solidity/libsolidity/interface/CompilerStack.cpp
2021-12-13 17:33:48 +01:00

1762 lines
55 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* @author Christian <c@ethdev.com>
* @author Gav Wood <g@ethdev.com>
* @date 2014
* Full-stack compiler that converts a source code string to bytecode.
*/
#include <libsolidity/interface/CompilerStack.h>
#include <libsolidity/interface/ImportRemapper.h>
#include <libsolidity/analysis/ControlFlowAnalyzer.h>
#include <libsolidity/analysis/ControlFlowGraph.h>
#include <libsolidity/analysis/ControlFlowRevertPruner.h>
#include <libsolidity/analysis/ContractLevelChecker.h>
#include <libsolidity/analysis/DeclarationTypeChecker.h>
#include <libsolidity/analysis/DocStringAnalyser.h>
#include <libsolidity/analysis/DocStringTagParser.h>
#include <libsolidity/analysis/GlobalContext.h>
#include <libsolidity/analysis/NameAndTypeResolver.h>
#include <libsolidity/analysis/PostTypeChecker.h>
#include <libsolidity/analysis/PostTypeContractLevelChecker.h>
#include <libsolidity/analysis/StaticAnalyzer.h>
#include <libsolidity/analysis/SyntaxChecker.h>
#include <libsolidity/analysis/Scoper.h>
#include <libsolidity/analysis/TypeChecker.h>
#include <libsolidity/analysis/ViewPureChecker.h>
#include <libsolidity/analysis/ImmutableValidator.h>
#include <libsolidity/ast/AST.h>
#include <libsolidity/ast/TypeProvider.h>
#include <libsolidity/ast/ASTJsonImporter.h>
#include <libsolidity/codegen/Compiler.h>
#include <libsolidity/formal/ModelChecker.h>
#include <libsolidity/interface/ABI.h>
#include <libsolidity/interface/Natspec.h>
#include <libsolidity/interface/GasEstimator.h>
#include <libsolidity/interface/StorageLayout.h>
#include <libsolidity/interface/Version.h>
#include <libsolidity/parsing/Parser.h>
#include <libsolidity/codegen/ir/Common.h>
#include <libsolidity/codegen/ir/IRGenerator.h>
#include <libyul/YulString.h>
#include <libyul/AsmPrinter.h>
#include <libyul/AsmJsonConverter.h>
#include <libyul/AssemblyStack.h>
#include <libyul/AST.h>
#include <libyul/AsmParser.h>
#include <liblangutil/Scanner.h>
#include <liblangutil/SemVerHandler.h>
#include <libevmasm/Exceptions.h>
#include <libsolutil/SwarmHash.h>
#include <libsolutil/IpfsHash.h>
#include <libsolutil/JSON.h>
#include <libsolutil/Algorithms.h>
#include <json/json.h>
#include <boost/algorithm/string/replace.hpp>
#include <utility>
#include <map>
#include <limits>
#include <string>
using namespace std;
using namespace solidity;
using namespace solidity::langutil;
using namespace solidity::frontend;
using solidity::util::errinfo_comment;
using solidity::util::toHex;
static int g_compilerStackCounts = 0;
CompilerStack::CompilerStack(ReadCallback::Callback _readFile):
m_readFile{std::move(_readFile)},
m_errorReporter{m_errorList}
{
// Because TypeProvider is currently a singleton API, we must ensure that
// no more than one entity is actually using it at a time.
solAssert(g_compilerStackCounts == 0, "You shall not have another CompilerStack aside me.");
++g_compilerStackCounts;
}
CompilerStack::~CompilerStack()
{
--g_compilerStackCounts;
TypeProvider::reset();
}
void CompilerStack::createAndAssignCallGraphs()
{
for (Source const* source: m_sourceOrder)
{
if (!source->ast)
continue;
for (ContractDefinition const* contract: ASTNode::filteredNodes<ContractDefinition>(source->ast->nodes()))
{
ContractDefinitionAnnotation& annotation =
m_contracts.at(contract->fullyQualifiedName()).contract->annotation();
annotation.creationCallGraph = make_unique<CallGraph>(
FunctionCallGraphBuilder::buildCreationGraph(*contract)
);
annotation.deployedCallGraph = make_unique<CallGraph>(
FunctionCallGraphBuilder::buildDeployedGraph(
*contract,
**annotation.creationCallGraph
)
);
solAssert(annotation.contractDependencies.empty(), "contractDependencies expected to be empty?!");
annotation.contractDependencies = annotation.creationCallGraph->get()->bytecodeDependency;
for (auto const& [dependencyContract, referencee]: annotation.deployedCallGraph->get()->bytecodeDependency)
annotation.contractDependencies.emplace(dependencyContract, referencee);
}
}
}
void CompilerStack::findAndReportCyclicContractDependencies()
{
// Cycles we found, used to avoid duplicate reports for the same reference
set<ASTNode const*, ASTNode::CompareByID> foundCycles;
for (Source const* source: m_sourceOrder)
{
if (!source->ast)
continue;
for (ContractDefinition const* contractDefinition: ASTNode::filteredNodes<ContractDefinition>(source->ast->nodes()))
{
util::CycleDetector<ContractDefinition> cycleDetector{[&](
ContractDefinition const& _contract,
util::CycleDetector<ContractDefinition>& _cycleDetector,
size_t _depth
)
{
// No specific reason for exactly that number, just a limit we're unlikely to hit.
if (_depth >= 256)
m_errorReporter.fatalTypeError(
7864_error,
_contract.location(),
"Contract dependencies exhausting cyclic dependency validator"
);
for (auto& [dependencyContract, referencee]: _contract.annotation().contractDependencies)
if (_cycleDetector.run(*dependencyContract))
return;
}};
ContractDefinition const* cycle = cycleDetector.run(*contractDefinition);
if (!cycle)
continue;
ASTNode const* referencee = contractDefinition->annotation().contractDependencies.at(cycle);
if (foundCycles.find(referencee) != foundCycles.end())
continue;
SecondarySourceLocation secondaryLocation{};
secondaryLocation.append("Referenced contract is here:"s, cycle->location());
m_errorReporter.typeError(
7813_error,
referencee->location(),
secondaryLocation,
"Circular reference to contract bytecode either via \"new\" or \"type(...).creationCode\" / \"type(...).runtimeCode\"."
);
foundCycles.emplace(referencee);
}
}
}
void CompilerStack::setRemappings(vector<ImportRemapper::Remapping> _remappings)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must set remappings before parsing.");
for (auto const& remapping: _remappings)
solAssert(!remapping.prefix.empty(), "");
m_importRemapper.setRemappings(move(_remappings));
}
void CompilerStack::setViaIR(bool _viaIR)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must set viaIR before parsing.");
m_viaIR = _viaIR;
}
void CompilerStack::setEVMVersion(langutil::EVMVersion _version)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must set EVM version before parsing.");
m_evmVersion = _version;
}
void CompilerStack::setModelCheckerSettings(ModelCheckerSettings _settings)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must set model checking settings before parsing.");
m_modelCheckerSettings = _settings;
}
void CompilerStack::setLibraries(std::map<std::string, util::h160> const& _libraries)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must set libraries before parsing.");
m_libraries = _libraries;
}
void CompilerStack::setOptimiserSettings(bool _optimize, size_t _runs)
{
OptimiserSettings settings = _optimize ? OptimiserSettings::standard() : OptimiserSettings::minimal();
settings.expectedExecutionsPerDeployment = _runs;
setOptimiserSettings(std::move(settings));
}
void CompilerStack::setOptimiserSettings(OptimiserSettings _settings)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must set optimiser settings before parsing.");
m_optimiserSettings = std::move(_settings);
}
void CompilerStack::setRevertStringBehaviour(RevertStrings _revertStrings)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must set revert string settings before parsing.");
solUnimplementedAssert(_revertStrings != RevertStrings::VerboseDebug);
m_revertStrings = _revertStrings;
}
void CompilerStack::useMetadataLiteralSources(bool _metadataLiteralSources)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must set use literal sources before parsing.");
m_metadataLiteralSources = _metadataLiteralSources;
}
void CompilerStack::setMetadataHash(MetadataHash _metadataHash)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must set metadata hash before parsing.");
m_metadataHash = _metadataHash;
}
void CompilerStack::selectDebugInfo(DebugInfoSelection _debugInfoSelection)
{
if (m_stackState >= CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must select debug info components before compilation."));
m_debugInfoSelection = _debugInfoSelection;
}
void CompilerStack::addSMTLib2Response(h256 const& _hash, string const& _response)
{
if (m_stackState >= ParsedAndImported)
solThrow(CompilerError, "Must add SMTLib2 responses before parsing.");
m_smtlib2Responses[_hash] = _response;
}
void CompilerStack::reset(bool _keepSettings)
{
m_stackState = Empty;
m_hasError = false;
m_sources.clear();
m_smtlib2Responses.clear();
m_unhandledSMTLib2Queries.clear();
if (!_keepSettings)
{
m_importRemapper.clear();
m_libraries.clear();
m_viaIR = false;
m_evmVersion = langutil::EVMVersion();
m_modelCheckerSettings = ModelCheckerSettings{};
m_generateIR = false;
m_generateEwasm = false;
m_revertStrings = RevertStrings::Default;
m_optimiserSettings = OptimiserSettings::minimal();
m_metadataLiteralSources = false;
m_metadataHash = MetadataHash::IPFS;
m_stopAfter = State::CompilationSuccessful;
}
m_globalContext.reset();
m_sourceOrder.clear();
m_contracts.clear();
m_errorReporter.clear();
TypeProvider::reset();
}
void CompilerStack::setSources(StringMap _sources)
{
if (m_stackState == SourcesSet)
solThrow(CompilerError, "Cannot change sources once set.");
if (m_stackState != Empty)
solThrow(CompilerError, "Must set sources before parsing.");
for (auto source: _sources)
m_sources[source.first].charStream = make_unique<CharStream>(/*content*/std::move(source.second), /*name*/source.first);
m_stackState = SourcesSet;
}
bool CompilerStack::parse()
{
if (m_stackState != SourcesSet)
solThrow(CompilerError, "Must call parse only after the SourcesSet state.");
m_errorReporter.clear();
if (SemVerVersion{string(VersionString)}.isPrerelease())
m_errorReporter.warning(3805_error, "This is a pre-release compiler version, please do not use it in production.");
Parser parser{m_errorReporter, m_evmVersion, m_parserErrorRecovery};
vector<string> sourcesToParse;
for (auto const& s: m_sources)
sourcesToParse.push_back(s.first);
for (size_t i = 0; i < sourcesToParse.size(); ++i)
{
string const& path = sourcesToParse[i];
Source& source = m_sources[path];
source.ast = parser.parse(*source.charStream);
if (!source.ast)
solAssert(Error::containsErrors(m_errorReporter.errors()), "Parser returned null but did not report error.");
else
{
source.ast->annotation().path = path;
for (auto const& import: ASTNode::filteredNodes<ImportDirective>(source.ast->nodes()))
{
solAssert(!import->path().empty(), "Import path cannot be empty.");
// The current value of `path` is the absolute path as seen from this source file.
// We first have to apply remappings before we can store the actual absolute path
// as seen globally.
import->annotation().absolutePath = applyRemapping(util::absolutePath(
import->path(),
path
), path);
}
if (m_stopAfter >= ParsedAndImported)
for (auto const& newSource: loadMissingSources(*source.ast))
{
string const& newPath = newSource.first;
string const& newContents = newSource.second;
m_sources[newPath].charStream = make_shared<CharStream>(newContents, newPath);
sourcesToParse.push_back(newPath);
}
}
}
if (m_stopAfter <= Parsed)
m_stackState = Parsed;
else
m_stackState = ParsedAndImported;
if (Error::containsErrors(m_errorReporter.errors()))
m_hasError = true;
storeContractDefinitions();
return !m_hasError;
}
void CompilerStack::importASTs(map<string, Json::Value> const& _sources)
{
if (m_stackState != Empty)
solThrow(CompilerError, "Must call importASTs only before the SourcesSet state.");
m_sourceJsons = _sources;
map<string, ASTPointer<SourceUnit>> reconstructedSources = ASTJsonImporter(m_evmVersion).jsonToSourceUnit(m_sourceJsons);
for (auto& src: reconstructedSources)
{
string const& path = src.first;
Source source;
source.ast = src.second;
source.charStream = make_shared<CharStream>(
util::jsonCompactPrint(m_sourceJsons[src.first]),
src.first
);
m_sources[path] = move(source);
}
m_stackState = ParsedAndImported;
m_importedSources = true;
storeContractDefinitions();
}
bool CompilerStack::analyze()
{
if (m_stackState != ParsedAndImported || m_stackState >= AnalysisPerformed)
solThrow(CompilerError, "Must call analyze only after parsing was performed.");
resolveImports();
for (Source const* source: m_sourceOrder)
if (source->ast)
Scoper::assignScopes(*source->ast);
bool noErrors = true;
try
{
SyntaxChecker syntaxChecker(m_errorReporter, m_optimiserSettings.runYulOptimiser);
for (Source const* source: m_sourceOrder)
if (source->ast && !syntaxChecker.checkSyntax(*source->ast))
noErrors = false;
m_globalContext = make_shared<GlobalContext>();
// We need to keep the same resolver during the whole process.
NameAndTypeResolver resolver(*m_globalContext, m_evmVersion, m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !resolver.registerDeclarations(*source->ast))
return false;
map<string, SourceUnit const*> sourceUnitsByName;
for (auto& source: m_sources)
sourceUnitsByName[source.first] = source.second.ast.get();
for (Source const* source: m_sourceOrder)
if (source->ast && !resolver.performImports(*source->ast, sourceUnitsByName))
return false;
resolver.warnHomonymDeclarations();
DocStringTagParser docStringTagParser(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !docStringTagParser.parseDocStrings(*source->ast))
noErrors = false;
// Requires DocStringTagParser
for (Source const* source: m_sourceOrder)
if (source->ast && !resolver.resolveNamesAndTypes(*source->ast))
return false;
DeclarationTypeChecker declarationTypeChecker(m_errorReporter, m_evmVersion);
for (Source const* source: m_sourceOrder)
if (source->ast && !declarationTypeChecker.check(*source->ast))
return false;
// Requires DeclarationTypeChecker to have run
for (Source const* source: m_sourceOrder)
if (source->ast && !docStringTagParser.validateDocStringsUsingTypes(*source->ast))
noErrors = false;
// Next, we check inheritance, overrides, function collisions and other things at
// contract or function level.
// This also calculates whether a contract is abstract, which is needed by the
// type checker.
ContractLevelChecker contractLevelChecker(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (auto sourceAst = source->ast)
noErrors = contractLevelChecker.check(*sourceAst);
// Requires ContractLevelChecker
DocStringAnalyser docStringAnalyser(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !docStringAnalyser.analyseDocStrings(*source->ast))
noErrors = false;
// Now we run full type checks that go down to the expression level. This
// cannot be done earlier, because we need cross-contract types and information
// about whether a contract is abstract for the `new` expression.
// This populates the `type` annotation for all expressions.
//
// Note: this does not resolve overloaded functions. In order to do that, types of arguments are needed,
// which is only done one step later.
TypeChecker typeChecker(m_evmVersion, m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !typeChecker.checkTypeRequirements(*source->ast))
noErrors = false;
if (noErrors)
{
// Checks that can only be done when all types of all AST nodes are known.
PostTypeChecker postTypeChecker(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !postTypeChecker.check(*source->ast))
noErrors = false;
if (!postTypeChecker.finalize())
noErrors = false;
}
// Create & assign callgraphs and check for contract dependency cycles
if (noErrors)
{
createAndAssignCallGraphs();
findAndReportCyclicContractDependencies();
}
if (noErrors)
for (Source const* source: m_sourceOrder)
if (source->ast && !PostTypeContractLevelChecker{m_errorReporter}.check(*source->ast))
noErrors = false;
// Check that immutable variables are never read in c'tors and assigned
// exactly once
if (noErrors)
for (Source const* source: m_sourceOrder)
if (source->ast)
for (ASTPointer<ASTNode> const& node: source->ast->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
ImmutableValidator(m_errorReporter, *contract).analyze();
if (noErrors)
{
// Control flow graph generator and analyzer. It can check for issues such as
// variable is used before it is assigned to.
CFG cfg(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !cfg.constructFlow(*source->ast))
noErrors = false;
if (noErrors)
{
ControlFlowRevertPruner pruner(cfg);
pruner.run();
ControlFlowAnalyzer controlFlowAnalyzer(cfg, m_errorReporter);
if (!controlFlowAnalyzer.run())
noErrors = false;
}
}
if (noErrors)
{
// Checks for common mistakes. Only generates warnings.
StaticAnalyzer staticAnalyzer(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !staticAnalyzer.analyze(*source->ast))
noErrors = false;
}
if (noErrors)
{
// Check for state mutability in every function.
vector<ASTPointer<ASTNode>> ast;
for (Source const* source: m_sourceOrder)
if (source->ast)
ast.push_back(source->ast);
if (!ViewPureChecker(ast, m_errorReporter).check())
noErrors = false;
}
if (noErrors)
{
ModelChecker modelChecker(m_errorReporter, *this, m_smtlib2Responses, m_modelCheckerSettings, m_readFile);
auto allSources = applyMap(m_sourceOrder, [](Source const* _source) { return _source->ast; });
modelChecker.enableAllEnginesIfPragmaPresent(allSources);
modelChecker.checkRequestedSourcesAndContracts(allSources);
for (Source const* source: m_sourceOrder)
if (source->ast)
modelChecker.analyze(*source->ast);
m_unhandledSMTLib2Queries += modelChecker.unhandledQueries();
}
}
catch (FatalError const&)
{
if (m_errorReporter.errors().empty())
throw; // Something is weird here, rather throw again.
noErrors = false;
}
m_stackState = AnalysisPerformed;
if (!noErrors)
m_hasError = true;
return !m_hasError;
}
bool CompilerStack::parseAndAnalyze(State _stopAfter)
{
m_stopAfter = _stopAfter;
bool success = parse();
if (m_stackState >= m_stopAfter)
return success;
if (success || m_parserErrorRecovery)
success = analyze();
return success;
}
bool CompilerStack::isRequestedSource(string const& _sourceName) const
{
return
m_requestedContractNames.empty() ||
m_requestedContractNames.count("") ||
m_requestedContractNames.count(_sourceName);
}
bool CompilerStack::isRequestedContract(ContractDefinition const& _contract) const
{
/// In case nothing was specified in outputSelection.
if (m_requestedContractNames.empty())
return true;
for (auto const& key: vector<string>{"", _contract.sourceUnitName()})
{
auto const& it = m_requestedContractNames.find(key);
if (it != m_requestedContractNames.end())
if (it->second.count(_contract.name()) || it->second.count(""))
return true;
}
return false;
}
bool CompilerStack::compile(State _stopAfter)
{
m_stopAfter = _stopAfter;
if (m_stackState < AnalysisPerformed)
if (!parseAndAnalyze(_stopAfter))
return false;
if (m_stackState >= m_stopAfter)
return true;
if (m_hasError)
solThrow(CompilerError, "Called compile with errors.");
// Only compile contracts individually which have been requested.
map<ContractDefinition const*, shared_ptr<Compiler const>> otherCompilers;
for (Source const* source: m_sourceOrder)
for (ASTPointer<ASTNode> const& node: source->ast->nodes())
if (auto contract = dynamic_cast<ContractDefinition const*>(node.get()))
if (isRequestedContract(*contract))
{
try
{
if (m_viaIR || m_generateIR || m_generateEwasm)
generateIR(*contract);
if (m_generateEvmBytecode)
{
if (m_viaIR)
generateEVMFromIR(*contract);
else
compileContract(*contract, otherCompilers);
}
if (m_generateEwasm)
generateEwasm(*contract);
}
catch (Error const& _error)
{
if (_error.type() != Error::Type::CodeGenerationError)
throw;
m_errorReporter.error(_error.errorId(), _error.type(), SourceLocation(), _error.what());
return false;
}
catch (UnimplementedFeatureError const& _unimplementedError)
{
if (
SourceLocation const* sourceLocation =
boost::get_error_info<langutil::errinfo_sourceLocation>(_unimplementedError)
)
{
string const* comment = _unimplementedError.comment();
m_errorReporter.error(
1834_error,
Error::Type::CodeGenerationError,
*sourceLocation,
"Unimplemented feature error" +
((comment && !comment->empty()) ? ": " + *comment : string{}) +
" in " +
_unimplementedError.lineInfo()
);
return false;
}
else
throw;
}
}
m_stackState = CompilationSuccessful;
this->link();
return true;
}
void CompilerStack::link()
{
solAssert(m_stackState >= CompilationSuccessful, "");
for (auto& contract: m_contracts)
{
contract.second.object.link(m_libraries);
contract.second.runtimeObject.link(m_libraries);
}
}
vector<string> CompilerStack::contractNames() const
{
if (m_stackState < Parsed)
solThrow(CompilerError, "Parsing was not successful.");
vector<string> contractNames;
for (auto const& contract: m_contracts)
contractNames.push_back(contract.first);
return contractNames;
}
string const CompilerStack::lastContractName(optional<string> const& _sourceName) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Parsing was not successful.");
// try to find some user-supplied contract
string contractName;
for (auto const& it: m_sources)
if (_sourceName.value_or(it.first) == it.first)
for (auto const* contract: ASTNode::filteredNodes<ContractDefinition>(it.second.ast->nodes()))
contractName = contract->fullyQualifiedName();
return contractName;
}
evmasm::AssemblyItems const* CompilerStack::assemblyItems(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
Contract const& currentContract = contract(_contractName);
return currentContract.evmAssembly ? &currentContract.evmAssembly->items() : nullptr;
}
evmasm::AssemblyItems const* CompilerStack::runtimeAssemblyItems(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
Contract const& currentContract = contract(_contractName);
return currentContract.evmRuntimeAssembly ? &currentContract.evmRuntimeAssembly->items() : nullptr;
}
Json::Value CompilerStack::generatedSources(string const& _contractName, bool _runtime) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
Contract const& c = contract(_contractName);
util::LazyInit<Json::Value const> const& sources =
_runtime ?
c.runtimeGeneratedSources :
c.generatedSources;
return sources.init([&]{
Json::Value sources{Json::arrayValue};
// If there is no compiler, then no bytecode was generated and thus no
// sources were generated (or we compiled "via IR").
if (c.compiler)
{
solAssert(!m_viaIR, "");
string source =
_runtime ?
c.compiler->runtimeGeneratedYulUtilityCode() :
c.compiler->generatedYulUtilityCode();
if (!source.empty())
{
string sourceName = CompilerContext::yulUtilityFileName();
unsigned sourceIndex = sourceIndices()[sourceName];
ErrorList errors;
ErrorReporter errorReporter(errors);
CharStream charStream(source, sourceName);
yul::EVMDialect const& dialect = yul::EVMDialect::strictAssemblyForEVM(m_evmVersion);
shared_ptr<yul::Block> parserResult = yul::Parser{errorReporter, dialect}.parse(charStream);
solAssert(parserResult, "");
sources[0]["ast"] = yul::AsmJsonConverter{sourceIndex}(*parserResult);
sources[0]["name"] = sourceName;
sources[0]["id"] = sourceIndex;
sources[0]["language"] = "Yul";
sources[0]["contents"] = move(source);
}
}
return sources;
});
}
string const* CompilerStack::sourceMapping(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
Contract const& c = contract(_contractName);
if (!c.sourceMapping)
{
if (auto items = assemblyItems(_contractName))
c.sourceMapping.emplace(evmasm::AssemblyItem::computeSourceMapping(*items, sourceIndices()));
}
return c.sourceMapping ? &*c.sourceMapping : nullptr;
}
string const* CompilerStack::runtimeSourceMapping(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
Contract const& c = contract(_contractName);
if (!c.runtimeSourceMapping)
{
if (auto items = runtimeAssemblyItems(_contractName))
c.runtimeSourceMapping.emplace(
evmasm::AssemblyItem::computeSourceMapping(*items, sourceIndices())
);
}
return c.runtimeSourceMapping ? &*c.runtimeSourceMapping : nullptr;
}
std::string const CompilerStack::filesystemFriendlyName(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "No compiled contracts found.");
// Look up the contract (by its fully-qualified name)
Contract const& matchContract = m_contracts.at(_contractName);
// Check to see if it could collide on name
for (auto const& contract: m_contracts)
{
if (contract.second.contract->name() == matchContract.contract->name() &&
contract.second.contract != matchContract.contract)
{
// If it does, then return its fully-qualified name, made fs-friendly
std::string friendlyName = boost::algorithm::replace_all_copy(_contractName, "/", "_");
boost::algorithm::replace_all(friendlyName, ":", "_");
boost::algorithm::replace_all(friendlyName, ".", "_");
return friendlyName;
}
}
// If no collision, return the contract's name
return matchContract.contract->name();
}
string const& CompilerStack::yulIR(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
return contract(_contractName).yulIR;
}
string const& CompilerStack::yulIROptimized(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
return contract(_contractName).yulIROptimized;
}
string const& CompilerStack::ewasm(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
return contract(_contractName).ewasm;
}
evmasm::LinkerObject const& CompilerStack::ewasmObject(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
return contract(_contractName).ewasmObject;
}
evmasm::LinkerObject const& CompilerStack::object(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
return contract(_contractName).object;
}
evmasm::LinkerObject const& CompilerStack::runtimeObject(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
return contract(_contractName).runtimeObject;
}
/// TODO: cache this string
string CompilerStack::assemblyString(string const& _contractName, StringMap const& _sourceCodes) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
Contract const& currentContract = contract(_contractName);
if (currentContract.evmAssembly)
return currentContract.evmAssembly->assemblyString(m_debugInfoSelection, _sourceCodes);
else
return string();
}
/// TODO: cache the JSON
Json::Value CompilerStack::assemblyJSON(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
Contract const& currentContract = contract(_contractName);
if (currentContract.evmAssembly)
return currentContract.evmAssembly->assemblyJSON(sourceIndices());
else
return Json::Value();
}
vector<string> CompilerStack::sourceNames() const
{
vector<string> names;
for (auto const& s: m_sources)
names.push_back(s.first);
return names;
}
map<string, unsigned> CompilerStack::sourceIndices() const
{
map<string, unsigned> indices;
unsigned index = 0;
for (auto const& s: m_sources)
indices[s.first] = index++;
solAssert(!indices.count(CompilerContext::yulUtilityFileName()), "");
indices[CompilerContext::yulUtilityFileName()] = index++;
return indices;
}
Json::Value const& CompilerStack::contractABI(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
return contractABI(contract(_contractName));
}
Json::Value const& CompilerStack::contractABI(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
solAssert(_contract.contract, "");
return _contract.abi.init([&]{ return ABI::generate(*_contract.contract); });
}
Json::Value const& CompilerStack::storageLayout(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
return storageLayout(contract(_contractName));
}
Json::Value const& CompilerStack::storageLayout(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
solAssert(_contract.contract, "");
return _contract.storageLayout.init([&]{ return StorageLayout().generate(*_contract.contract); });
}
Json::Value const& CompilerStack::natspecUser(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
return natspecUser(contract(_contractName));
}
Json::Value const& CompilerStack::natspecUser(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
solAssert(_contract.contract, "");
return _contract.userDocumentation.init([&]{ return Natspec::userDocumentation(*_contract.contract); });
}
Json::Value const& CompilerStack::natspecDev(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
return natspecDev(contract(_contractName));
}
Json::Value const& CompilerStack::natspecDev(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
solAssert(_contract.contract, "");
return _contract.devDocumentation.init([&]{ return Natspec::devDocumentation(*_contract.contract); });
}
Json::Value CompilerStack::methodIdentifiers(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
Json::Value methodIdentifiers(Json::objectValue);
for (auto const& it: contractDefinition(_contractName).interfaceFunctions())
methodIdentifiers[it.second->externalSignature()] = it.first.hex();
return methodIdentifiers;
}
bytes CompilerStack::cborMetadata(string const& _contractName, bool _forIR) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
return createCBORMetadata(contract(_contractName), _forIR);
}
string const& CompilerStack::metadata(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
solAssert(_contract.contract, "");
return _contract.metadata.init([&]{ return createMetadata(_contract, m_viaIR); });
}
CharStream const& CompilerStack::charStream(string const& _sourceName) const
{
if (m_stackState < SourcesSet)
solThrow(CompilerError, "No sources set.");
solAssert(source(_sourceName).charStream, "");
return *source(_sourceName).charStream;
}
SourceUnit const& CompilerStack::ast(string const& _sourceName) const
{
if (m_stackState < Parsed)
solThrow(CompilerError, "Parsing not yet performed.");
if (!source(_sourceName).ast && !m_parserErrorRecovery)
solThrow(CompilerError, "Parsing was not successful.");
return *source(_sourceName).ast;
}
ContractDefinition const& CompilerStack::contractDefinition(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
solThrow(CompilerError, "Analysis was not successful.");
return *contract(_contractName).contract;
}
size_t CompilerStack::functionEntryPoint(
std::string const& _contractName,
FunctionDefinition const& _function
) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
for (auto&& [name, data]: contract(_contractName).runtimeObject.functionDebugData)
if (data.sourceID == _function.id())
if (data.instructionIndex)
return *data.instructionIndex;
return 0;
}
h256 const& CompilerStack::Source::keccak256() const
{
if (keccak256HashCached == h256{})
keccak256HashCached = util::keccak256(charStream->source());
return keccak256HashCached;
}
h256 const& CompilerStack::Source::swarmHash() const
{
if (swarmHashCached == h256{})
swarmHashCached = util::bzzr1Hash(charStream->source());
return swarmHashCached;
}
string const& CompilerStack::Source::ipfsUrl() const
{
if (ipfsUrlCached.empty())
ipfsUrlCached = "dweb:/ipfs/" + util::ipfsHashBase58(charStream->source());
return ipfsUrlCached;
}
StringMap CompilerStack::loadMissingSources(SourceUnit const& _ast)
{
solAssert(m_stackState < ParsedAndImported, "");
StringMap newSources;
try
{
for (auto const& node: _ast.nodes())
if (ImportDirective const* import = dynamic_cast<ImportDirective*>(node.get()))
{
string const& importPath = *import->annotation().absolutePath;
if (m_sources.count(importPath) || newSources.count(importPath))
continue;
ReadCallback::Result result{false, string("File not supplied initially.")};
if (m_readFile)
result = m_readFile(ReadCallback::kindString(ReadCallback::Kind::ReadFile), importPath);
if (result.success)
newSources[importPath] = result.responseOrErrorMessage;
else
{
m_errorReporter.parserError(
6275_error,
import->location(),
string("Source \"" + importPath + "\" not found: " + result.responseOrErrorMessage)
);
continue;
}
}
}
catch (FatalError const&)
{
solAssert(m_errorReporter.hasErrors(), "");
}
return newSources;
}
string CompilerStack::applyRemapping(string const& _path, string const& _context)
{
solAssert(m_stackState < ParsedAndImported, "");
return m_importRemapper.apply(_path, _context);
}
void CompilerStack::resolveImports()
{
solAssert(m_stackState == ParsedAndImported, "");
// topological sorting (depth first search) of the import graph, cutting potential cycles
vector<Source const*> sourceOrder;
set<Source const*> sourcesSeen;
function<void(Source const*)> toposort = [&](Source const* _source)
{
if (sourcesSeen.count(_source))
return;
sourcesSeen.insert(_source);
if (_source->ast)
for (ASTPointer<ASTNode> const& node: _source->ast->nodes())
if (ImportDirective const* import = dynamic_cast<ImportDirective*>(node.get()))
{
string const& path = *import->annotation().absolutePath;
solAssert(m_sources.count(path), "");
import->annotation().sourceUnit = m_sources[path].ast.get();
toposort(&m_sources[path]);
}
sourceOrder.push_back(_source);
};
for (auto const& sourcePair: m_sources)
if (isRequestedSource(sourcePair.first))
toposort(&sourcePair.second);
swap(m_sourceOrder, sourceOrder);
}
void CompilerStack::storeContractDefinitions()
{
for (auto const& pair: m_sources)
if (pair.second.ast)
for (
ContractDefinition const* contract:
ASTNode::filteredNodes<ContractDefinition>(pair.second.ast->nodes())
)
{
string fullyQualifiedName = *pair.second.ast->annotation().path + ":" + contract->name();
// Note that we now reference contracts by their fully qualified names, and
// thus contracts can only conflict if declared in the same source file. This
// should already cause a double-declaration error elsewhere.
if (!m_contracts.count(fullyQualifiedName))
m_contracts[fullyQualifiedName].contract = contract;
}
}
namespace
{
bool onlySafeExperimentalFeaturesActivated(set<ExperimentalFeature> const& features)
{
for (auto const feature: features)
if (!ExperimentalFeatureWithoutWarning.count(feature))
return false;
return true;
}
}
void CompilerStack::assemble(
ContractDefinition const& _contract,
std::shared_ptr<evmasm::Assembly> _assembly,
std::shared_ptr<evmasm::Assembly> _runtimeAssembly
)
{
solAssert(m_stackState >= AnalysisPerformed, "");
solAssert(!m_hasError, "");
Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName());
compiledContract.evmAssembly = _assembly;
solAssert(compiledContract.evmAssembly, "");
try
{
// Assemble deployment (incl. runtime) object.
compiledContract.object = compiledContract.evmAssembly->assemble();
}
catch (evmasm::AssemblyException const&)
{
solAssert(false, "Assembly exception for bytecode");
}
solAssert(compiledContract.object.immutableReferences.empty(), "Leftover immutables.");
compiledContract.evmRuntimeAssembly = _runtimeAssembly;
solAssert(compiledContract.evmRuntimeAssembly, "");
try
{
// Assemble runtime object.
compiledContract.runtimeObject = compiledContract.evmRuntimeAssembly->assemble();
}
catch (evmasm::AssemblyException const&)
{
solAssert(false, "Assembly exception for deployed bytecode");
}
// Throw a warning if EIP-170 limits are exceeded:
// If contract creation returns data with length greater than 0x6000 (214 + 213) bytes,
// contract creation fails with an out of gas error.
if (
m_evmVersion >= langutil::EVMVersion::spuriousDragon() &&
compiledContract.runtimeObject.bytecode.size() > 0x6000
)
m_errorReporter.warning(
5574_error,
_contract.location(),
"Contract code size is "s +
to_string(compiledContract.runtimeObject.bytecode.size()) +
" bytes and exceeds 24576 bytes (a limit introduced in Spurious Dragon). "
"This contract may not be deployable on mainnet. "
"Consider enabling the optimizer (with a low \"runs\" value!), "
"turning off revert strings, or using libraries."
);
}
void CompilerStack::compileContract(
ContractDefinition const& _contract,
map<ContractDefinition const*, shared_ptr<Compiler const>>& _otherCompilers
)
{
solAssert(!m_viaIR, "");
solAssert(m_stackState >= AnalysisPerformed, "");
if (m_hasError)
solThrow(CompilerError, "Called compile with errors.");
if (_otherCompilers.count(&_contract))
return;
for (auto const& [dependency, referencee]: _contract.annotation().contractDependencies)
compileContract(*dependency, _otherCompilers);
if (!_contract.canBeDeployed())
return;
Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName());
shared_ptr<Compiler> compiler = make_shared<Compiler>(m_evmVersion, m_revertStrings, m_optimiserSettings);
compiledContract.compiler = compiler;
solAssert(!m_viaIR, "");
bytes cborEncodedMetadata = createCBORMetadata(compiledContract, /* _forIR */ false);
try
{
// Run optimiser and compile the contract.
compiler->compileContract(_contract, _otherCompilers, cborEncodedMetadata);
}
catch(evmasm::OptimizerException const&)
{
solAssert(false, "Optimizer exception during compilation");
}
_otherCompilers[compiledContract.contract] = compiler;
assemble(_contract, compiler->assemblyPtr(), compiler->runtimeAssemblyPtr());
}
void CompilerStack::generateIR(ContractDefinition const& _contract)
{
solAssert(m_stackState >= AnalysisPerformed, "");
if (m_hasError)
solThrow(CompilerError, "Called generateIR with errors.");
Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName());
if (!compiledContract.yulIR.empty())
return;
if (!*_contract.sourceUnit().annotation().useABICoderV2)
m_errorReporter.warning(
2066_error,
_contract.location(),
"Contract requests the ABI coder v1, which is incompatible with the IR. "
"Using ABI coder v2 instead."
);
string dependenciesSource;
for (auto const& [dependency, referencee]: _contract.annotation().contractDependencies)
generateIR(*dependency);
if (!_contract.canBeDeployed())
return;
map<ContractDefinition const*, string_view const> otherYulSources;
for (auto const& pair: m_contracts)
otherYulSources.emplace(pair.second.contract, pair.second.yulIR);
IRGenerator generator(m_evmVersion, m_revertStrings, m_optimiserSettings, sourceIndices(), m_debugInfoSelection, this);
tie(compiledContract.yulIR, compiledContract.yulIROptimized) = generator.run(
_contract,
createCBORMetadata(compiledContract, /* _forIR */ true),
otherYulSources
);
}
void CompilerStack::generateEVMFromIR(ContractDefinition const& _contract)
{
solAssert(m_stackState >= AnalysisPerformed, "");
if (m_hasError)
solThrow(CompilerError, "Called generateEVMFromIR with errors.");
if (!_contract.canBeDeployed())
return;
Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName());
solAssert(!compiledContract.yulIROptimized.empty(), "");
if (!compiledContract.object.bytecode.empty())
return;
// Re-parse the Yul IR in EVM dialect
yul::AssemblyStack stack(
m_evmVersion,
yul::AssemblyStack::Language::StrictAssembly,
m_optimiserSettings,
m_debugInfoSelection
);
stack.parseAndAnalyze("", compiledContract.yulIROptimized);
stack.optimize();
//cout << yul::AsmPrinter{}(*stack.parserResult()->code) << endl;
string deployedName = IRNames::deployedObject(_contract);
solAssert(!deployedName.empty(), "");
tie(compiledContract.evmAssembly, compiledContract.evmRuntimeAssembly) = stack.assembleEVMWithDeployed(deployedName);
assemble(_contract, compiledContract.evmAssembly, compiledContract.evmRuntimeAssembly);
}
void CompilerStack::generateEwasm(ContractDefinition const& _contract)
{
solAssert(m_stackState >= AnalysisPerformed, "");
if (m_hasError)
solThrow(CompilerError, "Called generateEwasm with errors.");
if (!_contract.canBeDeployed())
return;
Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName());
solAssert(!compiledContract.yulIROptimized.empty(), "");
if (!compiledContract.ewasm.empty())
return;
// Re-parse the Yul IR in EVM dialect
yul::AssemblyStack stack(
m_evmVersion,
yul::AssemblyStack::Language::StrictAssembly,
m_optimiserSettings,
m_debugInfoSelection
);
stack.parseAndAnalyze("", compiledContract.yulIROptimized);
stack.optimize();
stack.translate(yul::AssemblyStack::Language::Ewasm);
stack.optimize();
//cout << yul::AsmPrinter{}(*stack.parserResult()->code) << endl;
// Turn into Ewasm text representation.
auto result = stack.assemble(yul::AssemblyStack::Machine::Ewasm);
compiledContract.ewasm = std::move(result.assembly);
compiledContract.ewasmObject = std::move(*result.bytecode);
}
CompilerStack::Contract const& CompilerStack::contract(string const& _contractName) const
{
solAssert(m_stackState >= AnalysisPerformed, "");
auto it = m_contracts.find(_contractName);
if (it != m_contracts.end())
return it->second;
// To provide a measure of backward-compatibility, if a contract is not located by its
// fully-qualified name, a lookup will be attempted purely on the contract's name to see
// if anything will satisfy.
if (_contractName.find(':') == string::npos)
{
for (auto const& contractEntry: m_contracts)
{
stringstream ss;
ss.str(contractEntry.first);
// All entries are <source>:<contract>
string source;
string foundName;
getline(ss, source, ':');
getline(ss, foundName, ':');
if (foundName == _contractName)
return contractEntry.second;
}
}
// If we get here, both lookup methods failed.
solThrow(CompilerError, "Contract \"" + _contractName + "\" not found.");
}
CompilerStack::Source const& CompilerStack::source(string const& _sourceName) const
{
auto it = m_sources.find(_sourceName);
if (it == m_sources.end())
solThrow(CompilerError, "Given source file not found: " + _sourceName);
return it->second;
}
string CompilerStack::createMetadata(Contract const& _contract, bool _forIR) const
{
Json::Value meta{Json::objectValue};
meta["version"] = 1;
meta["language"] = m_importedSources ? "SolidityAST" : "Solidity";
meta["compiler"]["version"] = VersionStringStrict;
/// All the source files (including self), which should be included in the metadata.
set<string> referencedSources;
referencedSources.insert(*_contract.contract->sourceUnit().annotation().path);
for (auto const sourceUnit: _contract.contract->sourceUnit().referencedSourceUnits(true))
referencedSources.insert(*sourceUnit->annotation().path);
meta["sources"] = Json::objectValue;
for (auto const& s: m_sources)
{
if (!referencedSources.count(s.first))
continue;
solAssert(s.second.charStream, "Character stream not available");
meta["sources"][s.first]["keccak256"] = "0x" + toHex(s.second.keccak256().asBytes());
if (optional<string> licenseString = s.second.ast->licenseString())
meta["sources"][s.first]["license"] = *licenseString;
if (m_metadataLiteralSources)
meta["sources"][s.first]["content"] = s.second.charStream->source();
else
{
meta["sources"][s.first]["urls"] = Json::arrayValue;
meta["sources"][s.first]["urls"].append("bzz-raw://" + toHex(s.second.swarmHash().asBytes()));
meta["sources"][s.first]["urls"].append(s.second.ipfsUrl());
}
}
static_assert(sizeof(m_optimiserSettings.expectedExecutionsPerDeployment) <= sizeof(Json::LargestUInt), "Invalid word size.");
solAssert(static_cast<Json::LargestUInt>(m_optimiserSettings.expectedExecutionsPerDeployment) < std::numeric_limits<Json::LargestUInt>::max(), "");
meta["settings"]["optimizer"]["runs"] = Json::Value(Json::LargestUInt(m_optimiserSettings.expectedExecutionsPerDeployment));
/// Backwards compatibility: If set to one of the default settings, do not provide details.
OptimiserSettings settingsWithoutRuns = m_optimiserSettings;
// reset to default
settingsWithoutRuns.expectedExecutionsPerDeployment = OptimiserSettings::minimal().expectedExecutionsPerDeployment;
if (settingsWithoutRuns == OptimiserSettings::minimal())
meta["settings"]["optimizer"]["enabled"] = false;
else if (settingsWithoutRuns == OptimiserSettings::standard())
meta["settings"]["optimizer"]["enabled"] = true;
else
{
Json::Value details{Json::objectValue};
details["orderLiterals"] = m_optimiserSettings.runOrderLiterals;
details["inliner"] = m_optimiserSettings.runInliner;
details["jumpdestRemover"] = m_optimiserSettings.runJumpdestRemover;
details["peephole"] = m_optimiserSettings.runPeephole;
details["deduplicate"] = m_optimiserSettings.runDeduplicate;
details["cse"] = m_optimiserSettings.runCSE;
details["constantOptimizer"] = m_optimiserSettings.runConstantOptimiser;
details["yul"] = m_optimiserSettings.runYulOptimiser;
if (m_optimiserSettings.runYulOptimiser)
{
details["yulDetails"] = Json::objectValue;
details["yulDetails"]["stackAllocation"] = m_optimiserSettings.optimizeStackAllocation;
details["yulDetails"]["optimizerSteps"] = m_optimiserSettings.yulOptimiserSteps;
}
meta["settings"]["optimizer"]["details"] = std::move(details);
}
if (m_revertStrings != RevertStrings::Default)
meta["settings"]["debug"]["revertStrings"] = revertStringsToString(m_revertStrings);
if (m_metadataLiteralSources)
meta["settings"]["metadata"]["useLiteralContent"] = true;
static vector<string> hashes{"ipfs", "bzzr1", "none"};
meta["settings"]["metadata"]["bytecodeHash"] = hashes.at(unsigned(m_metadataHash));
if (_forIR)
meta["settings"]["viaIR"] = _forIR;
meta["settings"]["evmVersion"] = m_evmVersion.name();
meta["settings"]["compilationTarget"][_contract.contract->sourceUnitName()] =
*_contract.contract->annotation().canonicalName;
meta["settings"]["remappings"] = Json::arrayValue;
set<string> remappings;
for (auto const& r: m_importRemapper.remappings())
remappings.insert(r.context + ":" + r.prefix + "=" + r.target);
for (auto const& r: remappings)
meta["settings"]["remappings"].append(r);
meta["settings"]["libraries"] = Json::objectValue;
for (auto const& library: m_libraries)
meta["settings"]["libraries"][library.first] = "0x" + toHex(library.second.asBytes());
meta["output"]["abi"] = contractABI(_contract);
meta["output"]["userdoc"] = natspecUser(_contract);
meta["output"]["devdoc"] = natspecDev(_contract);
return util::jsonCompactPrint(meta);
}
class MetadataCBOREncoder
{
public:
void pushBytes(string const& key, bytes const& value)
{
m_entryCount++;
pushTextString(key);
pushByteString(value);
}
void pushString(string const& key, string const& value)
{
m_entryCount++;
pushTextString(key);
pushTextString(value);
}
void pushBool(string const& key, bool value)
{
m_entryCount++;
pushTextString(key);
pushBool(value);
}
bytes serialise() const
{
size_t size = m_data.size() + 1;
solAssert(size <= 0xffff, "Metadata too large.");
solAssert(m_entryCount <= 0x1f, "Too many map entries.");
// CBOR fixed-length map
bytes ret{static_cast<unsigned char>(0xa0 + m_entryCount)};
// The already encoded key-value pairs
ret += m_data;
// 16-bit big endian length
ret += toCompactBigEndian(size, 2);
return ret;
}
private:
void pushTextString(string const& key)
{
size_t length = key.size();
if (length < 24)
{
m_data += bytes{static_cast<unsigned char>(0x60 + length)};
m_data += key;
}
else if (length <= 256)
{
m_data += bytes{0x78, static_cast<unsigned char>(length)};
m_data += key;
}
else
solAssert(false, "Text string too large.");
}
void pushByteString(bytes const& key)
{
size_t length = key.size();
if (length < 24)
{
m_data += bytes{static_cast<unsigned char>(0x40 + length)};
m_data += key;
}
else if (length <= 256)
{
m_data += bytes{0x58, static_cast<unsigned char>(length)};
m_data += key;
}
else
solAssert(false, "Byte string too large.");
}
void pushBool(bool value)
{
if (value)
m_data += bytes{0xf5};
else
m_data += bytes{0xf4};
}
unsigned m_entryCount = 0;
bytes m_data;
};
bytes CompilerStack::createCBORMetadata(Contract const& _contract, bool _forIR) const
{
if (m_metadataFormat == MetadataFormat::NoMetadata)
return bytes{};
bool const experimentalMode = !onlySafeExperimentalFeaturesActivated(
_contract.contract->sourceUnit().annotation().experimentalFeatures
);
string meta = (_forIR == m_viaIR ? metadata(_contract) : createMetadata(_contract, _forIR));
MetadataCBOREncoder encoder;
if (m_metadataHash == MetadataHash::IPFS)
encoder.pushBytes("ipfs", util::ipfsHash(meta));
else if (m_metadataHash == MetadataHash::Bzzr1)
encoder.pushBytes("bzzr1", util::bzzr1Hash(meta).asBytes());
else
solAssert(m_metadataHash == MetadataHash::None, "Invalid metadata hash");
if (experimentalMode || _forIR)
encoder.pushBool("experimental", true);
if (m_metadataFormat == MetadataFormat::WithReleaseVersionTag)
encoder.pushBytes("solc", VersionCompactBytes);
else
{
solAssert(
m_metadataFormat == MetadataFormat::WithPrereleaseVersionTag,
"Invalid metadata format."
);
encoder.pushString("solc", VersionStringStrict);
}
return encoder.serialise();
}
namespace
{
Json::Value gasToJson(GasEstimator::GasConsumption const& _gas)
{
if (_gas.isInfinite)
return Json::Value("infinite");
else
return Json::Value(util::toString(_gas.value));
}
}
Json::Value CompilerStack::gasEstimates(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
solThrow(CompilerError, "Compilation was not successful.");
if (!assemblyItems(_contractName) && !runtimeAssemblyItems(_contractName))
return Json::Value();
using Gas = GasEstimator::GasConsumption;
GasEstimator gasEstimator(m_evmVersion);
Json::Value output(Json::objectValue);
if (evmasm::AssemblyItems const* items = assemblyItems(_contractName))
{
Gas executionGas = gasEstimator.functionalEstimation(*items);
Gas codeDepositGas{evmasm::GasMeter::dataGas(runtimeObject(_contractName).bytecode, false, m_evmVersion)};
Json::Value creation(Json::objectValue);
creation["codeDepositCost"] = gasToJson(codeDepositGas);
creation["executionCost"] = gasToJson(executionGas);
/// TODO: implement + overload to avoid the need of +=
executionGas += codeDepositGas;
creation["totalCost"] = gasToJson(executionGas);
output["creation"] = creation;
}
if (evmasm::AssemblyItems const* items = runtimeAssemblyItems(_contractName))
{
/// External functions
ContractDefinition const& contract = contractDefinition(_contractName);
Json::Value externalFunctions(Json::objectValue);
for (auto it: contract.interfaceFunctions())
{
string sig = it.second->externalSignature();
externalFunctions[sig] = gasToJson(gasEstimator.functionalEstimation(*items, sig));
}
if (contract.fallbackFunction())
/// This needs to be set to an invalid signature in order to trigger the fallback,
/// without the shortcut (of CALLDATSIZE == 0), and therefore to receive the upper bound.
/// An empty string ("") would work to trigger the shortcut only.
externalFunctions[""] = gasToJson(gasEstimator.functionalEstimation(*items, "INVALID"));
if (!externalFunctions.empty())
output["external"] = externalFunctions;
/// Internal functions
Json::Value internalFunctions(Json::objectValue);
for (auto const& it: contract.definedFunctions())
{
/// Exclude externally visible functions, constructor, fallback and receive ether function
if (it->isPartOfExternalInterface() || !it->isOrdinary())
continue;
size_t entry = functionEntryPoint(_contractName, *it);
GasEstimator::GasConsumption gas = GasEstimator::GasConsumption::infinite();
if (entry > 0)
gas = gasEstimator.functionalEstimation(*items, entry, *it);
/// TODO: This could move into a method shared with externalSignature()
FunctionType type(*it);
string sig = it->name() + "(";
auto paramTypes = type.parameterTypes();
for (auto it = paramTypes.begin(); it != paramTypes.end(); ++it)
sig += (*it)->toString() + (it + 1 == paramTypes.end() ? "" : ",");
sig += ")";
internalFunctions[sig] = gasToJson(gas);
}
if (!internalFunctions.empty())
output["internal"] = internalFunctions;
}
return output;
}