mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
195 lines
6.5 KiB
C++
195 lines
6.5 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <test/yulPhaser/Common.h>
|
|
|
|
#include <tools/yulPhaser/SimulationRNG.h>
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
|
|
#include <cassert>
|
|
|
|
using namespace std;
|
|
|
|
namespace solidity::phaser::test
|
|
{
|
|
|
|
BOOST_AUTO_TEST_SUITE(Phaser)
|
|
BOOST_AUTO_TEST_SUITE(RandomTest)
|
|
|
|
BOOST_AUTO_TEST_CASE(bernoulliTrial_should_produce_samples_with_right_expected_value_and_variance)
|
|
{
|
|
SimulationRNG::reset(1);
|
|
constexpr size_t numSamples = 10000;
|
|
constexpr double successProbability = 0.4;
|
|
constexpr double relativeTolerance = 0.05;
|
|
|
|
// For bernoulli distribution with success probability p: EX = p, VarX = p(1 - p)
|
|
constexpr double expectedValue = successProbability;
|
|
constexpr double variance = successProbability * (1 - successProbability);
|
|
|
|
vector<uint32_t> samples;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
|
|
|
|
BOOST_TEST(abs(mean(samples) - expectedValue) < expectedValue * relativeTolerance);
|
|
BOOST_TEST(abs(meanSquaredError(samples, expectedValue) - variance) < variance * relativeTolerance);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(bernoulliTrial_can_be_reset)
|
|
{
|
|
constexpr size_t numSamples = 10;
|
|
constexpr double successProbability = 0.4;
|
|
|
|
SimulationRNG::reset(1);
|
|
vector<uint32_t> samples1;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples1.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
|
|
|
|
vector<uint32_t> samples2;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples2.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
|
|
|
|
SimulationRNG::reset(1);
|
|
vector<uint32_t> samples3;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples3.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
|
|
|
|
SimulationRNG::reset(2);
|
|
vector<uint32_t> samples4;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples4.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
|
|
|
|
BOOST_TEST(samples1 != samples2);
|
|
BOOST_TEST(samples1 == samples3);
|
|
BOOST_TEST(samples1 != samples4);
|
|
BOOST_TEST(samples2 != samples3);
|
|
BOOST_TEST(samples2 != samples4);
|
|
BOOST_TEST(samples3 != samples4);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(uniformInt_returns_different_values_when_called_multiple_times)
|
|
{
|
|
SimulationRNG::reset(1);
|
|
constexpr size_t numSamples = 1000;
|
|
constexpr uint32_t minValue = 50;
|
|
constexpr uint32_t maxValue = 80;
|
|
constexpr double relativeTolerance = 0.05;
|
|
|
|
// For uniform distribution from range a..b: EX = (a + b) / 2, VarX = ((b - a + 1)^2 - 1) / 12
|
|
constexpr double expectedValue = (minValue + maxValue) / 2.0;
|
|
constexpr double variance = ((maxValue - minValue + 1) * (maxValue - minValue + 1) - 1) / 12.0;
|
|
|
|
vector<uint32_t> samples;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples.push_back(SimulationRNG::uniformInt(minValue, maxValue));
|
|
|
|
BOOST_TEST(abs(mean(samples) - expectedValue) < expectedValue * relativeTolerance);
|
|
BOOST_TEST(abs(meanSquaredError(samples, expectedValue) - variance) < variance * relativeTolerance);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(uniformInt_can_be_reset)
|
|
{
|
|
constexpr size_t numSamples = 10;
|
|
constexpr uint32_t minValue = 50;
|
|
constexpr uint32_t maxValue = 80;
|
|
|
|
SimulationRNG::reset(1);
|
|
vector<uint32_t> samples1;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples1.push_back(SimulationRNG::uniformInt(minValue, maxValue));
|
|
|
|
vector<uint32_t> samples2;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples2.push_back(SimulationRNG::uniformInt(minValue, maxValue));
|
|
|
|
SimulationRNG::reset(1);
|
|
vector<uint32_t> samples3;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples3.push_back(SimulationRNG::uniformInt(minValue, maxValue));
|
|
|
|
SimulationRNG::reset(2);
|
|
vector<uint32_t> samples4;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples4.push_back(SimulationRNG::uniformInt(minValue, maxValue));
|
|
|
|
BOOST_TEST(samples1 != samples2);
|
|
BOOST_TEST(samples1 == samples3);
|
|
BOOST_TEST(samples1 != samples4);
|
|
BOOST_TEST(samples2 != samples3);
|
|
BOOST_TEST(samples2 != samples4);
|
|
BOOST_TEST(samples3 != samples4);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(binomialInt_should_produce_samples_with_right_expected_value_and_variance)
|
|
{
|
|
SimulationRNG::reset(1);
|
|
constexpr size_t numSamples = 1000;
|
|
constexpr uint32_t numTrials = 100;
|
|
constexpr double successProbability = 0.2;
|
|
constexpr double relativeTolerance = 0.05;
|
|
|
|
// For binomial distribution with n trials and success probability p: EX = np, VarX = np(1 - p)
|
|
constexpr double expectedValue = numTrials * successProbability;
|
|
constexpr double variance = numTrials * successProbability * (1 - successProbability);
|
|
|
|
vector<uint32_t> samples;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
|
|
|
|
BOOST_TEST(abs(mean(samples) - expectedValue) < expectedValue * relativeTolerance);
|
|
BOOST_TEST(abs(meanSquaredError(samples, expectedValue) - variance) < variance * relativeTolerance);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(binomialInt_can_be_reset)
|
|
{
|
|
constexpr size_t numSamples = 10;
|
|
constexpr uint32_t numTrials = 10;
|
|
constexpr double successProbability = 0.6;
|
|
|
|
SimulationRNG::reset(1);
|
|
vector<uint32_t> samples1;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples1.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
|
|
|
|
vector<uint32_t> samples2;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples2.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
|
|
|
|
SimulationRNG::reset(1);
|
|
vector<uint32_t> samples3;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples3.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
|
|
|
|
SimulationRNG::reset(2);
|
|
vector<uint32_t> samples4;
|
|
for (uint32_t i = 0; i < numSamples; ++i)
|
|
samples4.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
|
|
|
|
BOOST_TEST(samples1 != samples2);
|
|
BOOST_TEST(samples1 == samples3);
|
|
BOOST_TEST(samples1 != samples4);
|
|
BOOST_TEST(samples2 != samples3);
|
|
BOOST_TEST(samples2 != samples4);
|
|
BOOST_TEST(samples3 != samples4);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|
|
BOOST_AUTO_TEST_SUITE_END()
|
|
|
|
}
|