mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
726 lines
25 KiB
Solidity
726 lines
25 KiB
Solidity
/*
|
|
* @title String & slice utility library for Solidity contracts.
|
|
* @author Nick Johnson <arachnid@notdot.net>
|
|
*
|
|
* @dev Functionality in this library is largely implemented using an
|
|
* abstraction called a 'slice'. A slice represents a part of a string -
|
|
* anything from the entire string to a single character, or even no
|
|
* characters at all (a 0-length slice). Since a slice only has to specify
|
|
* an offset and a length, copying and manipulating slices is a lot less
|
|
* expensive than copying and manipulating the strings they reference.
|
|
*
|
|
* To further reduce gas costs, most functions on slice that need to return
|
|
* a slice modify the original one instead of allocating a new one; for
|
|
* instance, `s.split(".")` will return the text up to the first '.',
|
|
* modifying s to only contain the remainder of the string after the '.'.
|
|
* In situations where you do not want to modify the original slice, you
|
|
* can make a copy first with `.copy()`, for example:
|
|
* `s.copy().split(".")`. Try and avoid using this idiom in loops; since
|
|
* Solidity has no memory management, it will result in allocating many
|
|
* short-lived slices that are later discarded.
|
|
*
|
|
* Functions that return two slices come in two versions: a non-allocating
|
|
* version that takes the second slice as an argument, modifying it in
|
|
* place, and an allocating version that allocates and returns the second
|
|
* slice; see `nextRune` for example.
|
|
*
|
|
* Functions that have to copy string data will return strings rather than
|
|
* slices; these can be cast back to slices for further processing if
|
|
* required.
|
|
*
|
|
* For convenience, some functions are provided with non-modifying
|
|
* variants that create a new slice and return both; for instance,
|
|
* `s.splitNew('.')` leaves s unmodified, and returns two values
|
|
* corresponding to the left and right parts of the string.
|
|
*/
|
|
|
|
pragma solidity >=0.0;
|
|
|
|
library strings {
|
|
struct slice {
|
|
uint _len;
|
|
uint _ptr;
|
|
}
|
|
|
|
function memcpy(uint dest, uint src, uint len) private pure {
|
|
// Copy word-length chunks while possible
|
|
for(; len >= 32; len -= 32) {
|
|
assembly {
|
|
mstore(dest, mload(src))
|
|
}
|
|
dest += 32;
|
|
src += 32;
|
|
}
|
|
|
|
// The following masking would overflow in the case of len=0
|
|
// and the code path in that case is useless, albeit correct.
|
|
// This shortcut avoids it and saves gas.
|
|
if (len == 0)
|
|
return;
|
|
|
|
// Copy remaining bytes
|
|
uint mask;
|
|
unchecked { mask = 256 ** (32 - len) - 1; }
|
|
assembly {
|
|
let srcpart := and(mload(src), not(mask))
|
|
let destpart := and(mload(dest), mask)
|
|
mstore(dest, or(destpart, srcpart))
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @dev Returns a slice containing the entire string.
|
|
* @param self The string to make a slice from.
|
|
* @return A newly allocated slice containing the entire string.
|
|
*/
|
|
function toSlice(string memory self) internal pure returns (slice memory) {
|
|
uint ptr;
|
|
assembly {
|
|
ptr := add(self, 0x20)
|
|
}
|
|
return slice(bytes(self).length, ptr);
|
|
}
|
|
|
|
/*
|
|
* @dev Returns the length of a null-terminated bytes32 string.
|
|
* @param self The value to find the length of.
|
|
* @return The length of the string, from 0 to 32.
|
|
*/
|
|
function len(bytes32 self) internal pure returns (uint) {
|
|
uint ret;
|
|
if (self == 0)
|
|
return 0;
|
|
if (uint256(self) & 0xffffffffffffffffffffffffffffffff == 0) {
|
|
ret += 16;
|
|
self = bytes32(uint(self) / 0x100000000000000000000000000000000);
|
|
}
|
|
if (uint256(self) & 0xffffffffffffffff == 0) {
|
|
ret += 8;
|
|
self = bytes32(uint(self) / 0x10000000000000000);
|
|
}
|
|
if (uint256(self) & 0xffffffff == 0) {
|
|
ret += 4;
|
|
self = bytes32(uint(self) / 0x100000000);
|
|
}
|
|
if (uint256(self) & 0xffff == 0) {
|
|
ret += 2;
|
|
self = bytes32(uint(self) / 0x10000);
|
|
}
|
|
if (uint256(self) & 0xff == 0) {
|
|
ret += 1;
|
|
}
|
|
return 32 - ret;
|
|
}
|
|
|
|
/*
|
|
* @dev Returns a slice containing the entire bytes32, interpreted as a
|
|
* null-terminated utf-8 string.
|
|
* @param self The bytes32 value to convert to a slice.
|
|
* @return A new slice containing the value of the input argument up to the
|
|
* first null.
|
|
*/
|
|
function toSliceB32(bytes32 self) internal pure returns (slice memory ret) {
|
|
// Allocate space for `self` in memory, copy it there, and point ret at it
|
|
assembly {
|
|
let ptr := mload(0x40)
|
|
mstore(0x40, add(ptr, 0x20))
|
|
mstore(ptr, self)
|
|
mstore(add(ret, 0x20), ptr)
|
|
}
|
|
ret._len = len(self);
|
|
}
|
|
|
|
/*
|
|
* @dev Returns a new slice containing the same data as the current slice.
|
|
* @param self The slice to copy.
|
|
* @return A new slice containing the same data as `self`.
|
|
*/
|
|
function copy(slice memory self) internal pure returns (slice memory) {
|
|
return slice(self._len, self._ptr);
|
|
}
|
|
|
|
/*
|
|
* @dev Copies a slice to a new string.
|
|
* @param self The slice to copy.
|
|
* @return A newly allocated string containing the slice's text.
|
|
*/
|
|
function toString(slice memory self) internal pure returns (string memory) {
|
|
string memory ret = new string(self._len);
|
|
uint retptr;
|
|
assembly { retptr := add(ret, 32) }
|
|
|
|
memcpy(retptr, self._ptr, self._len);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* @dev Returns the length in runes of the slice. Note that this operation
|
|
* takes time proportional to the length of the slice; avoid using it
|
|
* in loops, and call `slice.empty()` if you only need to know whether
|
|
* the slice is empty or not.
|
|
* @param self The slice to operate on.
|
|
* @return The length of the slice in runes.
|
|
*/
|
|
function len(slice memory self) internal pure returns (uint l) {
|
|
// Starting at ptr-31 means the LSB will be the byte we care about
|
|
uint ptr = self._ptr - 31;
|
|
uint end = ptr + self._len;
|
|
for (l = 0; ptr < end; l++) {
|
|
uint8 b;
|
|
assembly { b := and(mload(ptr), 0xFF) }
|
|
if (b < 0x80) {
|
|
ptr += 1;
|
|
} else if(b < 0xE0) {
|
|
ptr += 2;
|
|
} else if(b < 0xF0) {
|
|
ptr += 3;
|
|
} else if(b < 0xF8) {
|
|
ptr += 4;
|
|
} else if(b < 0xFC) {
|
|
ptr += 5;
|
|
} else {
|
|
ptr += 6;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @dev Returns true if the slice is empty (has a length of 0).
|
|
* @param self The slice to operate on.
|
|
* @return True if the slice is empty, False otherwise.
|
|
*/
|
|
function empty(slice memory self) internal pure returns (bool) {
|
|
return self._len == 0;
|
|
}
|
|
|
|
/*
|
|
* @dev Returns a positive number if `other` comes lexicographically after
|
|
* `self`, a negative number if it comes before, or zero if the
|
|
* contents of the two slices are equal. Comparison is done per-rune,
|
|
* on unicode codepoints.
|
|
* @param self The first slice to compare.
|
|
* @param other The second slice to compare.
|
|
* @return The result of the comparison.
|
|
*/
|
|
function compare(slice memory self, slice memory other) internal pure returns (int) {
|
|
uint shortest = self._len;
|
|
if (other._len < self._len)
|
|
shortest = other._len;
|
|
|
|
uint selfptr = self._ptr;
|
|
uint otherptr = other._ptr;
|
|
for (uint idx = 0; idx < shortest; idx += 32) {
|
|
uint a;
|
|
uint b;
|
|
assembly {
|
|
a := mload(selfptr)
|
|
b := mload(otherptr)
|
|
}
|
|
if (a != b) {
|
|
// Mask out irrelevant bytes and check again
|
|
uint256 mask = type(uint256).max; // 0xffff...
|
|
if(shortest < 32) {
|
|
mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
|
|
}
|
|
uint256 diff;
|
|
// This depends on potential underflow.
|
|
unchecked { diff = (a & mask) - (b & mask); }
|
|
if (diff != 0)
|
|
return int(diff);
|
|
}
|
|
selfptr += 32;
|
|
otherptr += 32;
|
|
}
|
|
return int(self._len) - int(other._len);
|
|
}
|
|
|
|
/*
|
|
* @dev Returns true if the two slices contain the same text.
|
|
* @param self The first slice to compare.
|
|
* @param self The second slice to compare.
|
|
* @return True if the slices are equal, false otherwise.
|
|
*/
|
|
function equals(slice memory self, slice memory other) internal pure returns (bool) {
|
|
return compare(self, other) == 0;
|
|
}
|
|
|
|
/*
|
|
* @dev Extracts the first rune in the slice into `rune`, advancing the
|
|
* slice to point to the next rune and returning `self`.
|
|
* @param self The slice to operate on.
|
|
* @param rune The slice that will contain the first rune.
|
|
* @return `rune`.
|
|
*/
|
|
function nextRune(slice memory self, slice memory rune) internal pure returns (slice memory) {
|
|
rune._ptr = self._ptr;
|
|
|
|
if (self._len == 0) {
|
|
rune._len = 0;
|
|
return rune;
|
|
}
|
|
|
|
uint l;
|
|
uint b;
|
|
// Load the first byte of the rune into the LSBs of b
|
|
assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
|
|
if (b < 0x80) {
|
|
l = 1;
|
|
} else if(b < 0xE0) {
|
|
l = 2;
|
|
} else if(b < 0xF0) {
|
|
l = 3;
|
|
} else {
|
|
l = 4;
|
|
}
|
|
|
|
// Check for truncated codepoints
|
|
if (l > self._len) {
|
|
rune._len = self._len;
|
|
self._ptr += self._len;
|
|
self._len = 0;
|
|
return rune;
|
|
}
|
|
|
|
self._ptr += l;
|
|
self._len -= l;
|
|
rune._len = l;
|
|
return rune;
|
|
}
|
|
|
|
/*
|
|
* @dev Returns the first rune in the slice, advancing the slice to point
|
|
* to the next rune.
|
|
* @param self The slice to operate on.
|
|
* @return A slice containing only the first rune from `self`.
|
|
*/
|
|
function nextRune(slice memory self) internal pure returns (slice memory ret) {
|
|
nextRune(self, ret);
|
|
}
|
|
|
|
/*
|
|
* @dev Returns the number of the first codepoint in the slice.
|
|
* @param self The slice to operate on.
|
|
* @return The number of the first codepoint in the slice.
|
|
*/
|
|
function ord(slice memory self) internal pure returns (uint ret) {
|
|
if (self._len == 0) {
|
|
return 0;
|
|
}
|
|
|
|
uint word;
|
|
uint length;
|
|
uint divisor = 2 ** 248;
|
|
|
|
// Load the rune into the MSBs of b
|
|
assembly { word:= mload(mload(add(self, 32))) }
|
|
uint b = word / divisor;
|
|
if (b < 0x80) {
|
|
ret = b;
|
|
length = 1;
|
|
} else if(b < 0xE0) {
|
|
ret = b & 0x1F;
|
|
length = 2;
|
|
} else if(b < 0xF0) {
|
|
ret = b & 0x0F;
|
|
length = 3;
|
|
} else {
|
|
ret = b & 0x07;
|
|
length = 4;
|
|
}
|
|
|
|
// Check for truncated codepoints
|
|
if (length > self._len) {
|
|
return 0;
|
|
}
|
|
|
|
for (uint i = 1; i < length; i++) {
|
|
divisor = divisor / 256;
|
|
b = (word / divisor) & 0xFF;
|
|
if (b & 0xC0 != 0x80) {
|
|
// Invalid UTF-8 sequence
|
|
return 0;
|
|
}
|
|
ret = (ret * 64) | (b & 0x3F);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* @dev Returns the keccak-256 hash of the slice.
|
|
* @param self The slice to hash.
|
|
* @return The hash of the slice.
|
|
*/
|
|
function keccak(slice memory self) internal pure returns (bytes32 ret) {
|
|
assembly {
|
|
ret := keccak256(mload(add(self, 32)), mload(self))
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @dev Returns true if `self` starts with `needle`.
|
|
* @param self The slice to operate on.
|
|
* @param needle The slice to search for.
|
|
* @return True if the slice starts with the provided text, false otherwise.
|
|
*/
|
|
function startsWith(slice memory self, slice memory needle) internal pure returns (bool) {
|
|
if (self._len < needle._len) {
|
|
return false;
|
|
}
|
|
|
|
if (self._ptr == needle._ptr) {
|
|
return true;
|
|
}
|
|
|
|
bool equal;
|
|
assembly {
|
|
let length := mload(needle)
|
|
let selfptr := mload(add(self, 0x20))
|
|
let needleptr := mload(add(needle, 0x20))
|
|
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
|
|
}
|
|
return equal;
|
|
}
|
|
|
|
/*
|
|
* @dev If `self` starts with `needle`, `needle` is removed from the
|
|
* beginning of `self`. Otherwise, `self` is unmodified.
|
|
* @param self The slice to operate on.
|
|
* @param needle The slice to search for.
|
|
* @return `self`
|
|
*/
|
|
function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
|
|
if (self._len < needle._len) {
|
|
return self;
|
|
}
|
|
|
|
bool equal = true;
|
|
if (self._ptr != needle._ptr) {
|
|
assembly {
|
|
let length := mload(needle)
|
|
let selfptr := mload(add(self, 0x20))
|
|
let needleptr := mload(add(needle, 0x20))
|
|
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
|
|
}
|
|
}
|
|
|
|
if (equal) {
|
|
self._len -= needle._len;
|
|
self._ptr += needle._len;
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* @dev Returns true if the slice ends with `needle`.
|
|
* @param self The slice to operate on.
|
|
* @param needle The slice to search for.
|
|
* @return True if the slice starts with the provided text, false otherwise.
|
|
*/
|
|
function endsWith(slice memory self, slice memory needle) internal pure returns (bool) {
|
|
if (self._len < needle._len) {
|
|
return false;
|
|
}
|
|
|
|
uint selfptr = self._ptr + self._len - needle._len;
|
|
|
|
if (selfptr == needle._ptr) {
|
|
return true;
|
|
}
|
|
|
|
bool equal;
|
|
assembly {
|
|
let length := mload(needle)
|
|
let needleptr := mload(add(needle, 0x20))
|
|
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
|
|
}
|
|
|
|
return equal;
|
|
}
|
|
|
|
/*
|
|
* @dev If `self` ends with `needle`, `needle` is removed from the
|
|
* end of `self`. Otherwise, `self` is unmodified.
|
|
* @param self The slice to operate on.
|
|
* @param needle The slice to search for.
|
|
* @return `self`
|
|
*/
|
|
function until(slice memory self, slice memory needle) internal pure returns (slice memory) {
|
|
if (self._len < needle._len) {
|
|
return self;
|
|
}
|
|
|
|
uint selfptr = self._ptr + self._len - needle._len;
|
|
bool equal = true;
|
|
if (selfptr != needle._ptr) {
|
|
assembly {
|
|
let length := mload(needle)
|
|
let needleptr := mload(add(needle, 0x20))
|
|
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
|
|
}
|
|
}
|
|
|
|
if (equal) {
|
|
self._len -= needle._len;
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
// Returns the memory address of the first byte of the first occurrence of
|
|
// `needle` in `self`, or the first byte after `self` if not found.
|
|
function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
|
|
uint ptr = selfptr;
|
|
uint idx;
|
|
|
|
if (needlelen <= selflen) {
|
|
if (needlelen <= 32) {
|
|
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
|
|
|
|
bytes32 needledata;
|
|
assembly { needledata := and(mload(needleptr), mask) }
|
|
|
|
uint end = selfptr + selflen - needlelen;
|
|
bytes32 ptrdata;
|
|
assembly { ptrdata := and(mload(ptr), mask) }
|
|
|
|
while (ptrdata != needledata) {
|
|
if (ptr >= end)
|
|
return selfptr + selflen;
|
|
ptr++;
|
|
assembly { ptrdata := and(mload(ptr), mask) }
|
|
}
|
|
return ptr;
|
|
} else {
|
|
// For long needles, use hashing
|
|
bytes32 hash;
|
|
assembly { hash := keccak256(needleptr, needlelen) }
|
|
|
|
for (idx = 0; idx <= selflen - needlelen; idx++) {
|
|
bytes32 testHash;
|
|
assembly { testHash := keccak256(ptr, needlelen) }
|
|
if (hash == testHash)
|
|
return ptr;
|
|
ptr += 1;
|
|
}
|
|
}
|
|
}
|
|
return selfptr + selflen;
|
|
}
|
|
|
|
// Returns the memory address of the first byte after the last occurrence of
|
|
// `needle` in `self`, or the address of `self` if not found.
|
|
function rfindPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
|
|
uint ptr;
|
|
|
|
if (needlelen <= selflen) {
|
|
if (needlelen <= 32) {
|
|
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
|
|
|
|
bytes32 needledata;
|
|
assembly { needledata := and(mload(needleptr), mask) }
|
|
|
|
ptr = selfptr + selflen - needlelen;
|
|
bytes32 ptrdata;
|
|
assembly { ptrdata := and(mload(ptr), mask) }
|
|
|
|
while (ptrdata != needledata) {
|
|
if (ptr <= selfptr)
|
|
return selfptr;
|
|
ptr--;
|
|
assembly { ptrdata := and(mload(ptr), mask) }
|
|
}
|
|
return ptr + needlelen;
|
|
} else {
|
|
// For long needles, use hashing
|
|
bytes32 hash;
|
|
assembly { hash := keccak256(needleptr, needlelen) }
|
|
ptr = selfptr + (selflen - needlelen);
|
|
while (ptr >= selfptr) {
|
|
bytes32 testHash;
|
|
assembly { testHash := keccak256(ptr, needlelen) }
|
|
if (hash == testHash)
|
|
return ptr + needlelen;
|
|
ptr -= 1;
|
|
}
|
|
}
|
|
}
|
|
return selfptr;
|
|
}
|
|
|
|
/*
|
|
* @dev Modifies `self` to contain everything from the first occurrence of
|
|
* `needle` to the end of the slice. `self` is set to the empty slice
|
|
* if `needle` is not found.
|
|
* @param self The slice to search and modify.
|
|
* @param needle The text to search for.
|
|
* @return `self`.
|
|
*/
|
|
function find(slice memory self, slice memory needle) internal pure returns (slice memory) {
|
|
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
|
|
self._len -= ptr - self._ptr;
|
|
self._ptr = ptr;
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* @dev Modifies `self` to contain the part of the string from the start of
|
|
* `self` to the end of the first occurrence of `needle`. If `needle`
|
|
* is not found, `self` is set to the empty slice.
|
|
* @param self The slice to search and modify.
|
|
* @param needle The text to search for.
|
|
* @return `self`.
|
|
*/
|
|
function rfind(slice memory self, slice memory needle) internal pure returns (slice memory) {
|
|
uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
|
|
self._len = ptr - self._ptr;
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* @dev Splits the slice, setting `self` to everything after the first
|
|
* occurrence of `needle`, and `token` to everything before it. If
|
|
* `needle` does not occur in `self`, `self` is set to the empty slice,
|
|
* and `token` is set to the entirety of `self`.
|
|
* @param self The slice to split.
|
|
* @param needle The text to search for in `self`.
|
|
* @param token An output parameter to which the first token is written.
|
|
* @return `token`.
|
|
*/
|
|
function split(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
|
|
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
|
|
token._ptr = self._ptr;
|
|
token._len = ptr - self._ptr;
|
|
if (ptr == self._ptr + self._len) {
|
|
// Not found
|
|
self._len = 0;
|
|
} else {
|
|
self._len -= token._len + needle._len;
|
|
self._ptr = ptr + needle._len;
|
|
}
|
|
return token;
|
|
}
|
|
|
|
/*
|
|
* @dev Splits the slice, setting `self` to everything after the first
|
|
* occurrence of `needle`, and returning everything before it. If
|
|
* `needle` does not occur in `self`, `self` is set to the empty slice,
|
|
* and the entirety of `self` is returned.
|
|
* @param self The slice to split.
|
|
* @param needle The text to search for in `self`.
|
|
* @return The part of `self` up to the first occurrence of `delim`.
|
|
*/
|
|
function split(slice memory self, slice memory needle) internal pure returns (slice memory token) {
|
|
split(self, needle, token);
|
|
}
|
|
|
|
/*
|
|
* @dev Splits the slice, setting `self` to everything before the last
|
|
* occurrence of `needle`, and `token` to everything after it. If
|
|
* `needle` does not occur in `self`, `self` is set to the empty slice,
|
|
* and `token` is set to the entirety of `self`.
|
|
* @param self The slice to split.
|
|
* @param needle The text to search for in `self`.
|
|
* @param token An output parameter to which the first token is written.
|
|
* @return `token`.
|
|
*/
|
|
function rsplit(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
|
|
uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
|
|
token._ptr = ptr;
|
|
token._len = self._len - (ptr - self._ptr);
|
|
if (ptr == self._ptr) {
|
|
// Not found
|
|
self._len = 0;
|
|
} else {
|
|
self._len -= token._len + needle._len;
|
|
}
|
|
return token;
|
|
}
|
|
|
|
/*
|
|
* @dev Splits the slice, setting `self` to everything before the last
|
|
* occurrence of `needle`, and returning everything after it. If
|
|
* `needle` does not occur in `self`, `self` is set to the empty slice,
|
|
* and the entirety of `self` is returned.
|
|
* @param self The slice to split.
|
|
* @param needle The text to search for in `self`.
|
|
* @return The part of `self` after the last occurrence of `delim`.
|
|
*/
|
|
function rsplit(slice memory self, slice memory needle) internal pure returns (slice memory token) {
|
|
rsplit(self, needle, token);
|
|
}
|
|
|
|
/*
|
|
* @dev Counts the number of nonoverlapping occurrences of `needle` in `self`.
|
|
* @param self The slice to search.
|
|
* @param needle The text to search for in `self`.
|
|
* @return The number of occurrences of `needle` found in `self`.
|
|
*/
|
|
function count(slice memory self, slice memory needle) internal pure returns (uint cnt) {
|
|
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr) + needle._len;
|
|
while (ptr <= self._ptr + self._len) {
|
|
cnt++;
|
|
ptr = findPtr(self._len - (ptr - self._ptr), ptr, needle._len, needle._ptr) + needle._len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @dev Returns True if `self` contains `needle`.
|
|
* @param self The slice to search.
|
|
* @param needle The text to search for in `self`.
|
|
* @return True if `needle` is found in `self`, false otherwise.
|
|
*/
|
|
function contains(slice memory self, slice memory needle) internal pure returns (bool) {
|
|
return rfindPtr(self._len, self._ptr, needle._len, needle._ptr) != self._ptr;
|
|
}
|
|
|
|
/*
|
|
* @dev Returns a newly allocated string containing the concatenation of
|
|
* `self` and `other`.
|
|
* @param self The first slice to concatenate.
|
|
* @param other The second slice to concatenate.
|
|
* @return The concatenation of the two strings.
|
|
*/
|
|
function concat(slice memory self, slice memory other) internal pure returns (string memory) {
|
|
string memory ret = new string(self._len + other._len);
|
|
uint retptr;
|
|
assembly { retptr := add(ret, 32) }
|
|
memcpy(retptr, self._ptr, self._len);
|
|
memcpy(retptr + self._len, other._ptr, other._len);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* @dev Joins an array of slices, using `self` as a delimiter, returning a
|
|
* newly allocated string.
|
|
* @param self The delimiter to use.
|
|
* @param parts A list of slices to join.
|
|
* @return A newly allocated string containing all the slices in `parts`,
|
|
* joined with `self`.
|
|
*/
|
|
function join(slice memory self, slice[] memory parts) internal pure returns (string memory) {
|
|
if (parts.length == 0)
|
|
return "";
|
|
|
|
uint length = self._len * (parts.length - 1);
|
|
for(uint i = 0; i < parts.length; i++)
|
|
length += parts[i]._len;
|
|
|
|
string memory ret = new string(length);
|
|
uint retptr;
|
|
assembly { retptr := add(ret, 32) }
|
|
|
|
for(uint i = 0; i < parts.length; i++) {
|
|
memcpy(retptr, parts[i]._ptr, parts[i]._len);
|
|
retptr += parts[i]._len;
|
|
if (i < parts.length - 1) {
|
|
memcpy(retptr, self._ptr, self._len);
|
|
retptr += self._len;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|