mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
467 lines
10 KiB
C++
467 lines
10 KiB
C++
/*
|
|
This file is part of solidity.
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/**
|
|
* Unit tests for the algorithm to find dominators from a graph.
|
|
*/
|
|
#include <libyul/backends/evm/Dominator.h>
|
|
|
|
#include <test/libsolidity/util/SoltestErrors.h>
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
|
|
using namespace solidity::yul;
|
|
|
|
namespace solidity::yul::test
|
|
{
|
|
|
|
struct ImmediateDominatorTest
|
|
{
|
|
struct Vertex {
|
|
std::string name;
|
|
std::vector<Vertex*> successors;
|
|
|
|
bool operator<(Vertex const& _other) const
|
|
{
|
|
return name < _other.name;
|
|
}
|
|
};
|
|
|
|
typedef std::pair<std::string, std::string> edge;
|
|
|
|
struct ForEachVertexSuccessorTest {
|
|
template<typename Callable>
|
|
void operator()(Vertex _v, Callable&& _callable) const
|
|
{
|
|
for (auto const& w: _v.successors)
|
|
_callable(*w);
|
|
}
|
|
};
|
|
|
|
size_t numVertices;
|
|
Vertex* entry;
|
|
std::map<std::string, Vertex*> vertices;
|
|
std::vector<size_t> expectedIdom;
|
|
std::map<std::string, size_t> expectedDFSIndices;
|
|
};
|
|
|
|
class DominatorFixture
|
|
{
|
|
typedef ImmediateDominatorTest::Vertex Vertex;
|
|
protected:
|
|
static ImmediateDominatorTest const* generateGraph(
|
|
std::vector<std::string> _vertices,
|
|
std::vector<ImmediateDominatorTest::edge> _edges,
|
|
std::vector<size_t> _expectedIdom,
|
|
std::map<std::string, size_t> _expectedDFSIndices
|
|
)
|
|
{
|
|
soltestAssert(_edges.size() > 0);
|
|
|
|
ImmediateDominatorTest* graph = new ImmediateDominatorTest();
|
|
for (std::string v: _vertices)
|
|
graph->vertices.insert(make_pair(v, new Vertex{v, std::vector<Vertex*>{}}));
|
|
graph->entry = graph->vertices[_vertices[0]];
|
|
|
|
soltestAssert(_vertices.size() > 0 && _vertices.size() == graph->vertices.size());
|
|
|
|
graph->numVertices = _vertices.size();
|
|
for (auto const& [from, to]: _edges)
|
|
graph->vertices[from]->successors.push_back(graph->vertices[to]);
|
|
|
|
graph->expectedIdom = _expectedIdom;
|
|
graph->expectedDFSIndices = _expectedDFSIndices;
|
|
return graph;
|
|
}
|
|
};
|
|
|
|
BOOST_AUTO_TEST_SUITE(Dominators)
|
|
|
|
BOOST_FIXTURE_TEST_CASE(immediate_dominator, DominatorFixture)
|
|
{
|
|
typedef ImmediateDominatorTest::edge edge;
|
|
std::vector<ImmediateDominatorTest const*> inputGraph(9);
|
|
|
|
// A
|
|
// │
|
|
// ▼
|
|
// ┌───B
|
|
// │ │
|
|
// ▼ │
|
|
// C ──┼───┐
|
|
// │ │ │
|
|
// ▼ │ ▼
|
|
// D◄──┘ G
|
|
// │ │
|
|
// ▼ ▼
|
|
// E H
|
|
// │ │
|
|
// └──►F◄──┘
|
|
inputGraph[0] = generateGraph(
|
|
{"A", "B", "C", "D", "E", "F", "G", "H"},
|
|
{
|
|
edge("A", "B"),
|
|
edge("B", "C"),
|
|
edge("B", "D"),
|
|
edge("C", "D"),
|
|
edge("C", "G"),
|
|
edge("D", "E"),
|
|
edge("E", "F"),
|
|
edge("G", "H"),
|
|
edge("H", "F")
|
|
},
|
|
{0, 0, 1, 1, 3, 1, 2, 6},
|
|
{
|
|
{"A", 0},
|
|
{"B", 1},
|
|
{"C", 2},
|
|
{"D", 3},
|
|
{"E", 4},
|
|
{"F", 5},
|
|
{"G", 6},
|
|
{"H", 7}
|
|
}
|
|
);
|
|
|
|
// ┌────►A──────┐
|
|
// │ │ ▼
|
|
// │ B◄──┘ ┌──D──┐
|
|
// │ │ │ │
|
|
// │ ▼ ▼ ▼
|
|
// └─C◄───┐ E F
|
|
// │ │ │ │
|
|
// └───►G◄─┴─────┘
|
|
inputGraph[1] = generateGraph(
|
|
{"A", "B", "C", "D", "E", "F", "G"},
|
|
{
|
|
edge("A", "B"),
|
|
edge("B", "C"),
|
|
edge("C", "G"),
|
|
edge("C", "A"),
|
|
edge("A", "D"),
|
|
edge("D", "E"),
|
|
edge("D", "F"),
|
|
edge("E", "G"),
|
|
edge("F", "G"),
|
|
edge("G", "C")
|
|
},
|
|
{0, 0, 0, 0, 0, 4, 4},
|
|
{
|
|
{"A", 0},
|
|
{"B", 1},
|
|
{"C", 2},
|
|
{"G", 3},
|
|
{"D", 4},
|
|
{"E", 5},
|
|
{"F", 6}
|
|
}
|
|
);
|
|
|
|
// ┌─────────┐
|
|
// │ ▼
|
|
// │ ┌───A───┐
|
|
// │ │ │
|
|
// │ ▼ ▼
|
|
// │ ┌──►C◄───── B──┬──────┐
|
|
// │ │ │ ▲ │ │
|
|
// │ │ │ ┌────┘ │ │
|
|
// │ │ ▼ │ ▼ ▼
|
|
// │ │ D──┘ ┌───►E◄─────I
|
|
// │ │ ▲ │ │ │
|
|
// │ │ │ │ ├───┐ │
|
|
// │ │ │ │ │ │ │
|
|
// │ │ │ │ ▼ │ ▼
|
|
// │ └───┼─────┼────F └─►H
|
|
// │ │ │ │ │
|
|
// │ │ │ │ │
|
|
// │ │ │ │ │
|
|
// │ └─────┴─G◄─┴──────┘
|
|
// │ │
|
|
// └─────────────┘
|
|
inputGraph[2] = generateGraph(
|
|
{"A", "B", "C", "D", "E", "F", "G", "H", "I"},
|
|
{
|
|
edge("A", "B"),
|
|
edge("A", "C"),
|
|
edge("B", "C"),
|
|
edge("B", "I"),
|
|
edge("B", "E"),
|
|
edge("C", "D"),
|
|
edge("D", "B"),
|
|
edge("E", "H"),
|
|
edge("E", "F"),
|
|
edge("F", "G"),
|
|
edge("F", "C"),
|
|
edge("G", "E"),
|
|
edge("G", "A"),
|
|
edge("G", "D"),
|
|
edge("H", "G"),
|
|
edge("I", "E"),
|
|
edge("I", "H")
|
|
},
|
|
{0, 0, 0, 0, 1, 1, 1, 1, 5},
|
|
{
|
|
{"A", 0},
|
|
{"B", 1},
|
|
{"C", 2},
|
|
{"D", 3},
|
|
{"I", 4},
|
|
{"E", 5},
|
|
{"H", 6},
|
|
{"G", 7},
|
|
{"F", 8}
|
|
}
|
|
);
|
|
|
|
// T. Lengauer and R. E. Tarjan pg. 122 fig. 1
|
|
// ref: https://www.cs.princeton.edu/courses/archive/spr03/cs423/download/dominators.pdf
|
|
inputGraph[3] = generateGraph(
|
|
{"R", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "L", "K"},
|
|
{
|
|
edge("R", "B"),
|
|
edge("R", "A"),
|
|
edge("R", "C"),
|
|
edge("B", "A"),
|
|
edge("B", "D"),
|
|
edge("B", "E"),
|
|
edge("A", "D"),
|
|
edge("D", "L"),
|
|
edge("L", "H"),
|
|
edge("E", "H"),
|
|
edge("H", "E"),
|
|
edge("H", "K"),
|
|
edge("K", "I"),
|
|
edge("K", "R"),
|
|
edge("C", "F"),
|
|
edge("C", "G"),
|
|
edge("F", "I"),
|
|
edge("G", "I"),
|
|
edge("G", "J"),
|
|
edge("J", "I"),
|
|
edge("I", "K"),
|
|
},
|
|
{0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 9, 9, 11},
|
|
{
|
|
{"R", 0},
|
|
{"B", 1},
|
|
{"A", 2},
|
|
{"D", 3},
|
|
{"L", 4},
|
|
{"H", 5},
|
|
{"E", 6},
|
|
{"K", 7},
|
|
{"I", 8},
|
|
{"C", 9},
|
|
{"F", 10},
|
|
{"G", 11},
|
|
{"J", 12}
|
|
}
|
|
);
|
|
|
|
// Extracted from Loukas Georgiadis Dissertation - Linear-Time Algorithms for Dominators and Related Problems
|
|
// pg. 12 Fig. 2.2
|
|
// ref: https://www.cs.princeton.edu/techreports/2005/737.pdf
|
|
inputGraph[4] = generateGraph(
|
|
{"R", "W", "X1", "X2", "X3", "X4", "X5", "X6", "X7", "Y"},
|
|
{
|
|
edge("R", "W"),
|
|
edge("R", "Y"),
|
|
edge("W", "X1"),
|
|
edge("Y", "X7"),
|
|
edge("X1", "X2"),
|
|
edge("X2", "X1"),
|
|
edge("X2", "X3"),
|
|
edge("X3", "X2"),
|
|
edge("X3", "X4"),
|
|
edge("X4", "X3"),
|
|
edge("X4", "X5"),
|
|
edge("X5", "X4"),
|
|
edge("X5", "X6"),
|
|
edge("X6", "X5"),
|
|
edge("X6", "X7"),
|
|
edge("X7", "X6")
|
|
},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
{
|
|
{"R", 0},
|
|
{"W", 1},
|
|
{"X1", 2},
|
|
{"X2", 3},
|
|
{"X3", 4},
|
|
{"X4", 5},
|
|
{"X5", 6},
|
|
{"X6", 7},
|
|
{"X7", 8},
|
|
{"Y", 9}
|
|
}
|
|
);
|
|
|
|
// Worst-case families for k = 3
|
|
// Example itworst(3) pg. 26 fig. 2.9
|
|
// ref: https://www.cs.princeton.edu/techreports/2005/737.pdf
|
|
inputGraph[5] = generateGraph(
|
|
{"R", "W1", "W2", "W3", "X1", "X2", "X3", "Y1", "Y2", "Y3", "Z1", "Z2", "Z3"},
|
|
{
|
|
edge("R", "W1"),
|
|
edge("R", "X1"),
|
|
edge("R", "Z3"),
|
|
edge("W1", "W2"),
|
|
edge("W2", "W3"),
|
|
edge("X1", "X2"),
|
|
edge("X2", "X3"),
|
|
edge("X3", "Y1"),
|
|
edge("Y1", "W1"),
|
|
edge("Y1", "W2"),
|
|
edge("Y1", "W3"),
|
|
edge("Y1", "Y2"),
|
|
edge("Y2", "W1"),
|
|
edge("Y2", "W2"),
|
|
edge("Y2", "W3"),
|
|
edge("Y2", "Y3"),
|
|
edge("Y3", "W1"),
|
|
edge("Y3", "W2"),
|
|
edge("Y3", "W3"),
|
|
edge("Y3", "Z1"),
|
|
edge("Z1", "Z2"),
|
|
edge("Z2", "Z1"),
|
|
edge("Z2", "Z3"),
|
|
edge("Z3", "Z2")
|
|
},
|
|
{0, 0, 0, 0, 0, 4, 5, 6, 7, 8, 0, 0, 0},
|
|
{
|
|
{"R", 0},
|
|
{"W1", 1},
|
|
{"W2", 2},
|
|
{"W3", 3},
|
|
{"X1", 4},
|
|
{"X2", 5},
|
|
{"X3", 6},
|
|
{"Y1", 7},
|
|
{"Y2", 8},
|
|
{"Y3", 9},
|
|
{"Z1", 10},
|
|
{"Z2", 11},
|
|
{"Z3", 12}
|
|
}
|
|
);
|
|
|
|
|
|
// Worst-case families for k = 3
|
|
// Example idfsquad(3) pg. 26 fig. 2.9
|
|
// ref: https://www.cs.princeton.edu/techreports/2005/737.pdf
|
|
inputGraph[6] = generateGraph(
|
|
{"R", "X1", "X2", "X3", "Y1", "Y2", "Y3", "Z1", "Z2", "Z3"},
|
|
{
|
|
edge("R", "X1"),
|
|
edge("R", "Z1"),
|
|
edge("X1", "Y1"),
|
|
edge("X1", "X2"),
|
|
edge("X2", "X3"),
|
|
edge("X2", "Y2"),
|
|
edge("X3", "Y3"),
|
|
edge("Y1", "Z1"),
|
|
edge("Y1", "Z2"),
|
|
edge("Z1", "Y1"),
|
|
edge("Y2", "Z2"),
|
|
edge("Y2", "Z3"),
|
|
edge("Z2", "Y2"),
|
|
edge("Y3", "Z3"),
|
|
edge("Z3", "Y3")
|
|
},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 1, 8},
|
|
{
|
|
{"R", 0},
|
|
{"X1", 1},
|
|
{"Y1", 2},
|
|
{"Z1", 3},
|
|
{"Z2", 4},
|
|
{"Y2", 5},
|
|
{"Z3", 6},
|
|
{"Y3", 7},
|
|
{"X2", 8},
|
|
{"X3", 9}
|
|
}
|
|
);
|
|
|
|
// Worst-case families for k = 3
|
|
// Example ibfsquad(3) pg. 26 fig. 2.9
|
|
// ref: https://www.cs.princeton.edu/techreports/2005/737.pdf
|
|
inputGraph[7] = generateGraph(
|
|
{"R", "W", "X1", "X2", "X3", "Y", "Z"},
|
|
{
|
|
edge("R", "W"),
|
|
edge("R", "Y"),
|
|
edge("W", "X1"),
|
|
edge("W", "X2"),
|
|
edge("W", "X3"),
|
|
edge("Y", "Z"),
|
|
edge("Z", "X3"),
|
|
edge("X3", "X2"),
|
|
edge("X2", "X1")
|
|
},
|
|
{0, 0, 0, 0, 0, 0, 5},
|
|
{
|
|
{"R", 0},
|
|
{"W", 1},
|
|
{"X1", 2},
|
|
{"X2", 3},
|
|
{"X3", 4},
|
|
{"Y", 5},
|
|
{"Z", 6}
|
|
}
|
|
);
|
|
|
|
// Worst-case families for k = 3
|
|
// Example sncaworst(3) pg. 26 fig. 2.9
|
|
// ref: https://www.cs.princeton.edu/techreports/2005/737.pdf
|
|
inputGraph[8] = generateGraph(
|
|
{"R", "X1", "X2", "X3", "Y1", "Y2", "Y3"},
|
|
{
|
|
edge("R", "X1"),
|
|
edge("R", "Y1"),
|
|
edge("R", "Y2"),
|
|
edge("R", "Y3"),
|
|
edge("X1", "X2"),
|
|
edge("X2", "X3"),
|
|
edge("X3", "Y1"),
|
|
edge("X3", "Y2"),
|
|
edge("X3", "Y3")
|
|
},
|
|
{0, 0, 1, 2, 0, 0, 0},
|
|
{
|
|
{"R", 0},
|
|
{"X1", 1},
|
|
{"X2", 2},
|
|
{"X3", 3},
|
|
{"Y1", 4},
|
|
{"Y2", 5},
|
|
{"Y3", 6},
|
|
}
|
|
);
|
|
|
|
for (ImmediateDominatorTest const* test: inputGraph)
|
|
{
|
|
Dominator<
|
|
ImmediateDominatorTest::Vertex,
|
|
ImmediateDominatorTest::ForEachVertexSuccessorTest
|
|
> dominatorFinder(*test->entry, test->numVertices);
|
|
|
|
for (auto const&[v, idx]: dominatorFinder.vertexIndices())
|
|
BOOST_CHECK(test->expectedDFSIndices.at(v.name) == idx);
|
|
BOOST_TEST(dominatorFinder.immediateDominators() == test->expectedIdom);
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|
|
}
|