solidity/Compiler.cpp
2015-01-09 21:36:25 +01:00

390 lines
14 KiB
C++

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Solidity compiler.
*/
#include <algorithm>
#include <libevmcore/Instruction.h>
#include <libevmcore/Assembly.h>
#include <libsolidity/AST.h>
#include <libsolidity/Compiler.h>
#include <libsolidity/ExpressionCompiler.h>
#include <libsolidity/CompilerUtils.h>
#include <libsolidity/CallGraph.h>
using namespace std;
namespace dev {
namespace solidity {
void Compiler::compileContract(ContractDefinition const& _contract, vector<MagicVariableDeclaration const*> const& _magicGlobals,
map<ContractDefinition const*, bytes const*> const& _contracts)
{
m_context = CompilerContext(); // clear it just in case
initializeContext(_contract, _magicGlobals, _contracts);
for (ASTPointer<FunctionDefinition> const& function: _contract.getDefinedFunctions())
if (function->getName() != _contract.getName()) // don't add the constructor here
m_context.addFunction(*function);
appendFunctionSelector(_contract);
for (ASTPointer<FunctionDefinition> const& function: _contract.getDefinedFunctions())
if (function->getName() != _contract.getName()) // don't add the constructor here
function->accept(*this);
// Swap the runtime context with the creation-time context
CompilerContext runtimeContext;
swap(m_context, runtimeContext);
initializeContext(_contract, _magicGlobals, _contracts);
packIntoContractCreator(_contract, runtimeContext);
}
void Compiler::initializeContext(ContractDefinition const& _contract, vector<MagicVariableDeclaration const*> const& _magicGlobals,
map<ContractDefinition const*, bytes const*> const& _contracts)
{
m_context.setCompiledContracts(_contracts);
for (MagicVariableDeclaration const* variable: _magicGlobals)
m_context.addMagicGlobal(*variable);
registerStateVariables(_contract);
}
void Compiler::packIntoContractCreator(ContractDefinition const& _contract, CompilerContext const& _runtimeContext)
{
set<FunctionDefinition const*> neededFunctions;
FunctionDefinition const* constructor = _contract.getConstructor();
if (constructor)
neededFunctions = getFunctionsNeededByConstructor(*constructor);
for (FunctionDefinition const* fun: neededFunctions)
m_context.addFunction(*fun);
if (constructor)
appendConstructorCall(*constructor);
eth::AssemblyItem sub = m_context.addSubroutine(_runtimeContext.getAssembly());
// stack contains sub size
m_context << eth::Instruction::DUP1 << sub << u256(0) << eth::Instruction::CODECOPY;
m_context << u256(0) << eth::Instruction::RETURN;
// note that we have to explicitly include all used functions because of absolute jump
// labels
for (FunctionDefinition const* fun: neededFunctions)
fun->accept(*this);
}
void Compiler::appendConstructorCall(FunctionDefinition const& _constructor)
{
eth::AssemblyItem returnTag = m_context.pushNewTag();
// copy constructor arguments from code to memory and then to stack, they are supplied after the actual program
unsigned argumentSize = 0;
for (ASTPointer<VariableDeclaration> const& var: _constructor.getParameters())
argumentSize += CompilerUtils::getPaddedSize(var->getType()->getCalldataEncodedSize());
if (argumentSize > 0)
{
m_context << u256(argumentSize);
m_context.appendProgramSize();
m_context << u256(CompilerUtils::dataStartOffset); // copy it to byte four as expected for ABI calls
m_context << eth::Instruction::CODECOPY;
appendCalldataUnpacker(_constructor, true);
}
m_context.appendJumpTo(m_context.getFunctionEntryLabel(_constructor));
m_context << returnTag;
}
set<FunctionDefinition const*> Compiler::getFunctionsNeededByConstructor(FunctionDefinition const& _constructor)
{
CallGraph callgraph;
callgraph.addFunction(_constructor);
callgraph.computeCallGraph();
return callgraph.getCalls();
}
void Compiler::appendFunctionSelector(ContractDefinition const& _contract)
{
map<FixedHash<4>, FunctionDefinition const*> interfaceFunctions = _contract.getInterfaceFunctions();
map<FixedHash<4>, const eth::AssemblyItem> callDataUnpackerEntryPoints;
// retrieve the function signature hash from the calldata
m_context << u256(1) << u256(0);
CompilerUtils(m_context).loadFromMemory(0, 4, false, true);
// stack now is: 1 0 <funhash>
// for (auto it = interfaceFunctions.cbegin(); it != interfaceFunctions.cend(); ++it)
for (auto const& it: interfaceFunctions)
{
callDataUnpackerEntryPoints.insert(std::make_pair(it.first, m_context.newTag()));
m_context << eth::dupInstruction(1) << u256(FixedHash<4>::Arith(it.first)) << eth::Instruction::EQ;
m_context.appendConditionalJumpTo(callDataUnpackerEntryPoints.at(it.first));
}
m_context << eth::Instruction::STOP; // function not found
for (auto const& it: interfaceFunctions)
{
FunctionDefinition const& function = *it.second;
m_context << callDataUnpackerEntryPoints.at(it.first);
eth::AssemblyItem returnTag = m_context.pushNewTag();
appendCalldataUnpacker(function);
m_context.appendJumpTo(m_context.getFunctionEntryLabel(function));
m_context << returnTag;
appendReturnValuePacker(function);
}
}
unsigned Compiler::appendCalldataUnpacker(FunctionDefinition const& _function, bool _fromMemory)
{
// We do not check the calldata size, everything is zero-padded.
unsigned dataOffset = CompilerUtils::dataStartOffset; // the 4 bytes of the function hash signature
//@todo this can be done more efficiently, saving some CALLDATALOAD calls
for (ASTPointer<VariableDeclaration> const& var: _function.getParameters())
{
unsigned const c_numBytes = var->getType()->getCalldataEncodedSize();
if (c_numBytes > 32)
BOOST_THROW_EXCEPTION(CompilerError()
<< errinfo_sourceLocation(var->getLocation())
<< errinfo_comment("Type " + var->getType()->toString() + " not yet supported."));
bool const c_leftAligned = var->getType()->getCategory() == Type::Category::STRING;
bool const c_padToWords = true;
dataOffset += CompilerUtils(m_context).loadFromMemory(dataOffset, c_numBytes, c_leftAligned,
!_fromMemory, c_padToWords);
}
return dataOffset;
}
void Compiler::appendReturnValuePacker(FunctionDefinition const& _function)
{
//@todo this can be also done more efficiently
unsigned dataOffset = 0;
vector<ASTPointer<VariableDeclaration>> const& parameters = _function.getReturnParameters();
unsigned stackDepth = CompilerUtils(m_context).getSizeOnStack(parameters);
for (unsigned i = 0; i < parameters.size(); ++i)
{
Type const& paramType = *parameters[i]->getType();
unsigned numBytes = paramType.getCalldataEncodedSize();
if (numBytes > 32)
BOOST_THROW_EXCEPTION(CompilerError()
<< errinfo_sourceLocation(parameters[i]->getLocation())
<< errinfo_comment("Type " + paramType.toString() + " not yet supported."));
CompilerUtils(m_context).copyToStackTop(stackDepth, paramType);
ExpressionCompiler::appendTypeConversion(m_context, paramType, paramType, true);
bool const c_leftAligned = paramType.getCategory() == Type::Category::STRING;
bool const c_padToWords = true;
dataOffset += CompilerUtils(m_context).storeInMemory(dataOffset, numBytes, c_leftAligned, c_padToWords);
stackDepth -= paramType.getSizeOnStack();
}
// note that the stack is not cleaned up here
m_context << u256(dataOffset) << u256(0) << eth::Instruction::RETURN;
}
void Compiler::registerStateVariables(ContractDefinition const& _contract)
{
//@todo sort them?
for (ASTPointer<VariableDeclaration> const& variable: _contract.getStateVariables())
m_context.addStateVariable(*variable);
}
bool Compiler::visit(FunctionDefinition const& _function)
{
//@todo to simplify this, the calling convention could by changed such that
// caller puts: [retarg0] ... [retargm] [return address] [arg0] ... [argn]
// although note that this reduces the size of the visible stack
m_context.startNewFunction();
m_returnTag = m_context.newTag();
m_breakTags.clear();
m_continueTags.clear();
m_context << m_context.getFunctionEntryLabel(_function);
// stack upon entry: [return address] [arg0] [arg1] ... [argn]
// reserve additional slots: [retarg0] ... [retargm] [localvar0] ... [localvarp]
for (ASTPointer<VariableDeclaration const> const& variable: _function.getParameters())
m_context.addVariable(*variable);
for (ASTPointer<VariableDeclaration const> const& variable: _function.getReturnParameters())
m_context.addAndInitializeVariable(*variable);
for (VariableDeclaration const* localVariable: _function.getLocalVariables())
m_context.addAndInitializeVariable(*localVariable);
_function.getBody().accept(*this);
m_context << m_returnTag;
// Now we need to re-shuffle the stack. For this we keep a record of the stack layout
// that shows the target positions of the elements, where "-1" denotes that this element needs
// to be removed from the stack.
// Note that the fact that the return arguments are of increasing index is vital for this
// algorithm to work.
unsigned const c_argumentsSize = CompilerUtils::getSizeOnStack(_function.getParameters());
unsigned const c_returnValuesSize = CompilerUtils::getSizeOnStack(_function.getReturnParameters());
unsigned const c_localVariablesSize = CompilerUtils::getSizeOnStack(_function.getLocalVariables());
vector<int> stackLayout;
stackLayout.push_back(c_returnValuesSize); // target of return address
stackLayout += vector<int>(c_argumentsSize, -1); // discard all arguments
for (unsigned i = 0; i < c_returnValuesSize; ++i)
stackLayout.push_back(i);
stackLayout += vector<int>(c_localVariablesSize, -1);
while (stackLayout.back() != int(stackLayout.size() - 1))
if (stackLayout.back() < 0)
{
m_context << eth::Instruction::POP;
stackLayout.pop_back();
}
else
{
m_context << eth::swapInstruction(stackLayout.size() - stackLayout.back() - 1);
swap(stackLayout[stackLayout.back()], stackLayout.back());
}
//@todo assert that everything is in place now
m_context << eth::Instruction::JUMP;
return false;
}
bool Compiler::visit(IfStatement const& _ifStatement)
{
compileExpression(_ifStatement.getCondition());
eth::AssemblyItem trueTag = m_context.appendConditionalJump();
if (_ifStatement.getFalseStatement())
_ifStatement.getFalseStatement()->accept(*this);
eth::AssemblyItem endTag = m_context.appendJumpToNew();
m_context << trueTag;
_ifStatement.getTrueStatement().accept(*this);
m_context << endTag;
return false;
}
bool Compiler::visit(WhileStatement const& _whileStatement)
{
eth::AssemblyItem loopStart = m_context.newTag();
eth::AssemblyItem loopEnd = m_context.newTag();
m_continueTags.push_back(loopStart);
m_breakTags.push_back(loopEnd);
m_context << loopStart;
compileExpression(_whileStatement.getCondition());
m_context << eth::Instruction::ISZERO;
m_context.appendConditionalJumpTo(loopEnd);
_whileStatement.getBody().accept(*this);
m_context.appendJumpTo(loopStart);
m_context << loopEnd;
m_continueTags.pop_back();
m_breakTags.pop_back();
return false;
}
bool Compiler::visit(ForStatement const& _forStatement)
{
eth::AssemblyItem loopStart = m_context.newTag();
eth::AssemblyItem loopEnd = m_context.newTag();
m_continueTags.push_back(loopStart);
m_breakTags.push_back(loopEnd);
if (_forStatement.getInitializationExpression())
_forStatement.getInitializationExpression()->accept(*this);
m_context << loopStart;
// if there is no terminating condition in for, default is to always be true
if (_forStatement.getCondition())
{
compileExpression(*_forStatement.getCondition());
m_context << eth::Instruction::ISZERO;
m_context.appendConditionalJumpTo(loopEnd);
}
_forStatement.getBody().accept(*this);
// for's loop expression if existing
if (_forStatement.getLoopExpression())
_forStatement.getLoopExpression()->accept(*this);
m_context.appendJumpTo(loopStart);
m_context << loopEnd;
m_continueTags.pop_back();
m_breakTags.pop_back();
return false;
}
bool Compiler::visit(Continue const&)
{
if (!m_continueTags.empty())
m_context.appendJumpTo(m_continueTags.back());
return false;
}
bool Compiler::visit(Break const&)
{
if (!m_breakTags.empty())
m_context.appendJumpTo(m_breakTags.back());
return false;
}
bool Compiler::visit(Return const& _return)
{
//@todo modifications are needed to make this work with functions returning multiple values
if (Expression const* expression = _return.getExpression())
{
compileExpression(*expression);
VariableDeclaration const& firstVariable = *_return.getFunctionReturnParameters().getParameters().front();
ExpressionCompiler::appendTypeConversion(m_context, *expression->getType(), *firstVariable.getType());
CompilerUtils(m_context).moveToStackVariable(firstVariable);
}
m_context.appendJumpTo(m_returnTag);
return false;
}
bool Compiler::visit(VariableDefinition const& _variableDefinition)
{
if (Expression const* expression = _variableDefinition.getExpression())
{
compileExpression(*expression);
ExpressionCompiler::appendTypeConversion(m_context,
*expression->getType(),
*_variableDefinition.getDeclaration().getType());
CompilerUtils(m_context).moveToStackVariable(_variableDefinition.getDeclaration());
}
return false;
}
bool Compiler::visit(ExpressionStatement const& _expressionStatement)
{
Expression const& expression = _expressionStatement.getExpression();
compileExpression(expression);
CompilerUtils(m_context).popStackElement(*expression.getType());
return false;
}
void Compiler::compileExpression(Expression const& _expression)
{
ExpressionCompiler::compileExpression(m_context, _expression, m_optimize);
}
}
}