies >= 2)
 | ||
| 		m_errorReporter.warning(
 | ||
| 			_assignment.location(),
 | ||
| 			"This assignment performs two copies to storage. Since storage copies do not first "
 | ||
| 			"copy to a temporary location, one of them might be overwritten before the second "
 | ||
| 			"is executed and thus may have unexpected effects. It is safer to perform the copies "
 | ||
| 			"separately or assign to storage pointers first."
 | ||
| 		);
 | ||
| }
 | ||
| 
 | ||
| TypePointer TypeChecker::typeCheckABIDecodeAndRetrieveReturnType(FunctionCall const& _functionCall, bool _abiEncoderV2)
 | ||
| {
 | ||
| 	vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
 | ||
| 	if (arguments.size() != 2)
 | ||
| 		m_errorReporter.typeError(
 | ||
| 			_functionCall.location(),
 | ||
| 			"This function takes two arguments, but " +
 | ||
| 			toString(arguments.size()) +
 | ||
| 			" were provided."
 | ||
| 		);
 | ||
| 	if (arguments.size() >= 1 && !type(*arguments.front())->isImplicitlyConvertibleTo(ArrayType(DataLocation::Memory)))
 | ||
| 		m_errorReporter.typeError(
 | ||
| 			arguments.front()->location(),
 | ||
| 			"Invalid type for argument in function call. "
 | ||
| 			"Invalid implicit conversion from " +
 | ||
| 			type(*arguments.front())->toString() +
 | ||
| 			" to bytes memory requested."
 | ||
| 		);
 | ||
| 
 | ||
| 	TypePointer returnType = make_shared<TupleType>();
 | ||
| 
 | ||
| 	if (arguments.size() < 2)
 | ||
| 		return returnType;
 | ||
| 
 | ||
| 	// The following is a rather syntactic restriction, but we check it here anyway:
 | ||
| 	// The second argument has to be a tuple expression containing type names.
 | ||
| 	TupleExpression const* tupleExpression = dynamic_cast<TupleExpression const*>(arguments[1].get());
 | ||
| 	if (!tupleExpression)
 | ||
| 	{
 | ||
| 		m_errorReporter.typeError(
 | ||
| 			arguments[1]->location(),
 | ||
| 			"The second argument to \"abi.decode\" has to be a tuple of types."
 | ||
| 		);
 | ||
| 		return returnType;
 | ||
| 	}
 | ||
| 
 | ||
| 	vector<TypePointer> components;
 | ||
| 	for (auto const& typeArgument: tupleExpression->components())
 | ||
| 	{
 | ||
| 		solAssert(typeArgument, "");
 | ||
| 		if (TypeType const* argTypeType = dynamic_cast<TypeType const*>(type(*typeArgument).get()))
 | ||
| 		{
 | ||
| 			TypePointer actualType = argTypeType->actualType();
 | ||
| 			solAssert(actualType, "");
 | ||
| 			// We force memory because the parser currently cannot handle
 | ||
| 			// data locations. Furthermore, storage can be a little dangerous and
 | ||
| 			// calldata is not really implemented anyway.
 | ||
| 			actualType = ReferenceType::copyForLocationIfReference(DataLocation::Memory, actualType);
 | ||
| 			solAssert(
 | ||
| 				!actualType->dataStoredIn(DataLocation::CallData) &&
 | ||
| 				!actualType->dataStoredIn(DataLocation::Storage),
 | ||
| 				""
 | ||
| 			);
 | ||
| 			if (!actualType->fullEncodingType(false, _abiEncoderV2, false))
 | ||
| 				m_errorReporter.typeError(
 | ||
| 					typeArgument->location(),
 | ||
| 					"Decoding type " + actualType->toString(false)  + " not supported."
 | ||
| 				);
 | ||
| 			components.push_back(actualType);
 | ||
| 		}
 | ||
| 		else
 | ||
| 		{
 | ||
| 			m_errorReporter.typeError(typeArgument->location(), "Argument has to be a type name.");
 | ||
| 			components.push_back(make_shared<TupleType>());
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return make_shared<TupleType>(components);
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance)
 | ||
| {
 | ||
| 	auto base = dynamic_cast<ContractDefinition const*>(&dereference(_inheritance.name()));
 | ||
| 	solAssert(base, "Base contract not available.");
 | ||
| 
 | ||
| 	if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
 | ||
| 		m_errorReporter.typeError(_inheritance.location(), "Interfaces cannot inherit.");
 | ||
| 
 | ||
| 	if (base->isLibrary())
 | ||
| 		m_errorReporter.typeError(_inheritance.location(), "Libraries cannot be inherited from.");
 | ||
| 
 | ||
| 	auto const& arguments = _inheritance.arguments();
 | ||
| 	TypePointers parameterTypes;
 | ||
| 	if (base->contractKind() != ContractDefinition::ContractKind::Interface)
 | ||
| 		// Interfaces do not have constructors, so there are zero parameters.
 | ||
| 		parameterTypes = ContractType(*base).newExpressionType()->parameterTypes();
 | ||
| 
 | ||
| 	if (arguments)
 | ||
| 	{
 | ||
| 		if (parameterTypes.size() != arguments->size())
 | ||
| 		{
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_inheritance.location(),
 | ||
| 				"Wrong argument count for constructor call: " +
 | ||
| 				toString(arguments->size()) +
 | ||
| 				" arguments given but expected " +
 | ||
| 				toString(parameterTypes.size()) +
 | ||
| 				". Remove parentheses if you do not want to provide arguments here."
 | ||
| 			);
 | ||
| 		}
 | ||
| 		for (size_t i = 0; i < std::min(arguments->size(), parameterTypes.size()); ++i)
 | ||
| 			if (!type(*(*arguments)[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
 | ||
| 				m_errorReporter.typeError(
 | ||
| 					(*arguments)[i]->location(),
 | ||
| 					"Invalid type for argument in constructor call. "
 | ||
| 					"Invalid implicit conversion from " +
 | ||
| 					type(*(*arguments)[i])->toString() +
 | ||
| 					" to " +
 | ||
| 					parameterTypes[i]->toString() +
 | ||
| 					" requested."
 | ||
| 				);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(UsingForDirective const& _usingFor)
 | ||
| {
 | ||
| 	ContractDefinition const* library = dynamic_cast<ContractDefinition const*>(
 | ||
| 		_usingFor.libraryName().annotation().referencedDeclaration
 | ||
| 	);
 | ||
| 	if (!library || !library->isLibrary())
 | ||
| 		m_errorReporter.fatalTypeError(_usingFor.libraryName().location(), "Library name expected.");
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(StructDefinition const& _struct)
 | ||
| {
 | ||
| 	for (ASTPointer<VariableDeclaration> const& member: _struct.members())
 | ||
| 		if (!type(*member)->canBeStored())
 | ||
| 			m_errorReporter.typeError(member->location(), "Type cannot be used in struct.");
 | ||
| 
 | ||
| 	// Check recursion, fatal error if detected.
 | ||
| 	auto visitor = [&](StructDefinition const& _struct, CycleDetector<StructDefinition>& _cycleDetector, size_t _depth)
 | ||
| 	{
 | ||
| 		if (_depth >= 256)
 | ||
| 			m_errorReporter.fatalDeclarationError(_struct.location(), "Struct definition exhausting cyclic dependency validator.");
 | ||
| 
 | ||
| 		for (ASTPointer<VariableDeclaration> const& member: _struct.members())
 | ||
| 		{
 | ||
| 			Type const* memberType = type(*member).get();
 | ||
| 			while (auto arrayType = dynamic_cast<ArrayType const*>(memberType))
 | ||
| 			{
 | ||
| 				if (arrayType->isDynamicallySized())
 | ||
| 					break;
 | ||
| 				memberType = arrayType->baseType().get();
 | ||
| 			}
 | ||
| 			if (auto structType = dynamic_cast<StructType const*>(memberType))
 | ||
| 				if (_cycleDetector.run(structType->structDefinition()))
 | ||
| 					return;
 | ||
| 		}
 | ||
| 	};
 | ||
| 	if (CycleDetector<StructDefinition>(visitor).run(_struct) != nullptr)
 | ||
| 		m_errorReporter.fatalTypeError(_struct.location(), "Recursive struct definition.");
 | ||
| 
 | ||
| 	bool insideStruct = true;
 | ||
| 	swap(insideStruct, m_insideStruct);
 | ||
| 	ASTNode::listAccept(_struct.members(), *this);
 | ||
| 	m_insideStruct = insideStruct;
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(FunctionDefinition const& _function)
 | ||
| {
 | ||
| 	bool isLibraryFunction =
 | ||
| 		dynamic_cast<ContractDefinition const*>(_function.scope()) &&
 | ||
| 		dynamic_cast<ContractDefinition const*>(_function.scope())->isLibrary();
 | ||
| 	if (_function.isPayable())
 | ||
| 	{
 | ||
| 		if (isLibraryFunction)
 | ||
| 			m_errorReporter.typeError(_function.location(), "Library functions cannot be payable.");
 | ||
| 		if (!_function.isConstructor() && !_function.isFallback() && !_function.isPartOfExternalInterface())
 | ||
| 			m_errorReporter.typeError(_function.location(), "Internal functions cannot be payable.");
 | ||
| 	}
 | ||
| 	for (ASTPointer<VariableDeclaration> const& var: _function.parameters() + _function.returnParameters())
 | ||
| 	{
 | ||
| 		if (
 | ||
| 			type(*var)->category() == Type::Category::Mapping &&
 | ||
| 			!type(*var)->dataStoredIn(DataLocation::Storage)
 | ||
| 		)
 | ||
| 			m_errorReporter.typeError(var->location(), "Mapping types can only have a data location of \"storage\".");
 | ||
| 		else if (
 | ||
| 			!type(*var)->canLiveOutsideStorage() &&
 | ||
| 			_function.visibility() > FunctionDefinition::Visibility::Internal
 | ||
| 		)
 | ||
| 			m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
 | ||
| 		if (_function.visibility() >= FunctionDefinition::Visibility::Public && !(type(*var)->interfaceType(isLibraryFunction)))
 | ||
| 			m_errorReporter.fatalTypeError(var->location(), "Internal or recursive type is not allowed for public or external functions.");
 | ||
| 		if (
 | ||
| 			_function.visibility() > FunctionDefinition::Visibility::Internal &&
 | ||
| 			!_function.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
 | ||
| 			!typeSupportedByOldABIEncoder(*type(*var))
 | ||
| 		)
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				var->location(),
 | ||
| 				"This type is only supported in the new experimental ABI encoder. "
 | ||
| 				"Use \"pragma experimental ABIEncoderV2;\" to enable the feature."
 | ||
| 			);
 | ||
| 
 | ||
| 		var->accept(*this);
 | ||
| 	}
 | ||
| 	set<Declaration const*> modifiers;
 | ||
| 	for (ASTPointer<ModifierInvocation> const& modifier: _function.modifiers())
 | ||
| 	{
 | ||
| 		visitManually(
 | ||
| 			*modifier,
 | ||
| 			_function.isConstructor() ?
 | ||
| 			dynamic_cast<ContractDefinition const&>(*_function.scope()).annotation().linearizedBaseContracts :
 | ||
| 			vector<ContractDefinition const*>()
 | ||
| 		);
 | ||
| 		Declaration const* decl = &dereference(*modifier->name());
 | ||
| 		if (modifiers.count(decl))
 | ||
| 		{
 | ||
| 			if (dynamic_cast<ContractDefinition const*>(decl))
 | ||
| 				m_errorReporter.declarationError(modifier->location(), "Base constructor already provided.");
 | ||
| 		}
 | ||
| 		else
 | ||
| 			modifiers.insert(decl);
 | ||
| 	}
 | ||
| 	if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
 | ||
| 	{
 | ||
| 		if (_function.isImplemented())
 | ||
| 			m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot have an implementation.");
 | ||
| 
 | ||
| 		if (_function.visibility() != FunctionDefinition::Visibility::External)
 | ||
| 			m_errorReporter.typeError(_function.location(), "Functions in interfaces must be declared external.");
 | ||
| 
 | ||
| 		if (_function.isConstructor())
 | ||
| 			m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in interfaces.");
 | ||
| 	}
 | ||
| 	else if (m_scope->contractKind() == ContractDefinition::ContractKind::Library)
 | ||
| 		if (_function.isConstructor())
 | ||
| 			m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in libraries.");
 | ||
| 	if (_function.isImplemented())
 | ||
| 		_function.body().accept(*this);
 | ||
| 	else if (_function.isConstructor())
 | ||
| 		m_errorReporter.typeError(_function.location(), "Constructor must be implemented if declared.");
 | ||
| 	else if (isLibraryFunction && _function.visibility() <= FunctionDefinition::Visibility::Internal)
 | ||
| 		m_errorReporter.typeError(_function.location(), "Internal library function must be implemented if declared.");
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(VariableDeclaration const& _variable)
 | ||
| {
 | ||
| 	// Forbid any variable declarations inside interfaces unless they are part of
 | ||
| 	// * a function's input/output parameters,
 | ||
| 	// * or inside of a struct definition.
 | ||
| 	if (
 | ||
| 		m_scope->contractKind() == ContractDefinition::ContractKind::Interface
 | ||
| 		&& !_variable.isCallableParameter()
 | ||
| 		&& !m_insideStruct
 | ||
| 	)
 | ||
| 		m_errorReporter.typeError(_variable.location(), "Variables cannot be declared in interfaces.");
 | ||
| 
 | ||
| 	// Variables can be declared without type (with "var"), in which case the first assignment
 | ||
| 	// sets the type.
 | ||
| 	// Note that assignments before the first declaration are legal because of the special scoping
 | ||
| 	// rules inherited from JavaScript.
 | ||
| 
 | ||
| 	// type is filled either by ReferencesResolver directly from the type name or by
 | ||
| 	// TypeChecker at the VariableDeclarationStatement level.
 | ||
| 	TypePointer varType = _variable.annotation().type;
 | ||
| 	solAssert(!!varType, "Failed to infer variable type.");
 | ||
| 
 | ||
| 	if (_variable.value())
 | ||
| 		expectType(*_variable.value(), *varType);
 | ||
| 	if (_variable.isConstant())
 | ||
| 	{
 | ||
| 		if (!_variable.type()->isValueType())
 | ||
| 		{
 | ||
| 			bool allowed = false;
 | ||
| 			if (auto arrayType = dynamic_cast<ArrayType const*>(_variable.type().get()))
 | ||
| 				allowed = arrayType->isByteArray();
 | ||
| 			if (!allowed)
 | ||
| 				m_errorReporter.typeError(_variable.location(), "Constants of non-value type not yet implemented.");
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!_variable.value())
 | ||
| 			m_errorReporter.typeError(_variable.location(), "Uninitialized \"constant\" variable.");
 | ||
| 		else if (!_variable.value()->annotation().isPure)
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_variable.value()->location(),
 | ||
| 				"Initial value for constant variable has to be compile-time constant."
 | ||
| 			);
 | ||
| 	}
 | ||
| 	if (!_variable.isStateVariable())
 | ||
| 	{
 | ||
| 		if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData))
 | ||
| 			if (!varType->canLiveOutsideStorage())
 | ||
| 				m_errorReporter.typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage.");
 | ||
| 	}
 | ||
| 	else if (
 | ||
| 		_variable.visibility() >= VariableDeclaration::Visibility::Public &&
 | ||
| 		!FunctionType(_variable).interfaceFunctionType()
 | ||
| 	)
 | ||
| 		m_errorReporter.typeError(_variable.location(), "Internal or recursive type is not allowed for public state variables.");
 | ||
| 
 | ||
| 	switch (varType->category())
 | ||
| 	{
 | ||
| 	case Type::Category::Array:
 | ||
| 		if (auto arrayType = dynamic_cast<ArrayType const*>(varType.get()))
 | ||
| 			if (
 | ||
| 				((arrayType->location() == DataLocation::Memory) ||
 | ||
| 				(arrayType->location() == DataLocation::CallData)) &&
 | ||
| 				!arrayType->validForCalldata()
 | ||
| 			)
 | ||
| 				m_errorReporter.typeError(_variable.location(), "Array is too large to be encoded.");
 | ||
| 		break;
 | ||
| 	case Type::Category::Mapping:
 | ||
| 		if (auto mappingType = dynamic_cast<MappingType const*>(varType.get()))
 | ||
| 			if (
 | ||
| 				mappingType->keyType()->isDynamicallySized() &&
 | ||
| 				_variable.visibility() == Declaration::Visibility::Public
 | ||
| 			)
 | ||
| 				m_errorReporter.typeError(_variable.location(), "Dynamically-sized keys for public mappings are not supported.");
 | ||
| 		break;
 | ||
| 	default:
 | ||
| 		break;
 | ||
| 	}
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::visitManually(
 | ||
| 	ModifierInvocation const& _modifier,
 | ||
| 	vector<ContractDefinition const*> const& _bases
 | ||
| )
 | ||
| {
 | ||
| 	std::vector<ASTPointer<Expression>> const& arguments =
 | ||
| 		_modifier.arguments() ? *_modifier.arguments() : std::vector<ASTPointer<Expression>>();
 | ||
| 	for (ASTPointer<Expression> const& argument: arguments)
 | ||
| 		argument->accept(*this);
 | ||
| 	_modifier.name()->accept(*this);
 | ||
| 
 | ||
| 	auto const* declaration = &dereference(*_modifier.name());
 | ||
| 	vector<ASTPointer<VariableDeclaration>> emptyParameterList;
 | ||
| 	vector<ASTPointer<VariableDeclaration>> const* parameters = nullptr;
 | ||
| 	if (auto modifierDecl = dynamic_cast<ModifierDefinition const*>(declaration))
 | ||
| 		parameters = &modifierDecl->parameters();
 | ||
| 	else
 | ||
| 		// check parameters for Base constructors
 | ||
| 		for (ContractDefinition const* base: _bases)
 | ||
| 			if (declaration == base)
 | ||
| 			{
 | ||
| 				if (auto referencedConstructor = base->constructor())
 | ||
| 					parameters = &referencedConstructor->parameters();
 | ||
| 				else
 | ||
| 					parameters = &emptyParameterList;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 	if (!parameters)
 | ||
| 	{
 | ||
| 		m_errorReporter.typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class.");
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	if (parameters->size() != arguments.size())
 | ||
| 	{
 | ||
| 		m_errorReporter.typeError(
 | ||
| 			_modifier.location(),
 | ||
| 			"Wrong argument count for modifier invocation: " +
 | ||
| 			toString(arguments.size()) +
 | ||
| 			" arguments given but expected " +
 | ||
| 			toString(parameters->size()) +
 | ||
| 			"."
 | ||
| 		);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	for (size_t i = 0; i < arguments.size(); ++i)
 | ||
| 		if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i])))
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				arguments[i]->location(),
 | ||
| 				"Invalid type for argument in modifier invocation. "
 | ||
| 				"Invalid implicit conversion from " +
 | ||
| 				type(*arguments[i])->toString() +
 | ||
| 				" to " +
 | ||
| 				type(*(*parameters)[i])->toString() +
 | ||
| 				" requested."
 | ||
| 			);
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(EventDefinition const& _eventDef)
 | ||
| {
 | ||
| 	solAssert(_eventDef.visibility() > Declaration::Visibility::Internal, "");
 | ||
| 	unsigned numIndexed = 0;
 | ||
| 	for (ASTPointer<VariableDeclaration> const& var: _eventDef.parameters())
 | ||
| 	{
 | ||
| 		if (var->isIndexed())
 | ||
| 		{
 | ||
| 			numIndexed++;
 | ||
| 			if (
 | ||
| 				_eventDef.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
 | ||
| 				dynamic_cast<ReferenceType const*>(type(*var).get())
 | ||
| 			)
 | ||
| 				m_errorReporter.typeError(
 | ||
| 					var->location(),
 | ||
| 					"Indexed reference types cannot yet be used with ABIEncoderV2."
 | ||
| 				);
 | ||
| 		}
 | ||
| 		if (!type(*var)->canLiveOutsideStorage())
 | ||
| 			m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
 | ||
| 		if (!type(*var)->interfaceType(false))
 | ||
| 			m_errorReporter.typeError(var->location(), "Internal or recursive type is not allowed as event parameter type.");
 | ||
| 		if (
 | ||
| 			!_eventDef.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
 | ||
| 			!typeSupportedByOldABIEncoder(*type(*var))
 | ||
| 		)
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				var->location(),
 | ||
| 				"This type is only supported in the new experimental ABI encoder. "
 | ||
| 				"Use \"pragma experimental ABIEncoderV2;\" to enable the feature."
 | ||
| 			);
 | ||
| 	}
 | ||
| 	if (_eventDef.isAnonymous() && numIndexed > 4)
 | ||
| 		m_errorReporter.typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event.");
 | ||
| 	else if (!_eventDef.isAnonymous() && numIndexed > 3)
 | ||
| 		m_errorReporter.typeError(_eventDef.location(), "More than 3 indexed arguments for event.");
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(FunctionTypeName const& _funType)
 | ||
| {
 | ||
| 	FunctionType const& fun = dynamic_cast<FunctionType const&>(*_funType.annotation().type);
 | ||
| 	if (fun.kind() == FunctionType::Kind::External)
 | ||
| 		if (!fun.canBeUsedExternally(false))
 | ||
| 			m_errorReporter.typeError(_funType.location(), "External function type uses internal types.");
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(InlineAssembly const& _inlineAssembly)
 | ||
| {
 | ||
| 	// External references have already been resolved in a prior stage and stored in the annotation.
 | ||
| 	// We run the resolve step again regardless.
 | ||
| 	julia::ExternalIdentifierAccess::Resolver identifierAccess = [&](
 | ||
| 		assembly::Identifier const& _identifier,
 | ||
| 		julia::IdentifierContext _context,
 | ||
| 		bool
 | ||
| 	)
 | ||
| 	{
 | ||
| 		auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier);
 | ||
| 		if (ref == _inlineAssembly.annotation().externalReferences.end())
 | ||
| 			return size_t(-1);
 | ||
| 		Declaration const* declaration = ref->second.declaration;
 | ||
| 		solAssert(!!declaration, "");
 | ||
| 		bool requiresStorage = ref->second.isSlot || ref->second.isOffset;
 | ||
| 		if (auto var = dynamic_cast<VariableDeclaration const*>(declaration))
 | ||
| 		{
 | ||
| 			if (var->isConstant())
 | ||
| 			{
 | ||
| 				m_errorReporter.typeError(_identifier.location, "Constant variables not supported by inline assembly.");
 | ||
| 				return size_t(-1);
 | ||
| 			}
 | ||
| 			else if (requiresStorage)
 | ||
| 			{
 | ||
| 				if (!var->isStateVariable() && !var->type()->dataStoredIn(DataLocation::Storage))
 | ||
| 				{
 | ||
| 					m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
 | ||
| 					return size_t(-1);
 | ||
| 				}
 | ||
| 				else if (_context != julia::IdentifierContext::RValue)
 | ||
| 				{
 | ||
| 					m_errorReporter.typeError(_identifier.location, "Storage variables cannot be assigned to.");
 | ||
| 					return size_t(-1);
 | ||
| 				}
 | ||
| 			}
 | ||
| 			else if (!var->isLocalVariable())
 | ||
| 			{
 | ||
| 				m_errorReporter.typeError(_identifier.location, "Only local variables are supported. To access storage variables, use the _slot and _offset suffixes.");
 | ||
| 				return size_t(-1);
 | ||
| 			}
 | ||
| 			else if (var->type()->dataStoredIn(DataLocation::Storage))
 | ||
| 			{
 | ||
| 				m_errorReporter.typeError(_identifier.location, "You have to use the _slot or _offset suffix to access storage reference variables.");
 | ||
| 				return size_t(-1);
 | ||
| 			}
 | ||
| 			else if (var->type()->sizeOnStack() != 1)
 | ||
| 			{
 | ||
| 				if (var->type()->dataStoredIn(DataLocation::CallData))
 | ||
| 					m_errorReporter.typeError(_identifier.location, "Call data elements cannot be accessed directly. Copy to a local variable first or use \"calldataload\" or \"calldatacopy\" with manually determined offsets and sizes.");
 | ||
| 				else
 | ||
| 					m_errorReporter.typeError(_identifier.location, "Only types that use one stack slot are supported.");
 | ||
| 				return size_t(-1);
 | ||
| 			}
 | ||
| 		}
 | ||
| 		else if (requiresStorage)
 | ||
| 		{
 | ||
| 			m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
 | ||
| 			return size_t(-1);
 | ||
| 		}
 | ||
| 		else if (_context == julia::IdentifierContext::LValue)
 | ||
| 		{
 | ||
| 			m_errorReporter.typeError(_identifier.location, "Only local variables can be assigned to in inline assembly.");
 | ||
| 			return size_t(-1);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (_context == julia::IdentifierContext::RValue)
 | ||
| 		{
 | ||
| 			solAssert(!!declaration->type(), "Type of declaration required but not yet determined.");
 | ||
| 			if (dynamic_cast<FunctionDefinition const*>(declaration))
 | ||
| 			{
 | ||
| 			}
 | ||
| 			else if (dynamic_cast<VariableDeclaration const*>(declaration))
 | ||
| 			{
 | ||
| 			}
 | ||
| 			else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
 | ||
| 			{
 | ||
| 				if (!contract->isLibrary())
 | ||
| 				{
 | ||
| 					m_errorReporter.typeError(_identifier.location, "Expected a library.");
 | ||
| 					return size_t(-1);
 | ||
| 				}
 | ||
| 			}
 | ||
| 			else
 | ||
| 				return size_t(-1);
 | ||
| 		}
 | ||
| 		ref->second.valueSize = 1;
 | ||
| 		return size_t(1);
 | ||
| 	};
 | ||
| 	solAssert(!_inlineAssembly.annotation().analysisInfo, "");
 | ||
| 	_inlineAssembly.annotation().analysisInfo = make_shared<assembly::AsmAnalysisInfo>();
 | ||
| 	assembly::AsmAnalyzer analyzer(
 | ||
| 		*_inlineAssembly.annotation().analysisInfo,
 | ||
| 		m_errorReporter,
 | ||
| 		m_evmVersion,
 | ||
| 		Error::Type::SyntaxError,
 | ||
| 		assembly::AsmFlavour::Loose,
 | ||
| 		identifierAccess
 | ||
| 	);
 | ||
| 	if (!analyzer.analyze(_inlineAssembly.operations()))
 | ||
| 		return false;
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(IfStatement const& _ifStatement)
 | ||
| {
 | ||
| 	expectType(_ifStatement.condition(), BoolType());
 | ||
| 	_ifStatement.trueStatement().accept(*this);
 | ||
| 	if (_ifStatement.falseStatement())
 | ||
| 		_ifStatement.falseStatement()->accept(*this);
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(WhileStatement const& _whileStatement)
 | ||
| {
 | ||
| 	expectType(_whileStatement.condition(), BoolType());
 | ||
| 	_whileStatement.body().accept(*this);
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(ForStatement const& _forStatement)
 | ||
| {
 | ||
| 	if (_forStatement.initializationExpression())
 | ||
| 		_forStatement.initializationExpression()->accept(*this);
 | ||
| 	if (_forStatement.condition())
 | ||
| 		expectType(*_forStatement.condition(), BoolType());
 | ||
| 	if (_forStatement.loopExpression())
 | ||
| 		_forStatement.loopExpression()->accept(*this);
 | ||
| 	_forStatement.body().accept(*this);
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(Return const& _return)
 | ||
| {
 | ||
| 	ParameterList const* params = _return.annotation().functionReturnParameters;
 | ||
| 	if (!_return.expression())
 | ||
| 	{
 | ||
| 		if (params && !params->parameters().empty())
 | ||
| 			m_errorReporter.typeError(_return.location(), "Return arguments required.");
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	if (!params)
 | ||
| 	{
 | ||
| 		m_errorReporter.typeError(_return.location(), "Return arguments not allowed.");
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	TypePointers returnTypes;
 | ||
| 	for (auto const& var: params->parameters())
 | ||
| 		returnTypes.push_back(type(*var));
 | ||
| 	if (auto tupleType = dynamic_cast<TupleType const*>(type(*_return.expression()).get()))
 | ||
| 	{
 | ||
| 		if (tupleType->components().size() != params->parameters().size())
 | ||
| 			m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
 | ||
| 		else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes)))
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_return.expression()->location(),
 | ||
| 				"Return argument type " +
 | ||
| 				type(*_return.expression())->toString() +
 | ||
| 				" is not implicitly convertible to expected type " +
 | ||
| 				TupleType(returnTypes).toString(false) +
 | ||
| 				"."
 | ||
| 			);
 | ||
| 	}
 | ||
| 	else if (params->parameters().size() != 1)
 | ||
| 		m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
 | ||
| 	else
 | ||
| 	{
 | ||
| 		TypePointer const& expected = type(*params->parameters().front());
 | ||
| 		if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected))
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_return.expression()->location(),
 | ||
| 				"Return argument type " +
 | ||
| 				type(*_return.expression())->toString() +
 | ||
| 				" is not implicitly convertible to expected type (type of first return variable) " +
 | ||
| 				expected->toString() +
 | ||
| 				"."
 | ||
| 			);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(EmitStatement const& _emit)
 | ||
| {
 | ||
| 	if (
 | ||
| 		_emit.eventCall().annotation().kind != FunctionCallKind::FunctionCall ||
 | ||
| 		type(_emit.eventCall().expression())->category() != Type::Category::Function ||
 | ||
| 		dynamic_cast<FunctionType const&>(*type(_emit.eventCall().expression())).kind() != FunctionType::Kind::Event
 | ||
| 	)
 | ||
| 		m_errorReporter.typeError(_emit.eventCall().expression().location(), "Expression has to be an event invocation.");
 | ||
| 	m_insideEmitStatement = false;
 | ||
| }
 | ||
| 
 | ||
| namespace
 | ||
| {
 | ||
| /**
 | ||
|  * @returns a suggested left-hand-side of a multi-variable declaration contairing
 | ||
|  * the variable declarations given in @a _decls.
 | ||
|  */
 | ||
| string createTupleDecl(vector<ASTPointer<VariableDeclaration>> const& _decls)
 | ||
| {
 | ||
| 	vector<string> components;
 | ||
| 	for (ASTPointer<VariableDeclaration> const& decl: _decls)
 | ||
| 		if (decl)
 | ||
| 		{
 | ||
| 			solAssert(decl->annotation().type, "");
 | ||
| 			components.emplace_back(decl->annotation().type->toString(false) + " " + decl->name());
 | ||
| 		}
 | ||
| 		else
 | ||
| 			components.emplace_back();
 | ||
| 
 | ||
| 	if (_decls.size() == 1)
 | ||
| 		return components.front();
 | ||
| 	else
 | ||
| 		return "(" + boost::algorithm::join(components, ", ") + ")";
 | ||
| }
 | ||
| 
 | ||
| bool typeCanBeExpressed(vector<ASTPointer<VariableDeclaration>> const& decls)
 | ||
| {
 | ||
| 	for (ASTPointer<VariableDeclaration> const& decl: decls)
 | ||
| 	{
 | ||
| 		// skip empty tuples (they can be expressed of course)
 | ||
| 		if (!decl)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (!decl->annotation().type)
 | ||
| 			return false;
 | ||
| 
 | ||
| 		if (auto functionType = dynamic_cast<FunctionType const*>(decl->annotation().type.get()))
 | ||
| 			if (
 | ||
| 				functionType->kind() != FunctionType::Kind::Internal &&
 | ||
| 				functionType->kind() != FunctionType::Kind::External
 | ||
| 			)
 | ||
| 				return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(VariableDeclarationStatement const& _statement)
 | ||
| {
 | ||
| 	if (!_statement.initialValue())
 | ||
| 	{
 | ||
| 		// No initial value is only permitted for single variables with specified type.
 | ||
| 		if (_statement.declarations().size() != 1 || !_statement.declarations().front())
 | ||
| 		{
 | ||
| 			if (boost::algorithm::all_of_equal(_statement.declarations(), nullptr))
 | ||
| 			{
 | ||
| 				// The syntax checker has already generated an error for this case (empty LHS tuple).
 | ||
| 				solAssert(m_errorReporter.hasErrors(), "");
 | ||
| 
 | ||
| 				// It is okay to return here, as there are no named components on the
 | ||
| 				// left-hand-side that could cause any damage later.
 | ||
| 				return false;
 | ||
| 			}
 | ||
| 			else
 | ||
| 				// Bailing out *fatal* here, as those (untyped) vars may be used later, and diagnostics wouldn't be helpful then.
 | ||
| 				m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");
 | ||
| 		}
 | ||
| 
 | ||
| 		VariableDeclaration const& varDecl = *_statement.declarations().front();
 | ||
| 		if (!varDecl.annotation().type)
 | ||
| 			m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");
 | ||
| 
 | ||
| 		if (auto ref = dynamic_cast<ReferenceType const*>(type(varDecl).get()))
 | ||
| 		{
 | ||
| 			if (ref->dataStoredIn(DataLocation::Storage))
 | ||
| 			{
 | ||
| 				string errorText{"Uninitialized storage pointer."};
 | ||
| 				if (varDecl.referenceLocation() == VariableDeclaration::Location::Unspecified)
 | ||
| 					errorText += " Did you mean '<type> memory " + varDecl.name() + "'?";
 | ||
| 				solAssert(m_scope, "");
 | ||
| 				m_errorReporter.declarationError(varDecl.location(), errorText);
 | ||
| 			}
 | ||
| 		}
 | ||
| 		else if (dynamic_cast<MappingType const*>(type(varDecl).get()))
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				varDecl.location(),
 | ||
| 				"Uninitialized mapping. Mappings cannot be created dynamically, you have to assign them from a state variable."
 | ||
| 			);
 | ||
| 		varDecl.accept(*this);
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	// Here we have an initial value and might have to derive some types before we can visit
 | ||
| 	// the variable declaration(s).
 | ||
| 
 | ||
| 	_statement.initialValue()->accept(*this);
 | ||
| 	TypePointers valueTypes;
 | ||
| 	if (auto tupleType = dynamic_cast<TupleType const*>(type(*_statement.initialValue()).get()))
 | ||
| 		valueTypes = tupleType->components();
 | ||
| 	else
 | ||
| 		valueTypes = TypePointers{type(*_statement.initialValue())};
 | ||
| 
 | ||
| 	vector<ASTPointer<VariableDeclaration>> const& variables = _statement.declarations();
 | ||
| 	if (variables.empty())
 | ||
| 		// We already have an error for this in the SyntaxChecker.
 | ||
| 		solAssert(m_errorReporter.hasErrors(), "");
 | ||
| 	else if (valueTypes.size() != variables.size())
 | ||
| 		m_errorReporter.typeError(
 | ||
| 			_statement.location(),
 | ||
| 			"Different number of components on the left hand side (" +
 | ||
| 			toString(variables.size()) +
 | ||
| 			") than on the right hand side (" +
 | ||
| 			toString(valueTypes.size()) +
 | ||
| 			")."
 | ||
| 		);
 | ||
| 
 | ||
| 	bool autoTypeDeductionNeeded = false;
 | ||
| 
 | ||
| 	for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i)
 | ||
| 	{
 | ||
| 		if (!variables[i])
 | ||
| 			continue;
 | ||
| 		VariableDeclaration const& var = *variables[i];
 | ||
| 		solAssert(!var.value(), "Value has to be tied to statement.");
 | ||
| 		TypePointer const& valueComponentType = valueTypes[i];
 | ||
| 		solAssert(!!valueComponentType, "");
 | ||
| 		if (!var.annotation().type)
 | ||
| 		{
 | ||
| 			autoTypeDeductionNeeded = true;
 | ||
| 
 | ||
| 			// Infer type from value.
 | ||
| 			solAssert(!var.typeName(), "");
 | ||
| 			var.annotation().type = valueComponentType->mobileType();
 | ||
| 			if (!var.annotation().type)
 | ||
| 			{
 | ||
| 				if (valueComponentType->category() == Type::Category::RationalNumber)
 | ||
| 					m_errorReporter.fatalTypeError(
 | ||
| 						_statement.initialValue()->location(),
 | ||
| 						"Invalid rational " +
 | ||
| 						valueComponentType->toString() +
 | ||
| 						" (absolute value too large or division by zero)."
 | ||
| 					);
 | ||
| 				else
 | ||
| 					solAssert(false, "");
 | ||
| 			}
 | ||
| 			else if (*var.annotation().type == TupleType())
 | ||
| 				m_errorReporter.typeError(
 | ||
| 					var.location(),
 | ||
| 					"Cannot declare variable with void (empty tuple) type."
 | ||
| 				);
 | ||
| 			else if (valueComponentType->category() == Type::Category::RationalNumber)
 | ||
| 			{
 | ||
| 				string typeName = var.annotation().type->toString(true);
 | ||
| 				string extension;
 | ||
| 				if (auto type = dynamic_cast<IntegerType const*>(var.annotation().type.get()))
 | ||
| 				{
 | ||
| 					unsigned numBits = type->numBits();
 | ||
| 					bool isSigned = type->isSigned();
 | ||
| 					solAssert(numBits > 0, "");
 | ||
| 					string minValue;
 | ||
| 					string maxValue;
 | ||
| 					if (isSigned)
 | ||
| 					{
 | ||
| 						numBits--;
 | ||
| 						minValue = "-" + bigint(bigint(1) << numBits).str();
 | ||
| 					}
 | ||
| 					else
 | ||
| 						minValue = "0";
 | ||
| 					maxValue = bigint((bigint(1) << numBits) - 1).str();
 | ||
| 					extension = ", which can hold values between " + minValue + " and " + maxValue;
 | ||
| 				}
 | ||
| 				else
 | ||
| 					solAssert(dynamic_cast<FixedPointType const*>(var.annotation().type.get()), "Unknown type.");
 | ||
| 			}
 | ||
| 
 | ||
| 			var.accept(*this);
 | ||
| 		}
 | ||
| 		else
 | ||
| 		{
 | ||
| 			var.accept(*this);
 | ||
| 			if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type))
 | ||
| 			{
 | ||
| 				if (
 | ||
| 					valueComponentType->category() == Type::Category::RationalNumber &&
 | ||
| 					dynamic_cast<RationalNumberType const&>(*valueComponentType).isFractional() &&
 | ||
| 					valueComponentType->mobileType()
 | ||
| 				)
 | ||
| 					m_errorReporter.typeError(
 | ||
| 						_statement.location(),
 | ||
| 						"Type " +
 | ||
| 						valueComponentType->toString() +
 | ||
| 						" is not implicitly convertible to expected type " +
 | ||
| 						var.annotation().type->toString() +
 | ||
| 						". Try converting to type " +
 | ||
| 						valueComponentType->mobileType()->toString() +
 | ||
| 						" or use an explicit conversion."
 | ||
| 					);
 | ||
| 				else
 | ||
| 					m_errorReporter.typeError(
 | ||
| 						_statement.location(),
 | ||
| 						"Type " +
 | ||
| 						valueComponentType->toString() +
 | ||
| 						" is not implicitly convertible to expected type " +
 | ||
| 						var.annotation().type->toString() +
 | ||
| 						"."
 | ||
| 					);
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (autoTypeDeductionNeeded)
 | ||
| 	{
 | ||
| 		if (!typeCanBeExpressed(variables))
 | ||
| 			m_errorReporter.syntaxError(
 | ||
| 				_statement.location(),
 | ||
| 				"Use of the \"var\" keyword is disallowed. "
 | ||
| 				"Type cannot be expressed in syntax."
 | ||
| 			);
 | ||
| 		else
 | ||
| 			m_errorReporter.syntaxError(
 | ||
| 				_statement.location(),
 | ||
| 				"Use of the \"var\" keyword is disallowed. "
 | ||
| 				"Use explicit declaration `" + createTupleDecl(variables) + " = ...´ instead."
 | ||
| 			);
 | ||
| 	}
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(ExpressionStatement const& _statement)
 | ||
| {
 | ||
| 	if (type(_statement.expression())->category() == Type::Category::RationalNumber)
 | ||
| 		if (!dynamic_cast<RationalNumberType const&>(*type(_statement.expression())).mobileType())
 | ||
| 			m_errorReporter.typeError(_statement.expression().location(), "Invalid rational number.");
 | ||
| 
 | ||
| 	if (auto call = dynamic_cast<FunctionCall const*>(&_statement.expression()))
 | ||
| 	{
 | ||
| 		if (auto callType = dynamic_cast<FunctionType const*>(type(call->expression()).get()))
 | ||
| 		{
 | ||
| 			auto kind = callType->kind();
 | ||
| 			if (
 | ||
| 				kind == FunctionType::Kind::BareCall ||
 | ||
| 				kind == FunctionType::Kind::BareCallCode ||
 | ||
| 				kind == FunctionType::Kind::BareDelegateCall ||
 | ||
| 				kind == FunctionType::Kind::BareStaticCall
 | ||
| 			)
 | ||
| 				m_errorReporter.warning(_statement.location(), "Return value of low-level calls not used.");
 | ||
| 			else if (kind == FunctionType::Kind::Send)
 | ||
| 				m_errorReporter.warning(_statement.location(), "Failure condition of 'send' ignored. Consider using 'transfer' instead.");
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(Conditional const& _conditional)
 | ||
| {
 | ||
| 	expectType(_conditional.condition(), BoolType());
 | ||
| 
 | ||
| 	_conditional.trueExpression().accept(*this);
 | ||
| 	_conditional.falseExpression().accept(*this);
 | ||
| 
 | ||
| 	TypePointer trueType = type(_conditional.trueExpression())->mobileType();
 | ||
| 	TypePointer falseType = type(_conditional.falseExpression())->mobileType();
 | ||
| 	if (!trueType)
 | ||
| 		m_errorReporter.fatalTypeError(_conditional.trueExpression().location(), "Invalid mobile type.");
 | ||
| 	if (!falseType)
 | ||
| 		m_errorReporter.fatalTypeError(_conditional.falseExpression().location(), "Invalid mobile type.");
 | ||
| 
 | ||
| 	TypePointer commonType = Type::commonType(trueType, falseType);
 | ||
| 	if (!commonType)
 | ||
| 	{
 | ||
| 		m_errorReporter.typeError(
 | ||
| 				_conditional.location(),
 | ||
| 				"True expression's type " +
 | ||
| 				trueType->toString() +
 | ||
| 				" doesn't match false expression's type " +
 | ||
| 				falseType->toString() +
 | ||
| 				"."
 | ||
| 		);
 | ||
| 		// even we can't find a common type, we have to set a type here,
 | ||
| 		// otherwise the upper statement will not be able to check the type.
 | ||
| 		commonType = trueType;
 | ||
| 	}
 | ||
| 
 | ||
| 	_conditional.annotation().type = commonType;
 | ||
| 	_conditional.annotation().isPure =
 | ||
| 		_conditional.condition().annotation().isPure &&
 | ||
| 		_conditional.trueExpression().annotation().isPure &&
 | ||
| 		_conditional.falseExpression().annotation().isPure;
 | ||
| 
 | ||
| 	if (_conditional.annotation().lValueRequested)
 | ||
| 		m_errorReporter.typeError(
 | ||
| 				_conditional.location(),
 | ||
| 				"Conditional expression as left value is not supported yet."
 | ||
| 		);
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::checkExpressionAssignment(Type const& _type, Expression const& _expression)
 | ||
| {
 | ||
| 	if (auto const* tupleExpression = dynamic_cast<TupleExpression const*>(&_expression))
 | ||
| 	{
 | ||
| 		auto const* tupleType = dynamic_cast<TupleType const*>(&_type);
 | ||
| 		auto const& types = tupleType ? tupleType->components() : vector<TypePointer> { _type.shared_from_this() };
 | ||
| 
 | ||
| 		solAssert(tupleExpression->components().size() == types.size(), "");
 | ||
| 		for (size_t i = 0; i < types.size(); i++)
 | ||
| 			if (types[i])
 | ||
| 			{
 | ||
| 				solAssert(!!tupleExpression->components()[i], "");
 | ||
| 				checkExpressionAssignment(*types[i], *tupleExpression->components()[i]);
 | ||
| 			}
 | ||
| 	}
 | ||
| 	else if (_type.category() == Type::Category::Mapping)
 | ||
| 	{
 | ||
| 		bool isLocalOrReturn = false;
 | ||
| 		if (auto const* identifier = dynamic_cast<Identifier const*>(&_expression))
 | ||
| 			if (auto const *variableDeclaration = dynamic_cast<VariableDeclaration const*>(identifier->annotation().referencedDeclaration))
 | ||
| 				if (variableDeclaration->isLocalOrReturn())
 | ||
| 					isLocalOrReturn = true;
 | ||
| 		if (!isLocalOrReturn)
 | ||
| 			m_errorReporter.typeError(_expression.location(), "Mappings cannot be assigned to.");
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(Assignment const& _assignment)
 | ||
| {
 | ||
| 	requireLValue(_assignment.leftHandSide());
 | ||
| 	TypePointer t = type(_assignment.leftHandSide());
 | ||
| 	_assignment.annotation().type = t;
 | ||
| 
 | ||
| 	checkExpressionAssignment(*t, _assignment.leftHandSide());
 | ||
| 
 | ||
| 	if (TupleType const* tupleType = dynamic_cast<TupleType const*>(t.get()))
 | ||
| 	{
 | ||
| 		if (_assignment.assignmentOperator() != Token::Assign)
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_assignment.location(),
 | ||
| 				"Compound assignment is not allowed for tuple types."
 | ||
| 			);
 | ||
| 		// Sequenced assignments of tuples is not valid, make the result a "void" type.
 | ||
| 		_assignment.annotation().type = make_shared<TupleType>();
 | ||
| 
 | ||
| 		expectType(_assignment.rightHandSide(), *tupleType);
 | ||
| 
 | ||
| 		// expectType does not cause fatal errors, so we have to check again here.
 | ||
| 		if (dynamic_cast<TupleType const*>(type(_assignment.rightHandSide()).get()))
 | ||
| 			checkDoubleStorageAssignment(_assignment);
 | ||
| 	}
 | ||
| 	else if (_assignment.assignmentOperator() == Token::Assign)
 | ||
| 		expectType(_assignment.rightHandSide(), *t);
 | ||
| 	else
 | ||
| 	{
 | ||
| 		// compound assignment
 | ||
| 		_assignment.rightHandSide().accept(*this);
 | ||
| 		TypePointer resultType = t->binaryOperatorResult(
 | ||
| 			Token::AssignmentToBinaryOp(_assignment.assignmentOperator()),
 | ||
| 			type(_assignment.rightHandSide())
 | ||
| 		);
 | ||
| 		if (!resultType || *resultType != *t)
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_assignment.location(),
 | ||
| 				"Operator " +
 | ||
| 				string(Token::toString(_assignment.assignmentOperator())) +
 | ||
| 				" not compatible with types " +
 | ||
| 				t->toString() +
 | ||
| 				" and " +
 | ||
| 				type(_assignment.rightHandSide())->toString()
 | ||
| 			);
 | ||
| 	}
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(TupleExpression const& _tuple)
 | ||
| {
 | ||
| 	vector<ASTPointer<Expression>> const& components = _tuple.components();
 | ||
| 	TypePointers types;
 | ||
| 
 | ||
| 	if (_tuple.annotation().lValueRequested)
 | ||
| 	{
 | ||
| 		if (_tuple.isInlineArray())
 | ||
| 			m_errorReporter.fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue.");
 | ||
| 		for (auto const& component: components)
 | ||
| 			if (component)
 | ||
| 			{
 | ||
| 				requireLValue(*component);
 | ||
| 				types.push_back(type(*component));
 | ||
| 			}
 | ||
| 			else
 | ||
| 				types.push_back(TypePointer());
 | ||
| 		if (components.size() == 1)
 | ||
| 			_tuple.annotation().type = type(*components[0]);
 | ||
| 		else
 | ||
| 			_tuple.annotation().type = make_shared<TupleType>(types);
 | ||
| 		// If some of the components are not LValues, the error is reported above.
 | ||
| 		_tuple.annotation().isLValue = true;
 | ||
| 	}
 | ||
| 	else
 | ||
| 	{
 | ||
| 		bool isPure = true;
 | ||
| 		TypePointer inlineArrayType;
 | ||
| 
 | ||
| 		for (size_t i = 0; i < components.size(); ++i)
 | ||
| 		{
 | ||
| 			if (!components[i])
 | ||
| 				m_errorReporter.fatalTypeError(_tuple.location(), "Tuple component cannot be empty.");
 | ||
| 			else if (components[i])
 | ||
| 			{
 | ||
| 				components[i]->accept(*this);
 | ||
| 				types.push_back(type(*components[i]));
 | ||
| 
 | ||
| 				if (types[i]->category() == Type::Category::Tuple)
 | ||
| 					if (dynamic_cast<TupleType const&>(*types[i]).components().empty())
 | ||
| 					{
 | ||
| 						if (_tuple.isInlineArray())
 | ||
| 							m_errorReporter.fatalTypeError(components[i]->location(), "Array component cannot be empty.");
 | ||
| 						m_errorReporter.typeError(components[i]->location(), "Tuple component cannot be empty.");
 | ||
| 					}
 | ||
| 
 | ||
| 				// Note: code generation will visit each of the expression even if they are not assigned from.
 | ||
| 				if (types[i]->category() == Type::Category::RationalNumber && components.size() > 1)
 | ||
| 					if (!dynamic_cast<RationalNumberType const&>(*types[i]).mobileType())
 | ||
| 						m_errorReporter.fatalTypeError(components[i]->location(), "Invalid rational number.");
 | ||
| 
 | ||
| 				if (_tuple.isInlineArray())
 | ||
| 					solAssert(!!types[i], "Inline array cannot have empty components");
 | ||
| 				if (_tuple.isInlineArray())
 | ||
| 				{
 | ||
| 					if ((i == 0 || inlineArrayType) && !types[i]->mobileType())
 | ||
| 						m_errorReporter.fatalTypeError(components[i]->location(), "Invalid mobile type.");
 | ||
| 
 | ||
| 					if (i == 0)
 | ||
| 						inlineArrayType = types[i]->mobileType();
 | ||
| 					else if (inlineArrayType)
 | ||
| 						inlineArrayType = Type::commonType(inlineArrayType, types[i]);
 | ||
| 				}
 | ||
| 				if (!components[i]->annotation().isPure)
 | ||
| 					isPure = false;
 | ||
| 			}
 | ||
| 			else
 | ||
| 				types.push_back(TypePointer());
 | ||
| 		}
 | ||
| 		_tuple.annotation().isPure = isPure;
 | ||
| 		if (_tuple.isInlineArray())
 | ||
| 		{
 | ||
| 			if (!inlineArrayType)
 | ||
| 				m_errorReporter.fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements.");
 | ||
| 			_tuple.annotation().type = make_shared<ArrayType>(DataLocation::Memory, inlineArrayType, types.size());
 | ||
| 		}
 | ||
| 		else
 | ||
| 		{
 | ||
| 			if (components.size() == 1)
 | ||
| 				_tuple.annotation().type = type(*components[0]);
 | ||
| 			else
 | ||
| 				_tuple.annotation().type = make_shared<TupleType>(types);
 | ||
| 		}
 | ||
| 
 | ||
| 	}
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(UnaryOperation const& _operation)
 | ||
| {
 | ||
| 	// Inc, Dec, Add, Sub, Not, BitNot, Delete
 | ||
| 	Token::Value op = _operation.getOperator();
 | ||
| 	bool const modifying = (op == Token::Value::Inc || op == Token::Value::Dec || op == Token::Value::Delete);
 | ||
| 	if (modifying)
 | ||
| 		requireLValue(_operation.subExpression());
 | ||
| 	else
 | ||
| 		_operation.subExpression().accept(*this);
 | ||
| 	TypePointer const& subExprType = type(_operation.subExpression());
 | ||
| 	TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op);
 | ||
| 	if (!t)
 | ||
| 	{
 | ||
| 		m_errorReporter.typeError(
 | ||
| 			_operation.location(),
 | ||
| 			"Unary operator " +
 | ||
| 			string(Token::toString(op)) +
 | ||
| 			" cannot be applied to type " +
 | ||
| 			subExprType->toString()
 | ||
| 		);
 | ||
| 		t = subExprType;
 | ||
| 	}
 | ||
| 	_operation.annotation().type = t;
 | ||
| 	_operation.annotation().isPure = !modifying && _operation.subExpression().annotation().isPure;
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(BinaryOperation const& _operation)
 | ||
| {
 | ||
| 	TypePointer const& leftType = type(_operation.leftExpression());
 | ||
| 	TypePointer const& rightType = type(_operation.rightExpression());
 | ||
| 	TypePointer commonType = leftType->binaryOperatorResult(_operation.getOperator(), rightType);
 | ||
| 	if (!commonType)
 | ||
| 	{
 | ||
| 		m_errorReporter.typeError(
 | ||
| 			_operation.location(),
 | ||
| 			"Operator " +
 | ||
| 			string(Token::toString(_operation.getOperator())) +
 | ||
| 			" not compatible with types " +
 | ||
| 			leftType->toString() +
 | ||
| 			" and " +
 | ||
| 			rightType->toString()
 | ||
| 		);
 | ||
| 		commonType = leftType;
 | ||
| 	}
 | ||
| 	_operation.annotation().commonType = commonType;
 | ||
| 	_operation.annotation().type =
 | ||
| 		Token::isCompareOp(_operation.getOperator()) ?
 | ||
| 		make_shared<BoolType>() :
 | ||
| 		commonType;
 | ||
| 	_operation.annotation().isPure =
 | ||
| 		_operation.leftExpression().annotation().isPure &&
 | ||
| 		_operation.rightExpression().annotation().isPure;
 | ||
| 
 | ||
| 	if (_operation.getOperator() == Token::Exp || _operation.getOperator() == Token::SHL)
 | ||
| 	{
 | ||
| 		string operation = _operation.getOperator() == Token::Exp ? "exponentiation" : "shift";
 | ||
| 		if (
 | ||
| 			leftType->category() == Type::Category::RationalNumber &&
 | ||
| 			rightType->category() != Type::Category::RationalNumber
 | ||
| 		)
 | ||
| 			if ((
 | ||
| 				commonType->category() == Type::Category::Integer &&
 | ||
| 				dynamic_cast<IntegerType const&>(*commonType).numBits() != 256
 | ||
| 			) || (
 | ||
| 				commonType->category() == Type::Category::FixedPoint &&
 | ||
| 				dynamic_cast<FixedPointType const&>(*commonType).numBits() != 256
 | ||
| 			))
 | ||
| 				m_errorReporter.warning(
 | ||
| 					_operation.location(),
 | ||
| 					"Result of " + operation + " has type " + commonType->toString() + " and thus "
 | ||
| 					"might overflow. Silence this warning by converting the literal to the "
 | ||
| 					"expected type."
 | ||
| 				);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(FunctionCall const& _functionCall)
 | ||
| {
 | ||
| 	bool isPositionalCall = _functionCall.names().empty();
 | ||
| 	vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
 | ||
| 	vector<ASTPointer<ASTString>> const& argumentNames = _functionCall.names();
 | ||
| 
 | ||
| 	bool isPure = true;
 | ||
| 
 | ||
| 	// We need to check arguments' type first as they will be needed for overload resolution.
 | ||
| 	shared_ptr<TypePointers> argumentTypes;
 | ||
| 	if (isPositionalCall)
 | ||
| 		argumentTypes = make_shared<TypePointers>();
 | ||
| 	for (ASTPointer<Expression const> const& argument: arguments)
 | ||
| 	{
 | ||
| 		argument->accept(*this);
 | ||
| 		if (!argument->annotation().isPure)
 | ||
| 			isPure = false;
 | ||
| 		// only store them for positional calls
 | ||
| 		if (isPositionalCall)
 | ||
| 			argumentTypes->push_back(type(*argument));
 | ||
| 	}
 | ||
| 	if (isPositionalCall)
 | ||
| 		_functionCall.expression().annotation().argumentTypes = move(argumentTypes);
 | ||
| 
 | ||
| 	_functionCall.expression().accept(*this);
 | ||
| 	TypePointer expressionType = type(_functionCall.expression());
 | ||
| 
 | ||
| 	if (auto const* typeType = dynamic_cast<TypeType const*>(expressionType.get()))
 | ||
| 	{
 | ||
| 		if (typeType->actualType()->category() == Type::Category::Struct)
 | ||
| 			_functionCall.annotation().kind = FunctionCallKind::StructConstructorCall;
 | ||
| 		else
 | ||
| 			_functionCall.annotation().kind = FunctionCallKind::TypeConversion;
 | ||
| 
 | ||
| 	}
 | ||
| 	else
 | ||
| 		_functionCall.annotation().kind = FunctionCallKind::FunctionCall;
 | ||
| 	solAssert(_functionCall.annotation().kind != FunctionCallKind::Unset, "");
 | ||
| 
 | ||
| 	if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
 | ||
| 	{
 | ||
| 		TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
 | ||
| 		TypePointer resultType = t.actualType();
 | ||
| 		if (arguments.size() != 1)
 | ||
| 			m_errorReporter.typeError(_functionCall.location(), "Exactly one argument expected for explicit type conversion.");
 | ||
| 		else if (!isPositionalCall)
 | ||
| 			m_errorReporter.typeError(_functionCall.location(), "Type conversion cannot allow named arguments.");
 | ||
| 		else
 | ||
| 		{
 | ||
| 			TypePointer const& argType = type(*arguments.front());
 | ||
| 			// Resulting data location is memory unless we are converting from a reference
 | ||
| 			// type with a different data location.
 | ||
| 			// (data location cannot yet be specified for type conversions)
 | ||
| 			DataLocation dataLoc = DataLocation::Memory;
 | ||
| 			if (auto argRefType = dynamic_cast<ReferenceType const*>(argType.get()))
 | ||
| 				dataLoc = argRefType->location();
 | ||
| 			resultType = ReferenceType::copyForLocationIfReference(dataLoc, resultType);
 | ||
| 			if (!argType->isExplicitlyConvertibleTo(*resultType))
 | ||
| 				m_errorReporter.typeError(
 | ||
| 					_functionCall.location(),
 | ||
| 					"Explicit type conversion not allowed from \"" +
 | ||
| 					argType->toString() +
 | ||
| 					"\" to \"" +
 | ||
| 					resultType->toString() +
 | ||
| 					"\"."
 | ||
| 				);
 | ||
| 		}
 | ||
| 		_functionCall.annotation().type = resultType;
 | ||
| 		_functionCall.annotation().isPure = isPure;
 | ||
| 
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	// Actual function call or struct constructor call.
 | ||
| 
 | ||
| 	FunctionTypePointer functionType;
 | ||
| 
 | ||
| 	/// For error message: Struct members that were removed during conversion to memory.
 | ||
| 	set<string> membersRemovedForStructConstructor;
 | ||
| 	if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall)
 | ||
| 	{
 | ||
| 		TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
 | ||
| 		auto const& structType = dynamic_cast<StructType const&>(*t.actualType());
 | ||
| 		functionType = structType.constructorType();
 | ||
| 		membersRemovedForStructConstructor = structType.membersMissingInMemory();
 | ||
| 		_functionCall.annotation().isPure = isPure;
 | ||
| 	}
 | ||
| 	else if ((functionType = dynamic_pointer_cast<FunctionType const>(expressionType)))
 | ||
| 		_functionCall.annotation().isPure =
 | ||
| 			isPure &&
 | ||
| 			_functionCall.expression().annotation().isPure &&
 | ||
| 			functionType->isPure();
 | ||
| 
 | ||
| 	bool allowDynamicTypes = m_evmVersion.supportsReturndata();
 | ||
| 	if (!functionType)
 | ||
| 	{
 | ||
| 		m_errorReporter.typeError(_functionCall.location(), "Type is not callable");
 | ||
| 		_functionCall.annotation().type = make_shared<TupleType>();
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (functionType->kind() == FunctionType::Kind::BareStaticCall && !m_evmVersion.hasStaticCall())
 | ||
| 		m_errorReporter.typeError(_functionCall.location(), "\"staticcall\" is not supported by the VM version.");
 | ||
| 
 | ||
| 	auto returnTypes =
 | ||
| 		allowDynamicTypes ?
 | ||
| 		functionType->returnParameterTypes() :
 | ||
| 		functionType->returnParameterTypesWithoutDynamicTypes();
 | ||
| 	if (returnTypes.size() == 1)
 | ||
| 		_functionCall.annotation().type = returnTypes.front();
 | ||
| 	else
 | ||
| 		_functionCall.annotation().type = make_shared<TupleType>(returnTypes);
 | ||
| 
 | ||
| 	if (auto functionName = dynamic_cast<Identifier const*>(&_functionCall.expression()))
 | ||
| 	{
 | ||
| 		if (functionName->name() == "sha3" && functionType->kind() == FunctionType::Kind::KECCAK256)
 | ||
| 			m_errorReporter.typeError(_functionCall.location(), "\"sha3\" has been deprecated in favour of \"keccak256\"");
 | ||
| 		else if (functionName->name() == "suicide" && functionType->kind() == FunctionType::Kind::Selfdestruct)
 | ||
| 			m_errorReporter.typeError(_functionCall.location(), "\"suicide\" has been deprecated in favour of \"selfdestruct\"");
 | ||
| 	}
 | ||
| 	if (!m_insideEmitStatement && functionType->kind() == FunctionType::Kind::Event)
 | ||
| 		m_errorReporter.typeError(_functionCall.location(), "Event invocations have to be prefixed by \"emit\".");
 | ||
| 
 | ||
| 	TypePointers parameterTypes = functionType->parameterTypes();
 | ||
| 
 | ||
| 	if (!functionType->padArguments())
 | ||
| 	{
 | ||
| 		for (size_t i = 0; i < arguments.size(); ++i)
 | ||
| 		{
 | ||
| 			auto const& argType = type(*arguments[i]);
 | ||
| 			if (auto literal = dynamic_cast<RationalNumberType const*>(argType.get()))
 | ||
| 			{
 | ||
| 				if (literal->mobileType())
 | ||
| 					m_errorReporter.typeError(
 | ||
| 						arguments[i]->location(),
 | ||
| 						"Cannot perform packed encoding for a literal. Please convert it to an explicit type first."
 | ||
| 					);
 | ||
| 				else
 | ||
| 				{
 | ||
| 					/* If no mobile type is available an error will be raised elsewhere. */
 | ||
| 					solAssert(m_errorReporter.hasErrors(), "");
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	bool const abiEncoderV2 = m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2);
 | ||
| 
 | ||
| 	if (functionType->kind() == FunctionType::Kind::ABIDecode)
 | ||
| 		_functionCall.annotation().type = typeCheckABIDecodeAndRetrieveReturnType(_functionCall, abiEncoderV2);
 | ||
| 	else if (functionType->takesArbitraryParameters() && arguments.size() < parameterTypes.size())
 | ||
| 	{
 | ||
| 		solAssert(_functionCall.annotation().kind == FunctionCallKind::FunctionCall, "");
 | ||
| 		m_errorReporter.typeError(
 | ||
| 			_functionCall.location(),
 | ||
| 			"Need at least " +
 | ||
| 			toString(parameterTypes.size()) +
 | ||
| 			" arguments for function call, but provided only " +
 | ||
| 			toString(arguments.size()) +
 | ||
| 			"."
 | ||
| 		);
 | ||
| 	}
 | ||
| 	else if (!functionType->takesArbitraryParameters() && parameterTypes.size() != arguments.size())
 | ||
| 	{
 | ||
| 		bool isStructConstructorCall = _functionCall.annotation().kind == FunctionCallKind::StructConstructorCall;
 | ||
| 
 | ||
| 		string msg =
 | ||
| 			"Wrong argument count for " +
 | ||
| 			string(isStructConstructorCall ? "struct constructor" : "function call") +
 | ||
| 			": " +
 | ||
| 			toString(arguments.size()) +
 | ||
| 			" arguments given but expected " +
 | ||
| 			toString(parameterTypes.size()) +
 | ||
| 			".";
 | ||
| 		// Extend error message in case we try to construct a struct with mapping member.
 | ||
| 		if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall && !membersRemovedForStructConstructor.empty())
 | ||
| 		{
 | ||
| 			msg += " Members that have to be skipped in memory:";
 | ||
| 			for (auto const& member: membersRemovedForStructConstructor)
 | ||
| 				msg += " " + member;
 | ||
| 		}
 | ||
| 		else if (
 | ||
| 			functionType->kind() == FunctionType::Kind::BareCall ||
 | ||
| 			functionType->kind() == FunctionType::Kind::BareCallCode ||
 | ||
| 			functionType->kind() == FunctionType::Kind::BareDelegateCall ||
 | ||
| 			functionType->kind() == FunctionType::Kind::BareStaticCall
 | ||
| 		)
 | ||
| 		{
 | ||
| 			if (arguments.empty())
 | ||
| 				msg += " This function requires a single bytes argument. Use \"\" as argument to provide empty calldata.";
 | ||
| 			else
 | ||
| 				msg += " This function requires a single bytes argument. If all your arguments are value types, you can use abi.encode(...) to properly generate it.";
 | ||
| 		}
 | ||
| 		else if (
 | ||
| 			functionType->kind() == FunctionType::Kind::KECCAK256 ||
 | ||
| 			functionType->kind() == FunctionType::Kind::SHA256 ||
 | ||
| 			functionType->kind() == FunctionType::Kind::RIPEMD160
 | ||
| 		)
 | ||
| 			msg +=
 | ||
| 				" This function requires a single bytes argument."
 | ||
| 				" Use abi.encodePacked(...) to obtain the pre-0.5.0 behaviour"
 | ||
| 				" or abi.encode(...) to use ABI encoding.";
 | ||
| 		m_errorReporter.typeError(_functionCall.location(), msg);
 | ||
| 	}
 | ||
| 	else if (isPositionalCall)
 | ||
| 	{
 | ||
| 		for (size_t i = 0; i < arguments.size(); ++i)
 | ||
| 		{
 | ||
| 			auto const& argType = type(*arguments[i]);
 | ||
| 			if (functionType->takesArbitraryParameters() && i >= parameterTypes.size())
 | ||
| 			{
 | ||
| 				bool errored = false;
 | ||
| 				if (auto t = dynamic_cast<RationalNumberType const*>(argType.get()))
 | ||
| 					if (!t->mobileType())
 | ||
| 					{
 | ||
| 						m_errorReporter.typeError(arguments[i]->location(), "Invalid rational number (too large or division by zero).");
 | ||
| 						errored = true;
 | ||
| 					}
 | ||
| 				if (!errored && !argType->fullEncodingType(false, abiEncoderV2, !functionType->padArguments()))
 | ||
| 					m_errorReporter.typeError(arguments[i]->location(), "This type cannot be encoded.");
 | ||
| 			}
 | ||
| 			else if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
 | ||
| 			{
 | ||
| 				string msg =
 | ||
| 					"Invalid type for argument in function call. "
 | ||
| 					"Invalid implicit conversion from " +
 | ||
| 					type(*arguments[i])->toString() +
 | ||
| 					" to " +
 | ||
| 					parameterTypes[i]->toString() +
 | ||
| 					" requested.";
 | ||
| 				if (
 | ||
| 					functionType->kind() == FunctionType::Kind::BareCall ||
 | ||
| 					functionType->kind() == FunctionType::Kind::BareCallCode ||
 | ||
| 					functionType->kind() == FunctionType::Kind::BareDelegateCall ||
 | ||
| 					functionType->kind() == FunctionType::Kind::BareStaticCall
 | ||
| 				)
 | ||
| 					msg += " This function requires a single bytes argument. If all your arguments are value types, you can use abi.encode(...) to properly generate it.";
 | ||
| 				else if (
 | ||
| 					functionType->kind() == FunctionType::Kind::KECCAK256 ||
 | ||
| 					functionType->kind() == FunctionType::Kind::SHA256 ||
 | ||
| 					functionType->kind() == FunctionType::Kind::RIPEMD160
 | ||
| 				)
 | ||
| 					msg +=
 | ||
| 						" This function requires a single bytes argument."
 | ||
| 						" Use abi.encodePacked(...) to obtain the pre-0.5.0 behaviour"
 | ||
| 						" or abi.encode(...) to use ABI encoding.";
 | ||
| 				m_errorReporter.typeError(arguments[i]->location(), msg);
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	else
 | ||
| 	{
 | ||
| 		// call by named arguments
 | ||
| 		auto const& parameterNames = functionType->parameterNames();
 | ||
| 		if (functionType->takesArbitraryParameters())
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_functionCall.location(),
 | ||
| 				"Named arguments cannot be used for functions that take arbitrary parameters."
 | ||
| 			);
 | ||
| 		else if (parameterNames.size() > argumentNames.size())
 | ||
| 			m_errorReporter.typeError(_functionCall.location(), "Some argument names are missing.");
 | ||
| 		else if (parameterNames.size() < argumentNames.size())
 | ||
| 			m_errorReporter.typeError(_functionCall.location(), "Too many arguments.");
 | ||
| 		else
 | ||
| 		{
 | ||
| 			// check duplicate names
 | ||
| 			bool duplication = false;
 | ||
| 			for (size_t i = 0; i < argumentNames.size(); i++)
 | ||
| 				for (size_t j = i + 1; j < argumentNames.size(); j++)
 | ||
| 					if (*argumentNames[i] == *argumentNames[j])
 | ||
| 					{
 | ||
| 						duplication = true;
 | ||
| 						m_errorReporter.typeError(arguments[i]->location(), "Duplicate named argument.");
 | ||
| 					}
 | ||
| 
 | ||
| 			// check actual types
 | ||
| 			if (!duplication)
 | ||
| 				for (size_t i = 0; i < argumentNames.size(); i++)
 | ||
| 				{
 | ||
| 					bool found = false;
 | ||
| 					for (size_t j = 0; j < parameterNames.size(); j++)
 | ||
| 						if (parameterNames[j] == *argumentNames[i])
 | ||
| 						{
 | ||
| 							found = true;
 | ||
| 							// check type convertible
 | ||
| 							if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[j]))
 | ||
| 								m_errorReporter.typeError(
 | ||
| 									arguments[i]->location(),
 | ||
| 									"Invalid type for argument in function call. "
 | ||
| 									"Invalid implicit conversion from " +
 | ||
| 									type(*arguments[i])->toString() +
 | ||
| 									" to " +
 | ||
| 									parameterTypes[i]->toString() +
 | ||
| 									" requested."
 | ||
| 								);
 | ||
| 							break;
 | ||
| 						}
 | ||
| 
 | ||
| 					if (!found)
 | ||
| 						m_errorReporter.typeError(
 | ||
| 							_functionCall.location(),
 | ||
| 							"Named argument \"" + *argumentNames[i] +  "\" does not match function declaration."
 | ||
| 						);
 | ||
| 				}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(NewExpression const& _newExpression)
 | ||
| {
 | ||
| 	TypePointer type = _newExpression.typeName().annotation().type;
 | ||
| 	solAssert(!!type, "Type name not resolved.");
 | ||
| 
 | ||
| 	if (auto contractName = dynamic_cast<UserDefinedTypeName const*>(&_newExpression.typeName()))
 | ||
| 	{
 | ||
| 		auto contract = dynamic_cast<ContractDefinition const*>(&dereference(*contractName));
 | ||
| 
 | ||
| 		if (!contract)
 | ||
| 			m_errorReporter.fatalTypeError(_newExpression.location(), "Identifier is not a contract.");
 | ||
| 		if (contract->contractKind() == ContractDefinition::ContractKind::Interface)
 | ||
| 				m_errorReporter.fatalTypeError(_newExpression.location(), "Cannot instantiate an interface.");
 | ||
| 		if (!contract->annotation().unimplementedFunctions.empty())
 | ||
| 		{
 | ||
| 			SecondarySourceLocation ssl;
 | ||
| 			for (auto function: contract->annotation().unimplementedFunctions)
 | ||
| 				ssl.append("Missing implementation:", function->location());
 | ||
| 			string msg = "Trying to create an instance of an abstract contract.";
 | ||
| 			ssl.limitSize(msg);
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_newExpression.location(),
 | ||
| 				ssl,
 | ||
| 				msg
 | ||
| 			);
 | ||
| 		}
 | ||
| 		if (!contract->constructorIsPublic())
 | ||
| 			m_errorReporter.typeError(_newExpression.location(), "Contract with internal constructor cannot be created directly.");
 | ||
| 
 | ||
| 		solAssert(!!m_scope, "");
 | ||
| 		m_scope->annotation().contractDependencies.insert(contract);
 | ||
| 		solAssert(
 | ||
| 			!contract->annotation().linearizedBaseContracts.empty(),
 | ||
| 			"Linearized base contracts not yet available."
 | ||
| 		);
 | ||
| 		if (contractDependenciesAreCyclic(*m_scope))
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_newExpression.location(),
 | ||
| 				"Circular reference for contract creation (cannot create instance of derived or same contract)."
 | ||
| 			);
 | ||
| 
 | ||
| 		_newExpression.annotation().type = FunctionType::newExpressionType(*contract);
 | ||
| 	}
 | ||
| 	else if (type->category() == Type::Category::Array)
 | ||
| 	{
 | ||
| 		if (!type->canLiveOutsideStorage())
 | ||
| 			m_errorReporter.fatalTypeError(
 | ||
| 				_newExpression.typeName().location(),
 | ||
| 				"Type cannot live outside storage."
 | ||
| 			);
 | ||
| 		if (!type->isDynamicallySized())
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_newExpression.typeName().location(),
 | ||
| 				"Length has to be placed in parentheses after the array type for new expression."
 | ||
| 			);
 | ||
| 		type = ReferenceType::copyForLocationIfReference(DataLocation::Memory, type);
 | ||
| 		_newExpression.annotation().type = make_shared<FunctionType>(
 | ||
| 			TypePointers{make_shared<IntegerType>(256)},
 | ||
| 			TypePointers{type},
 | ||
| 			strings(),
 | ||
| 			strings(),
 | ||
| 			FunctionType::Kind::ObjectCreation,
 | ||
| 			false,
 | ||
| 			StateMutability::Pure
 | ||
| 		);
 | ||
| 		_newExpression.annotation().isPure = true;
 | ||
| 	}
 | ||
| 	else
 | ||
| 		m_errorReporter.fatalTypeError(_newExpression.location(), "Contract or array type expected.");
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(MemberAccess const& _memberAccess)
 | ||
| {
 | ||
| 	_memberAccess.expression().accept(*this);
 | ||
| 	TypePointer exprType = type(_memberAccess.expression());
 | ||
| 	ASTString const& memberName = _memberAccess.memberName();
 | ||
| 
 | ||
| 	// Retrieve the types of the arguments if this is used to call a function.
 | ||
| 	auto const& argumentTypes = _memberAccess.annotation().argumentTypes;
 | ||
| 	MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName);
 | ||
| 	size_t const initialMemberCount = possibleMembers.size();
 | ||
| 	if (initialMemberCount > 1 && argumentTypes)
 | ||
| 	{
 | ||
| 		// do overload resolution
 | ||
| 		for (auto it = possibleMembers.begin(); it != possibleMembers.end();)
 | ||
| 			if (
 | ||
| 				it->type->category() == Type::Category::Function &&
 | ||
| 				!dynamic_cast<FunctionType const&>(*it->type).canTakeArguments(*argumentTypes, exprType)
 | ||
| 			)
 | ||
| 				it = possibleMembers.erase(it);
 | ||
| 			else
 | ||
| 				++it;
 | ||
| 	}
 | ||
| 
 | ||
| 	auto& annotation = _memberAccess.annotation();
 | ||
| 
 | ||
| 	if (possibleMembers.size() == 0)
 | ||
| 	{
 | ||
| 		if (initialMemberCount == 0)
 | ||
| 		{
 | ||
| 			// Try to see if the member was removed because it is only available for storage types.
 | ||
| 			auto storageType = ReferenceType::copyForLocationIfReference(
 | ||
| 				DataLocation::Storage,
 | ||
| 				exprType
 | ||
| 			);
 | ||
| 			if (!storageType->members(m_scope).membersByName(memberName).empty())
 | ||
| 				m_errorReporter.fatalTypeError(
 | ||
| 					_memberAccess.location(),
 | ||
| 					"Member \"" + memberName + "\" is not available in " +
 | ||
| 					exprType->toString() +
 | ||
| 					" outside of storage."
 | ||
| 				);
 | ||
| 		}
 | ||
| 		string errorMsg = "Member \"" + memberName + "\" not found or not visible "
 | ||
| 				"after argument-dependent lookup in " + exprType->toString() +
 | ||
| 				(memberName == "value" ? " - did you forget the \"payable\" modifier?" : ".");
 | ||
| 		if (exprType->category() == Type::Category::Contract)
 | ||
| 			for (auto const& addressMember: IntegerType(160, IntegerType::Modifier::Address).nativeMembers(nullptr))
 | ||
| 				if (addressMember.name == memberName)
 | ||
| 				{
 | ||
| 					Identifier const* var = dynamic_cast<Identifier const*>(&_memberAccess.expression());
 | ||
| 					string varName = var ? var->name() : "...";
 | ||
| 					errorMsg += " Use \"address(" + varName + ")." + memberName + "\" to access this address member.";
 | ||
| 					break;
 | ||
| 				}
 | ||
| 		m_errorReporter.fatalTypeError(
 | ||
| 			_memberAccess.location(),
 | ||
| 			errorMsg
 | ||
| 		);
 | ||
| 	}
 | ||
| 	else if (possibleMembers.size() > 1)
 | ||
| 		m_errorReporter.fatalTypeError(
 | ||
| 			_memberAccess.location(),
 | ||
| 			"Member \"" + memberName + "\" not unique "
 | ||
| 			"after argument-dependent lookup in " + exprType->toString() +
 | ||
| 			(memberName == "value" ? " - did you forget the \"payable\" modifier?" : ".")
 | ||
| 		);
 | ||
| 
 | ||
| 	annotation.referencedDeclaration = possibleMembers.front().declaration;
 | ||
| 	annotation.type = possibleMembers.front().type;
 | ||
| 
 | ||
| 	if (auto funType = dynamic_cast<FunctionType const*>(annotation.type.get()))
 | ||
| 		if (funType->bound() && !exprType->isImplicitlyConvertibleTo(*funType->selfType()))
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_memberAccess.location(),
 | ||
| 				"Function \"" + memberName + "\" cannot be called on an object of type " +
 | ||
| 				exprType->toString() + " (expected " + funType->selfType()->toString() + ")."
 | ||
| 			);
 | ||
| 
 | ||
| 	if (exprType->category() == Type::Category::Struct)
 | ||
| 		annotation.isLValue = true;
 | ||
| 	else if (exprType->category() == Type::Category::Array)
 | ||
| 	{
 | ||
| 		auto const& arrayType(dynamic_cast<ArrayType const&>(*exprType));
 | ||
| 		annotation.isLValue = (
 | ||
| 			memberName == "length" &&
 | ||
| 			arrayType.location() == DataLocation::Storage &&
 | ||
| 			arrayType.isDynamicallySized()
 | ||
| 		);
 | ||
| 	}
 | ||
| 	else if (exprType->category() == Type::Category::FixedBytes)
 | ||
| 		annotation.isLValue = false;
 | ||
| 	else if (TypeType const* typeType = dynamic_cast<decltype(typeType)>(exprType.get()))
 | ||
| 	{
 | ||
| 		if (ContractType const* contractType = dynamic_cast<decltype(contractType)>(typeType->actualType().get()))
 | ||
| 			annotation.isLValue = annotation.referencedDeclaration->isLValue();
 | ||
| 	}
 | ||
| 
 | ||
| 	if (exprType->category() == Type::Category::Contract)
 | ||
| 	{
 | ||
| 		// Warn about using send or transfer with a non-payable fallback function.
 | ||
| 		if (auto callType = dynamic_cast<FunctionType const*>(type(_memberAccess).get()))
 | ||
| 		{
 | ||
| 			auto kind = callType->kind();
 | ||
| 			auto contractType = dynamic_cast<ContractType const*>(exprType.get());
 | ||
| 			solAssert(!!contractType, "Should be contract type.");
 | ||
| 
 | ||
| 			if (
 | ||
| 				(kind == FunctionType::Kind::Send || kind == FunctionType::Kind::Transfer) &&
 | ||
| 				!contractType->isPayable()
 | ||
| 			)
 | ||
| 				m_errorReporter.typeError(
 | ||
| 					_memberAccess.location(),
 | ||
| 					"Value transfer to a contract without a payable fallback function."
 | ||
| 				);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// TODO some members might be pure, but for example `address(0x123).balance` is not pure
 | ||
| 	// although every subexpression is, so leaving this limited for now.
 | ||
| 	if (auto tt = dynamic_cast<TypeType const*>(exprType.get()))
 | ||
| 		if (tt->actualType()->category() == Type::Category::Enum)
 | ||
| 			annotation.isPure = true;
 | ||
| 	if (auto magicType = dynamic_cast<MagicType const*>(exprType.get()))
 | ||
| 		if (magicType->kind() == MagicType::Kind::ABI)
 | ||
| 			annotation.isPure = true;
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(IndexAccess const& _access)
 | ||
| {
 | ||
| 	_access.baseExpression().accept(*this);
 | ||
| 	TypePointer baseType = type(_access.baseExpression());
 | ||
| 	TypePointer resultType;
 | ||
| 	bool isLValue = false;
 | ||
| 	bool isPure = _access.baseExpression().annotation().isPure;
 | ||
| 	Expression const* index = _access.indexExpression();
 | ||
| 	switch (baseType->category())
 | ||
| 	{
 | ||
| 	case Type::Category::Array:
 | ||
| 	{
 | ||
| 		ArrayType const& actualType = dynamic_cast<ArrayType const&>(*baseType);
 | ||
| 		if (!index)
 | ||
| 			m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
 | ||
| 		else if (actualType.isString())
 | ||
| 		{
 | ||
| 			m_errorReporter.typeError(_access.location(), "Index access for string is not possible.");
 | ||
| 			index->accept(*this);
 | ||
| 		}
 | ||
| 		else
 | ||
| 		{
 | ||
| 			expectType(*index, IntegerType(256));
 | ||
| 			if (auto numberType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
 | ||
| 			{
 | ||
| 				if (!numberType->isFractional()) // error is reported above
 | ||
| 					if (!actualType.isDynamicallySized() && actualType.length() <= numberType->literalValue(nullptr))
 | ||
| 						m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
 | ||
| 			}
 | ||
| 		}
 | ||
| 		resultType = actualType.baseType();
 | ||
| 		isLValue = actualType.location() != DataLocation::CallData;
 | ||
| 		break;
 | ||
| 	}
 | ||
| 	case Type::Category::Mapping:
 | ||
| 	{
 | ||
| 		MappingType const& actualType = dynamic_cast<MappingType const&>(*baseType);
 | ||
| 		if (!index)
 | ||
| 			m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
 | ||
| 		else
 | ||
| 			expectType(*index, *actualType.keyType());
 | ||
| 		resultType = actualType.valueType();
 | ||
| 		isLValue = true;
 | ||
| 		break;
 | ||
| 	}
 | ||
| 	case Type::Category::TypeType:
 | ||
| 	{
 | ||
| 		TypeType const& typeType = dynamic_cast<TypeType const&>(*baseType);
 | ||
| 		if (!index)
 | ||
| 			resultType = make_shared<TypeType>(make_shared<ArrayType>(DataLocation::Memory, typeType.actualType()));
 | ||
| 		else
 | ||
| 		{
 | ||
| 			expectType(*index, IntegerType(256));
 | ||
| 			if (auto length = dynamic_cast<RationalNumberType const*>(type(*index).get()))
 | ||
| 				resultType = make_shared<TypeType>(make_shared<ArrayType>(
 | ||
| 					DataLocation::Memory,
 | ||
| 					typeType.actualType(),
 | ||
| 					length->literalValue(nullptr)
 | ||
| 				));
 | ||
| 			else
 | ||
| 				m_errorReporter.fatalTypeError(index->location(), "Integer constant expected.");
 | ||
| 		}
 | ||
| 		break;
 | ||
| 	}
 | ||
| 	case Type::Category::FixedBytes:
 | ||
| 	{
 | ||
| 		FixedBytesType const& bytesType = dynamic_cast<FixedBytesType const&>(*baseType);
 | ||
| 		if (!index)
 | ||
| 			m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
 | ||
| 		else
 | ||
| 		{
 | ||
| 			expectType(*index, IntegerType(256));
 | ||
| 			if (auto integerType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
 | ||
| 				if (bytesType.numBytes() <= integerType->literalValue(nullptr))
 | ||
| 					m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
 | ||
| 		}
 | ||
| 		resultType = make_shared<FixedBytesType>(1);
 | ||
| 		isLValue = false; // @todo this heavily depends on how it is embedded
 | ||
| 		break;
 | ||
| 	}
 | ||
| 	default:
 | ||
| 		m_errorReporter.fatalTypeError(
 | ||
| 			_access.baseExpression().location(),
 | ||
| 			"Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")"
 | ||
| 		);
 | ||
| 	}
 | ||
| 	_access.annotation().type = move(resultType);
 | ||
| 	_access.annotation().isLValue = isLValue;
 | ||
| 	if (index && !index->annotation().isPure)
 | ||
| 		isPure = false;
 | ||
| 	_access.annotation().isPure = isPure;
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::visit(Identifier const& _identifier)
 | ||
| {
 | ||
| 	IdentifierAnnotation& annotation = _identifier.annotation();
 | ||
| 	if (!annotation.referencedDeclaration)
 | ||
| 	{
 | ||
| 		if (!annotation.argumentTypes)
 | ||
| 		{
 | ||
| 			// The identifier should be a public state variable shadowing other functions
 | ||
| 			vector<Declaration const*> candidates;
 | ||
| 
 | ||
| 			for (Declaration const* declaration: annotation.overloadedDeclarations)
 | ||
| 			{
 | ||
| 				if (VariableDeclaration const* variableDeclaration = dynamic_cast<decltype(variableDeclaration)>(declaration))
 | ||
| 					candidates.push_back(declaration);
 | ||
| 			}
 | ||
| 			if (candidates.empty())
 | ||
| 				m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup.");
 | ||
| 			else if (candidates.size() == 1)
 | ||
| 				annotation.referencedDeclaration = candidates.front();
 | ||
| 			else
 | ||
| 				m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup.");
 | ||
| 		}
 | ||
| 		else if (annotation.overloadedDeclarations.empty())
 | ||
| 			m_errorReporter.fatalTypeError(_identifier.location(), "No candidates for overload resolution found.");
 | ||
| 		else if (annotation.overloadedDeclarations.size() == 1)
 | ||
| 			annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();
 | ||
| 		else
 | ||
| 		{
 | ||
| 			vector<Declaration const*> candidates;
 | ||
| 
 | ||
| 			for (Declaration const* declaration: annotation.overloadedDeclarations)
 | ||
| 			{
 | ||
| 				FunctionTypePointer functionType = declaration->functionType(true);
 | ||
| 				solAssert(!!functionType, "Requested type not present.");
 | ||
| 				if (functionType->canTakeArguments(*annotation.argumentTypes))
 | ||
| 					candidates.push_back(declaration);
 | ||
| 			}
 | ||
| 			if (candidates.empty())
 | ||
| 				m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup.");
 | ||
| 			else if (candidates.size() == 1)
 | ||
| 				annotation.referencedDeclaration = candidates.front();
 | ||
| 			else
 | ||
| 				m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup.");
 | ||
| 		}
 | ||
| 	}
 | ||
| 	solAssert(
 | ||
| 		!!annotation.referencedDeclaration,
 | ||
| 		"Referenced declaration is null after overload resolution."
 | ||
| 	);
 | ||
| 	annotation.isLValue = annotation.referencedDeclaration->isLValue();
 | ||
| 	annotation.type = annotation.referencedDeclaration->type();
 | ||
| 	if (!annotation.type)
 | ||
| 		m_errorReporter.fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined.");
 | ||
| 	if (auto variableDeclaration = dynamic_cast<VariableDeclaration const*>(annotation.referencedDeclaration))
 | ||
| 		annotation.isPure = annotation.isConstant = variableDeclaration->isConstant();
 | ||
| 	else if (dynamic_cast<MagicVariableDeclaration const*>(annotation.referencedDeclaration))
 | ||
| 		if (dynamic_cast<FunctionType const*>(annotation.type.get()))
 | ||
| 			annotation.isPure = true;
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr)
 | ||
| {
 | ||
| 	_expr.annotation().type = make_shared<TypeType>(Type::fromElementaryTypeName(_expr.typeName()));
 | ||
| 	_expr.annotation().isPure = true;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::endVisit(Literal const& _literal)
 | ||
| {
 | ||
| 	if (_literal.looksLikeAddress())
 | ||
| 	{
 | ||
| 		// Assign type here if it even looks like an address. This prevents double errors for invalid addresses
 | ||
| 		_literal.annotation().type = make_shared<IntegerType>(160, IntegerType::Modifier::Address);
 | ||
| 
 | ||
| 		string msg;
 | ||
| 		if (_literal.value().length() != 42) // "0x" + 40 hex digits
 | ||
| 			// looksLikeAddress enforces that it is a hex literal starting with "0x"
 | ||
| 			msg =
 | ||
| 				"This looks like an address but is not exactly 40 hex digits. It is " +
 | ||
| 				to_string(_literal.value().length() - 2) +
 | ||
| 				" hex digits.";
 | ||
| 		else if (!_literal.passesAddressChecksum())
 | ||
| 		{
 | ||
| 			msg = "This looks like an address but has an invalid checksum.";
 | ||
| 			if (!_literal.getChecksummedAddress().empty())
 | ||
| 				msg += " Correct checksummed address: \"" + _literal.getChecksummedAddress() + "\".";
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!msg.empty())
 | ||
| 			m_errorReporter.syntaxError(
 | ||
| 				_literal.location(),
 | ||
| 				msg +
 | ||
| 				" If this is not used as an address, please prepend '00'. " +
 | ||
| 				"For more information please see https://solidity.readthedocs.io/en/develop/types.html#address-literals"
 | ||
| 			);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (_literal.isHexNumber() && _literal.subDenomination() != Literal::SubDenomination::None)
 | ||
| 		m_errorReporter.fatalTypeError(
 | ||
| 			_literal.location(),
 | ||
| 			"Hexadecimal numbers cannot be used with unit denominations. "
 | ||
| 			"You can use an expression of the form \"0x1234 * 1 day\" instead."
 | ||
| 		);
 | ||
| 
 | ||
| 	if (_literal.subDenomination() == Literal::SubDenomination::Year)
 | ||
| 		m_errorReporter.typeError(
 | ||
| 			_literal.location(),
 | ||
| 			"Using \"years\" as a unit denomination is deprecated."
 | ||
| 		);
 | ||
| 
 | ||
| 	if (!_literal.annotation().type)
 | ||
| 		_literal.annotation().type = Type::forLiteral(_literal);
 | ||
| 
 | ||
| 	if (!_literal.annotation().type)
 | ||
| 		m_errorReporter.fatalTypeError(_literal.location(), "Invalid literal value.");
 | ||
| 
 | ||
| 	_literal.annotation().isPure = true;
 | ||
| }
 | ||
| 
 | ||
| bool TypeChecker::contractDependenciesAreCyclic(
 | ||
| 	ContractDefinition const& _contract,
 | ||
| 	std::set<ContractDefinition const*> const& _seenContracts
 | ||
| ) const
 | ||
| {
 | ||
| 	// Naive depth-first search that remembers nodes already seen.
 | ||
| 	if (_seenContracts.count(&_contract))
 | ||
| 		return true;
 | ||
| 	set<ContractDefinition const*> seen(_seenContracts);
 | ||
| 	seen.insert(&_contract);
 | ||
| 	for (auto const* c: _contract.annotation().contractDependencies)
 | ||
| 		if (contractDependenciesAreCyclic(*c, seen))
 | ||
| 			return true;
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| Declaration const& TypeChecker::dereference(Identifier const& _identifier) const
 | ||
| {
 | ||
| 	solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored.");
 | ||
| 	return *_identifier.annotation().referencedDeclaration;
 | ||
| }
 | ||
| 
 | ||
| Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const
 | ||
| {
 | ||
| 	solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored.");
 | ||
| 	return *_typeName.annotation().referencedDeclaration;
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::expectType(Expression const& _expression, Type const& _expectedType)
 | ||
| {
 | ||
| 	_expression.accept(*this);
 | ||
| 	if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType))
 | ||
| 	{
 | ||
| 		if (
 | ||
| 			type(_expression)->category() == Type::Category::RationalNumber &&
 | ||
| 			dynamic_pointer_cast<RationalNumberType const>(type(_expression))->isFractional() &&
 | ||
| 			type(_expression)->mobileType()
 | ||
| 		)
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_expression.location(),
 | ||
| 				"Type " +
 | ||
| 				type(_expression)->toString() +
 | ||
| 				" is not implicitly convertible to expected type " +
 | ||
| 				_expectedType.toString() +
 | ||
| 				". Try converting to type " +
 | ||
| 				type(_expression)->mobileType()->toString() +
 | ||
| 				" or use an explicit conversion."
 | ||
| 			);
 | ||
| 		else
 | ||
| 			m_errorReporter.typeError(
 | ||
| 				_expression.location(),
 | ||
| 				"Type " +
 | ||
| 				type(_expression)->toString() +
 | ||
| 				" is not implicitly convertible to expected type " +
 | ||
| 				_expectedType.toString() +
 | ||
| 				"."
 | ||
| 			);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void TypeChecker::requireLValue(Expression const& _expression)
 | ||
| {
 | ||
| 	_expression.annotation().lValueRequested = true;
 | ||
| 	_expression.accept(*this);
 | ||
| 
 | ||
| 	if (_expression.annotation().isConstant)
 | ||
| 		m_errorReporter.typeError(_expression.location(), "Cannot assign to a constant variable.");
 | ||
| 	else if (!_expression.annotation().isLValue)
 | ||
| 		m_errorReporter.typeError(_expression.location(), "Expression has to be an lvalue.");
 | ||
| }
 |