mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
256 lines
11 KiB
C++
256 lines
11 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/**
|
|
* @date 2018
|
|
* Templatized list of simplification rules.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
#include <functional>
|
|
|
|
#include <libevmasm/Instruction.h>
|
|
#include <libevmasm/SimplificationRule.h>
|
|
|
|
#include <libdevcore/CommonData.h>
|
|
|
|
namespace dev
|
|
{
|
|
namespace solidity
|
|
{
|
|
|
|
template <class S> S divWorkaround(S const& _a, S const& _b)
|
|
{
|
|
return (S)(bigint(_a) / bigint(_b));
|
|
}
|
|
|
|
template <class S> S modWorkaround(S const& _a, S const& _b)
|
|
{
|
|
return (S)(bigint(_a) % bigint(_b));
|
|
}
|
|
|
|
/// @returns a list of simplification rules given certain match placeholders.
|
|
/// A, B and C should represent constants, X and Y arbitrary expressions.
|
|
/// The simplifications should neven change the order of evaluation of
|
|
/// arbitrary operations.
|
|
template <class Pattern>
|
|
std::vector<SimplificationRule<Pattern>> simplificationRuleList(
|
|
Pattern A,
|
|
Pattern B,
|
|
Pattern C,
|
|
Pattern X,
|
|
Pattern Y
|
|
)
|
|
{
|
|
std::vector<SimplificationRule<Pattern>> rules;
|
|
rules += std::vector<SimplificationRule<Pattern>>{
|
|
// arithmetics on constants
|
|
{{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }, false},
|
|
{{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }, false},
|
|
{{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }, false},
|
|
{{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }, false},
|
|
{{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }, false},
|
|
{{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }, false},
|
|
{{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }, false},
|
|
{{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }, false},
|
|
{{Instruction::NOT, {A}}, [=]{ return ~A.d(); }, false},
|
|
{{Instruction::LT, {A, B}}, [=]() -> u256 { return A.d() < B.d() ? 1 : 0; }, false},
|
|
{{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }, false},
|
|
{{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }, false},
|
|
{{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }, false},
|
|
{{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }, false},
|
|
{{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }, false},
|
|
{{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }, false},
|
|
{{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }, false},
|
|
{{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }, false},
|
|
{{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }, false},
|
|
{{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }, false},
|
|
{{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }, false},
|
|
{{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }, false},
|
|
{{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
|
|
if (A.d() >= 31)
|
|
return B.d();
|
|
unsigned testBit = unsigned(A.d()) * 8 + 7;
|
|
u256 mask = (u256(1) << testBit) - 1;
|
|
return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
|
|
}, false},
|
|
|
|
// invariants involving known constants
|
|
{{Instruction::ADD, {X, 0}}, [=]{ return X; }, false},
|
|
{{Instruction::ADD, {0, X}}, [=]{ return X; }, false},
|
|
{{Instruction::SUB, {X, 0}}, [=]{ return X; }, false},
|
|
{{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::MUL, {0, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::MUL, {X, 1}}, [=]{ return X; }, false},
|
|
{{Instruction::MUL, {1, X}}, [=]{ return X; }, false},
|
|
{{Instruction::MUL, {X, u256(-1)}}, [=]() -> Pattern { return {Instruction::SUB, {0, X}}; }, false},
|
|
{{Instruction::MUL, {u256(-1), X}}, [=]() -> Pattern { return {Instruction::SUB, {0, X}}; }, false},
|
|
{{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::DIV, {0, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::DIV, {X, 1}}, [=]{ return X; }, false},
|
|
{{Instruction::SDIV, {X, 0}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::SDIV, {0, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::SDIV, {X, 1}}, [=]{ return X; }, false},
|
|
{{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }, false},
|
|
{{Instruction::AND, {~u256(0), X}}, [=]{ return X; }, false},
|
|
{{Instruction::AND, {X, 0}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::AND, {0, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::OR, {X, 0}}, [=]{ return X; }, false},
|
|
{{Instruction::OR, {0, X}}, [=]{ return X; }, false},
|
|
{{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }, true},
|
|
{{Instruction::OR, {~u256(0), X}}, [=]{ return ~u256(0); }, true},
|
|
{{Instruction::XOR, {X, 0}}, [=]{ return X; }, false},
|
|
{{Instruction::XOR, {0, X}}, [=]{ return X; }, false},
|
|
{{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::MOD, {0, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; }, false },
|
|
{{Instruction::EQ, {0, X}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; }, false },
|
|
|
|
// operations involving an expression and itself
|
|
{{Instruction::AND, {X, X}}, [=]{ return X; }, true},
|
|
{{Instruction::OR, {X, X}}, [=]{ return X; }, true},
|
|
{{Instruction::XOR, {X, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::SUB, {X, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::EQ, {X, X}}, [=]{ return u256(1); }, true},
|
|
{{Instruction::LT, {X, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::SLT, {X, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::GT, {X, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::SGT, {X, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::MOD, {X, X}}, [=]{ return u256(0); }, true},
|
|
|
|
// logical instruction combinations
|
|
{{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }, false},
|
|
{{Instruction::XOR, {X, {Instruction::XOR, {X, Y}}}}, [=]{ return Y; }, true},
|
|
{{Instruction::XOR, {X, {Instruction::XOR, {Y, X}}}}, [=]{ return Y; }, true},
|
|
{{Instruction::XOR, {{Instruction::XOR, {X, Y}}, X}}, [=]{ return Y; }, true},
|
|
{{Instruction::XOR, {{Instruction::XOR, {Y, X}}, X}}, [=]{ return Y; }, true},
|
|
{{Instruction::OR, {X, {Instruction::AND, {X, Y}}}}, [=]{ return X; }, true},
|
|
{{Instruction::OR, {X, {Instruction::AND, {Y, X}}}}, [=]{ return X; }, true},
|
|
{{Instruction::OR, {{Instruction::AND, {X, Y}}, X}}, [=]{ return X; }, true},
|
|
{{Instruction::OR, {{Instruction::AND, {Y, X}}, X}}, [=]{ return X; }, true},
|
|
{{Instruction::AND, {X, {Instruction::OR, {X, Y}}}}, [=]{ return X; }, true},
|
|
{{Instruction::AND, {X, {Instruction::OR, {Y, X}}}}, [=]{ return X; }, true},
|
|
{{Instruction::AND, {{Instruction::OR, {X, Y}}, X}}, [=]{ return X; }, true},
|
|
{{Instruction::AND, {{Instruction::OR, {Y, X}}, X}}, [=]{ return X; }, true},
|
|
{{Instruction::AND, {X, {Instruction::NOT, {X}}}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::AND, {{Instruction::NOT, {X}}, X}}, [=]{ return u256(0); }, true},
|
|
{{Instruction::OR, {X, {Instruction::NOT, {X}}}}, [=]{ return ~u256(0); }, true},
|
|
{{Instruction::OR, {{Instruction::NOT, {X}}, X}}, [=]{ return ~u256(0); }, true},
|
|
};
|
|
|
|
// Double negation of opcodes with boolean result
|
|
for (auto const& op: std::vector<Instruction>{
|
|
Instruction::EQ,
|
|
Instruction::LT,
|
|
Instruction::SLT,
|
|
Instruction::GT,
|
|
Instruction::SGT
|
|
})
|
|
rules.push_back({
|
|
{Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
|
|
[=]() -> Pattern { return {op, {X, Y}}; },
|
|
false
|
|
});
|
|
|
|
rules.push_back({
|
|
{Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
|
|
[=]() -> Pattern { return {Instruction::ISZERO, {X}}; },
|
|
false
|
|
});
|
|
|
|
rules.push_back({
|
|
{Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
|
|
[=]() -> Pattern { return { Instruction::EQ, {X, Y} }; },
|
|
false
|
|
});
|
|
|
|
// Associative operations
|
|
for (auto const& opFun: std::vector<std::pair<Instruction,std::function<u256(u256 const&,u256 const&)>>>{
|
|
{Instruction::ADD, std::plus<u256>()},
|
|
{Instruction::MUL, std::multiplies<u256>()},
|
|
{Instruction::AND, std::bit_and<u256>()},
|
|
{Instruction::OR, std::bit_or<u256>()},
|
|
{Instruction::XOR, std::bit_xor<u256>()}
|
|
})
|
|
{
|
|
auto op = opFun.first;
|
|
auto fun = opFun.second;
|
|
// Moving constants to the outside, order matters here - we first add rules
|
|
// for constants and then for non-constants.
|
|
// xa can be (X, A) or (A, X)
|
|
for (auto xa: {std::vector<Pattern>{X, A}, std::vector<Pattern>{A, X}})
|
|
{
|
|
rules += std::vector<SimplificationRule<Pattern>>{{
|
|
// (X+A)+B -> X+(A+B)
|
|
{op, {{op, xa}, B}},
|
|
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; },
|
|
false
|
|
}, {
|
|
// (X+A)+Y -> (X+Y)+A
|
|
{op, {{op, xa}, Y}},
|
|
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; },
|
|
false
|
|
}, {
|
|
// B+(X+A) -> X+(A+B)
|
|
{op, {B, {op, xa}}},
|
|
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; },
|
|
false
|
|
}, {
|
|
// Y+(X+A) -> (Y+X)+A
|
|
{op, {Y, {op, xa}}},
|
|
[=]() -> Pattern { return {op, {{op, {Y, X}}, A}}; },
|
|
false
|
|
}};
|
|
}
|
|
}
|
|
|
|
// move constants across subtractions
|
|
rules += std::vector<SimplificationRule<Pattern>>{
|
|
{
|
|
// X - A -> X + (-A)
|
|
{Instruction::SUB, {X, A}},
|
|
[=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; },
|
|
false
|
|
}, {
|
|
// (X + A) - Y -> (X - Y) + A
|
|
{Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
|
|
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; },
|
|
false
|
|
}, {
|
|
// (A + X) - Y -> (X - Y) + A
|
|
{Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
|
|
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; },
|
|
false
|
|
}, {
|
|
// X - (Y + A) -> (X - Y) + (-A)
|
|
{Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
|
|
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; },
|
|
false
|
|
}, {
|
|
// X - (A + Y) -> (X - Y) + (-A)
|
|
{Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
|
|
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; },
|
|
false
|
|
}
|
|
};
|
|
return rules;
|
|
}
|
|
|
|
}
|
|
}
|