mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
1203 lines
39 KiB
C++
1203 lines
39 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/**
|
|
* Component that translates Solidity code into Yul at statement level and below.
|
|
*/
|
|
|
|
#include <libsolidity/codegen/ir/IRGeneratorForStatements.h>
|
|
|
|
#include <libsolidity/codegen/ABIFunctions.h>
|
|
#include <libsolidity/codegen/ir/IRGenerationContext.h>
|
|
#include <libsolidity/codegen/ir/IRLValue.h>
|
|
#include <libsolidity/codegen/YulUtilFunctions.h>
|
|
#include <libsolidity/codegen/ABIFunctions.h>
|
|
#include <libsolidity/codegen/CompilerUtils.h>
|
|
#include <libsolidity/ast/TypeProvider.h>
|
|
|
|
#include <libevmasm/GasMeter.h>
|
|
|
|
#include <libyul/AsmPrinter.h>
|
|
#include <libyul/AsmData.h>
|
|
#include <libyul/Dialect.h>
|
|
#include <libyul/optimiser/ASTCopier.h>
|
|
|
|
#include <libdevcore/Whiskers.h>
|
|
#include <libdevcore/StringUtils.h>
|
|
#include <libdevcore/Whiskers.h>
|
|
#include <libdevcore/Keccak256.h>
|
|
|
|
using namespace std;
|
|
using namespace dev;
|
|
using namespace dev::solidity;
|
|
|
|
namespace
|
|
{
|
|
|
|
struct CopyTranslate: public yul::ASTCopier
|
|
{
|
|
using ExternalRefsMap = std::map<yul::Identifier const*, InlineAssemblyAnnotation::ExternalIdentifierInfo>;
|
|
|
|
CopyTranslate(yul::Dialect const& _dialect, IRGenerationContext& _context, ExternalRefsMap const& _references):
|
|
m_dialect(_dialect), m_context(_context), m_references(_references) {}
|
|
|
|
using ASTCopier::operator();
|
|
|
|
yul::YulString translateIdentifier(yul::YulString _name) override
|
|
{
|
|
// Strictly, the dialect used by inline assembly (m_dialect) could be different
|
|
// from the Yul dialect we are compiling to. So we are assuming here that the builtin
|
|
// functions are identical. This should not be a problem for now since everything
|
|
// is EVM anyway.
|
|
if (m_dialect.builtin(_name))
|
|
return _name;
|
|
else
|
|
return yul::YulString{"usr$" + _name.str()};
|
|
}
|
|
|
|
yul::Identifier translate(yul::Identifier const& _identifier) override
|
|
{
|
|
if (!m_references.count(&_identifier))
|
|
return ASTCopier::translate(_identifier);
|
|
|
|
auto const& reference = m_references.at(&_identifier);
|
|
auto const varDecl = dynamic_cast<VariableDeclaration const*>(reference.declaration);
|
|
solUnimplementedAssert(varDecl, "");
|
|
solUnimplementedAssert(
|
|
reference.isOffset == false && reference.isSlot == false,
|
|
""
|
|
);
|
|
|
|
return yul::Identifier{
|
|
_identifier.location,
|
|
yul::YulString{m_context.localVariableName(*varDecl)}
|
|
};
|
|
}
|
|
|
|
private:
|
|
yul::Dialect const& m_dialect;
|
|
IRGenerationContext& m_context;
|
|
ExternalRefsMap const& m_references;
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
string IRGeneratorForStatements::code() const
|
|
{
|
|
solAssert(!m_currentLValue, "LValue not reset!");
|
|
return m_code.str();
|
|
}
|
|
|
|
void IRGeneratorForStatements::endVisit(VariableDeclarationStatement const& _varDeclStatement)
|
|
{
|
|
for (auto const& decl: _varDeclStatement.declarations())
|
|
if (decl)
|
|
m_context.addLocalVariable(*decl);
|
|
|
|
if (Expression const* expression = _varDeclStatement.initialValue())
|
|
{
|
|
solUnimplementedAssert(_varDeclStatement.declarations().size() == 1, "");
|
|
|
|
VariableDeclaration const& varDecl = *_varDeclStatement.declarations().front();
|
|
m_code <<
|
|
"let " <<
|
|
m_context.localVariableName(varDecl) <<
|
|
" := " <<
|
|
expressionAsType(*expression, *varDecl.type()) <<
|
|
"\n";
|
|
}
|
|
else
|
|
for (auto const& decl: _varDeclStatement.declarations())
|
|
if (decl)
|
|
m_code << "let " << m_context.localVariableName(*decl) << "\n";
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(Assignment const& _assignment)
|
|
{
|
|
_assignment.rightHandSide().accept(*this);
|
|
Type const* intermediateType = type(_assignment.rightHandSide()).closestTemporaryType(
|
|
&type(_assignment.leftHandSide())
|
|
);
|
|
string value = m_context.newYulVariable();
|
|
m_code << "let " << value << " := " << expressionAsType(_assignment.rightHandSide(), *intermediateType) << "\n";
|
|
|
|
_assignment.leftHandSide().accept(*this);
|
|
solAssert(!!m_currentLValue, "LValue not retrieved.");
|
|
|
|
if (_assignment.assignmentOperator() != Token::Assign)
|
|
{
|
|
solAssert(type(_assignment.leftHandSide()) == *intermediateType, "");
|
|
solAssert(intermediateType->isValueType(), "Compound operators only available for value types.");
|
|
|
|
string leftIntermediate = m_context.newYulVariable();
|
|
m_code << "let " << leftIntermediate << " := " << m_currentLValue->retrieveValue() << "\n";
|
|
m_code << value << " := " << binaryOperation(
|
|
TokenTraits::AssignmentToBinaryOp(_assignment.assignmentOperator()),
|
|
*intermediateType,
|
|
leftIntermediate,
|
|
value
|
|
);
|
|
}
|
|
|
|
m_code << m_currentLValue->storeValue(value, *intermediateType);
|
|
m_currentLValue.reset();
|
|
defineExpression(_assignment) << value << "\n";
|
|
|
|
return false;
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(TupleExpression const& _tuple)
|
|
{
|
|
if (_tuple.isInlineArray())
|
|
solUnimplementedAssert(false, "");
|
|
else
|
|
{
|
|
solUnimplementedAssert(!_tuple.annotation().lValueRequested, "");
|
|
solUnimplementedAssert(_tuple.components().size() == 1, "");
|
|
solAssert(_tuple.components().front(), "");
|
|
_tuple.components().front()->accept(*this);
|
|
defineExpression(_tuple) << m_context.variable(*_tuple.components().front()) << "\n";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(IfStatement const& _ifStatement)
|
|
{
|
|
_ifStatement.condition().accept(*this);
|
|
string condition = expressionAsType(_ifStatement.condition(), *TypeProvider::boolean());
|
|
|
|
if (_ifStatement.falseStatement())
|
|
{
|
|
m_code << "switch " << condition << "\n" "case 0 {\n";
|
|
_ifStatement.falseStatement()->accept(*this);
|
|
m_code << "}\n" "default {\n";
|
|
}
|
|
else
|
|
m_code << "if " << condition << " {\n";
|
|
_ifStatement.trueStatement().accept(*this);
|
|
m_code << "}\n";
|
|
|
|
return false;
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(ForStatement const& _forStatement)
|
|
{
|
|
generateLoop(
|
|
_forStatement.body(),
|
|
_forStatement.condition(),
|
|
_forStatement.initializationExpression(),
|
|
_forStatement.loopExpression()
|
|
);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(WhileStatement const& _whileStatement)
|
|
{
|
|
generateLoop(
|
|
_whileStatement.body(),
|
|
&_whileStatement.condition(),
|
|
nullptr,
|
|
nullptr,
|
|
_whileStatement.isDoWhile()
|
|
);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(Continue const&)
|
|
{
|
|
m_code << "continue\n";
|
|
return false;
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(Break const&)
|
|
{
|
|
m_code << "break\n";
|
|
return false;
|
|
}
|
|
|
|
void IRGeneratorForStatements::endVisit(Return const& _return)
|
|
{
|
|
if (Expression const* value = _return.expression())
|
|
{
|
|
solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer.");
|
|
vector<ASTPointer<VariableDeclaration>> const& returnParameters =
|
|
_return.annotation().functionReturnParameters->parameters();
|
|
TypePointers types;
|
|
for (auto const& retVariable: returnParameters)
|
|
types.push_back(retVariable->annotation().type);
|
|
|
|
// TODO support tuples
|
|
solUnimplementedAssert(types.size() == 1, "Multi-returns not implemented.");
|
|
m_code <<
|
|
m_context.localVariableName(*returnParameters.front()) <<
|
|
" := " <<
|
|
expressionAsType(*value, *types.front()) <<
|
|
"\n";
|
|
}
|
|
m_code << "return_flag := 0\n" << "break\n";
|
|
}
|
|
|
|
void IRGeneratorForStatements::endVisit(UnaryOperation const& _unaryOperation)
|
|
{
|
|
Type const& resultType = type(_unaryOperation);
|
|
Token const op = _unaryOperation.getOperator();
|
|
|
|
if (op == Token::Delete)
|
|
{
|
|
solAssert(!!m_currentLValue, "LValue not retrieved.");
|
|
m_code << m_currentLValue->setToZero();
|
|
m_currentLValue.reset();
|
|
}
|
|
else if (resultType.category() == Type::Category::RationalNumber)
|
|
{
|
|
defineExpression(_unaryOperation) <<
|
|
formatNumber(resultType.literalValue(nullptr)) <<
|
|
"\n";
|
|
}
|
|
else if (resultType.category() == Type::Category::Integer)
|
|
{
|
|
solAssert(resultType == type(_unaryOperation.subExpression()), "Result type doesn't match!");
|
|
|
|
if (op == Token::Inc || op == Token::Dec)
|
|
{
|
|
solAssert(!!m_currentLValue, "LValue not retrieved.");
|
|
string fetchValueExpr = m_currentLValue->retrieveValue();
|
|
string modifiedValue = m_context.newYulVariable();
|
|
string originalValue = m_context.newYulVariable();
|
|
|
|
m_code << "let " << originalValue << " := " << fetchValueExpr << "\n";
|
|
m_code <<
|
|
"let " <<
|
|
modifiedValue <<
|
|
" := " <<
|
|
(op == Token::Inc ?
|
|
m_utils.incrementCheckedFunction(resultType) :
|
|
m_utils.decrementCheckedFunction(resultType)
|
|
) <<
|
|
"(" <<
|
|
originalValue <<
|
|
")\n";
|
|
m_code << m_currentLValue->storeValue(modifiedValue, resultType);
|
|
m_currentLValue.reset();
|
|
|
|
defineExpression(_unaryOperation) <<
|
|
(_unaryOperation.isPrefixOperation() ? modifiedValue : originalValue) <<
|
|
"\n";
|
|
}
|
|
else if (op == Token::BitNot)
|
|
appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression());
|
|
else if (op == Token::Add)
|
|
// According to SyntaxChecker...
|
|
solAssert(false, "Use of unary + is disallowed.");
|
|
else if (op == Token::Sub)
|
|
{
|
|
IntegerType const& intType = *dynamic_cast<IntegerType const*>(&resultType);
|
|
|
|
defineExpression(_unaryOperation) <<
|
|
m_utils.negateNumberCheckedFunction(intType) <<
|
|
"(" <<
|
|
m_context.variable(_unaryOperation.subExpression()) <<
|
|
")\n";
|
|
}
|
|
else
|
|
solUnimplementedAssert(false, "Unary operator not yet implemented");
|
|
}
|
|
else if (resultType.category() == Type::Category::Bool)
|
|
{
|
|
solAssert(
|
|
_unaryOperation.getOperator() != Token::BitNot,
|
|
"Bitwise Negation can't be done on bool!"
|
|
);
|
|
|
|
appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression());
|
|
}
|
|
else
|
|
solUnimplementedAssert(false, "Unary operator not yet implemented");
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(BinaryOperation const& _binOp)
|
|
{
|
|
solAssert(!!_binOp.annotation().commonType, "");
|
|
TypePointer commonType = _binOp.annotation().commonType;
|
|
langutil::Token op = _binOp.getOperator();
|
|
|
|
if (op == Token::And || op == Token::Or)
|
|
{
|
|
// This can short-circuit!
|
|
appendAndOrOperatorCode(_binOp);
|
|
return false;
|
|
}
|
|
|
|
_binOp.leftExpression().accept(*this);
|
|
_binOp.rightExpression().accept(*this);
|
|
|
|
if (commonType->category() == Type::Category::RationalNumber)
|
|
defineExpression(_binOp) <<
|
|
toCompactHexWithPrefix(commonType->literalValue(nullptr)) <<
|
|
"\n";
|
|
else if (TokenTraits::isCompareOp(op))
|
|
{
|
|
if (auto type = dynamic_cast<FunctionType const*>(commonType))
|
|
{
|
|
solAssert(op == Token::Equal || op == Token::NotEqual, "Invalid function pointer comparison!");
|
|
solAssert(type->kind() != FunctionType::Kind::External, "External function comparison not allowed!");
|
|
}
|
|
|
|
solAssert(commonType->isValueType(), "");
|
|
bool isSigned = false;
|
|
if (auto type = dynamic_cast<IntegerType const*>(commonType))
|
|
isSigned = type->isSigned();
|
|
|
|
string args =
|
|
expressionAsType(_binOp.leftExpression(), *commonType) +
|
|
", " +
|
|
expressionAsType(_binOp.rightExpression(), *commonType);
|
|
|
|
string expr;
|
|
if (op == Token::Equal)
|
|
expr = "eq(" + move(args) + ")";
|
|
else if (op == Token::NotEqual)
|
|
expr = "iszero(eq(" + move(args) + "))";
|
|
else if (op == Token::GreaterThanOrEqual)
|
|
expr = "iszero(" + string(isSigned ? "slt(" : "lt(") + move(args) + "))";
|
|
else if (op == Token::LessThanOrEqual)
|
|
expr = "iszero(" + string(isSigned ? "sgt(" : "gt(") + move(args) + "))";
|
|
else if (op == Token::GreaterThan)
|
|
expr = (isSigned ? "sgt(" : "gt(") + move(args) + ")";
|
|
else if (op == Token::LessThan)
|
|
expr = (isSigned ? "slt(" : "lt(") + move(args) + ")";
|
|
else
|
|
solAssert(false, "Unknown comparison operator.");
|
|
defineExpression(_binOp) << expr << "\n";
|
|
}
|
|
else
|
|
{
|
|
string left = expressionAsType(_binOp.leftExpression(), *commonType);
|
|
string right = expressionAsType(_binOp.rightExpression(), *commonType);
|
|
defineExpression(_binOp) << binaryOperation(_binOp.getOperator(), *commonType, left, right);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall)
|
|
{
|
|
solUnimplementedAssert(
|
|
_functionCall.annotation().kind == FunctionCallKind::FunctionCall ||
|
|
_functionCall.annotation().kind == FunctionCallKind::TypeConversion,
|
|
"This type of function call is not yet implemented"
|
|
);
|
|
|
|
Type const& funcType = type(_functionCall.expression());
|
|
|
|
if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
|
|
{
|
|
solAssert(funcType.category() == Type::Category::TypeType, "Expected category to be TypeType");
|
|
solAssert(_functionCall.arguments().size() == 1, "Expected one argument for type conversion");
|
|
|
|
defineExpression(_functionCall) <<
|
|
expressionAsType(*_functionCall.arguments().front(), type(_functionCall)) <<
|
|
"\n";
|
|
|
|
return;
|
|
}
|
|
|
|
FunctionTypePointer functionType = dynamic_cast<FunctionType const*>(&funcType);
|
|
|
|
TypePointers parameterTypes = functionType->parameterTypes();
|
|
vector<ASTPointer<Expression const>> const& callArguments = _functionCall.arguments();
|
|
vector<ASTPointer<ASTString>> const& callArgumentNames = _functionCall.names();
|
|
if (!functionType->takesArbitraryParameters())
|
|
solAssert(callArguments.size() == parameterTypes.size(), "");
|
|
|
|
vector<ASTPointer<Expression const>> arguments;
|
|
if (callArgumentNames.empty())
|
|
// normal arguments
|
|
arguments = callArguments;
|
|
else
|
|
// named arguments
|
|
for (auto const& parameterName: functionType->parameterNames())
|
|
{
|
|
auto const it = std::find_if(callArgumentNames.cbegin(), callArgumentNames.cend(), [&](ASTPointer<ASTString> const& _argName) {
|
|
return *_argName == parameterName;
|
|
});
|
|
|
|
solAssert(it != callArgumentNames.cend(), "");
|
|
arguments.push_back(callArguments[std::distance(callArgumentNames.begin(), it)]);
|
|
}
|
|
|
|
solUnimplementedAssert(!functionType->bound(), "");
|
|
switch (functionType->kind())
|
|
{
|
|
case FunctionType::Kind::Internal:
|
|
{
|
|
vector<string> args;
|
|
for (unsigned i = 0; i < arguments.size(); ++i)
|
|
if (functionType->takesArbitraryParameters())
|
|
args.emplace_back(m_context.variable(*arguments[i]));
|
|
else
|
|
args.emplace_back(expressionAsType(*arguments[i], *parameterTypes[i]));
|
|
|
|
if (auto identifier = dynamic_cast<Identifier const*>(&_functionCall.expression()))
|
|
{
|
|
solAssert(!functionType->bound(), "");
|
|
if (auto functionDef = dynamic_cast<FunctionDefinition const*>(identifier->annotation().referencedDeclaration))
|
|
{
|
|
defineExpression(_functionCall) <<
|
|
m_context.virtualFunctionName(*functionDef) <<
|
|
"(" <<
|
|
joinHumanReadable(args) <<
|
|
")\n";
|
|
return;
|
|
}
|
|
}
|
|
|
|
args = vector<string>{m_context.variable(_functionCall.expression())} + args;
|
|
defineExpression(_functionCall) <<
|
|
m_context.internalDispatch(functionType->parameterTypes().size(), functionType->returnParameterTypes().size()) <<
|
|
"(" <<
|
|
joinHumanReadable(args) <<
|
|
")\n";
|
|
break;
|
|
}
|
|
case FunctionType::Kind::External:
|
|
case FunctionType::Kind::DelegateCall:
|
|
case FunctionType::Kind::BareCall:
|
|
case FunctionType::Kind::BareDelegateCall:
|
|
case FunctionType::Kind::BareStaticCall:
|
|
appendExternalFunctionCall(_functionCall, arguments);
|
|
break;
|
|
case FunctionType::Kind::BareCallCode:
|
|
solAssert(false, "Callcode has been removed.");
|
|
case FunctionType::Kind::Event:
|
|
{
|
|
auto const& event = dynamic_cast<EventDefinition const&>(functionType->declaration());
|
|
TypePointers paramTypes = functionType->parameterTypes();
|
|
ABIFunctions abi(m_context.evmVersion(), m_context.functionCollector());
|
|
|
|
vector<string> indexedArgs;
|
|
string nonIndexedArgs;
|
|
TypePointers nonIndexedArgTypes;
|
|
TypePointers nonIndexedParamTypes;
|
|
if (!event.isAnonymous())
|
|
{
|
|
indexedArgs.emplace_back(m_context.newYulVariable());
|
|
string signature = formatNumber(u256(h256::Arith(dev::keccak256(functionType->externalSignature()))));
|
|
m_code << "let " << indexedArgs.back() << " := " << signature << "\n";
|
|
}
|
|
for (size_t i = 0; i < event.parameters().size(); ++i)
|
|
{
|
|
Expression const& arg = *arguments[i];
|
|
if (event.parameters()[i]->isIndexed())
|
|
{
|
|
string value;
|
|
indexedArgs.emplace_back(m_context.newYulVariable());
|
|
if (auto const& referenceType = dynamic_cast<ReferenceType const*>(paramTypes[i]))
|
|
value =
|
|
m_utils.packedHashFunction({arg.annotation().type}, {referenceType}) +
|
|
"(" +
|
|
m_context.variable(arg) +
|
|
")";
|
|
else
|
|
value = expressionAsType(arg, *paramTypes[i]);
|
|
m_code << "let " << indexedArgs.back() << " := " << value << "\n";
|
|
}
|
|
else
|
|
{
|
|
string vars = m_context.variable(arg);
|
|
if (!vars.empty())
|
|
// In reverse because abi_encode expects it like that.
|
|
nonIndexedArgs = ", " + move(vars) + nonIndexedArgs;
|
|
nonIndexedArgTypes.push_back(arg.annotation().type);
|
|
nonIndexedParamTypes.push_back(paramTypes[i]);
|
|
}
|
|
}
|
|
solAssert(indexedArgs.size() <= 4, "Too many indexed arguments.");
|
|
Whiskers templ(R"({
|
|
let <pos> := mload(<freeMemoryPointer>)
|
|
let <end> := <encode>(<pos> <nonIndexedArgs>)
|
|
<log>(<pos>, sub(<end>, <pos>) <indexedArgs>)
|
|
})");
|
|
templ("pos", m_context.newYulVariable());
|
|
templ("end", m_context.newYulVariable());
|
|
templ("freeMemoryPointer", to_string(CompilerUtils::freeMemoryPointer));
|
|
templ("encode", abi.tupleEncoder(nonIndexedArgTypes, nonIndexedParamTypes));
|
|
templ("nonIndexedArgs", nonIndexedArgs);
|
|
templ("log", "log" + to_string(indexedArgs.size()));
|
|
templ("indexedArgs", joinHumanReadablePrefixed(indexedArgs));
|
|
m_code << templ.render();
|
|
break;
|
|
}
|
|
case FunctionType::Kind::Assert:
|
|
case FunctionType::Kind::Require:
|
|
{
|
|
solAssert(arguments.size() > 0, "Expected at least one parameter for require/assert");
|
|
solAssert(arguments.size() <= 2, "Expected no more than two parameters for require/assert");
|
|
|
|
string requireOrAssertFunction = m_utils.requireOrAssertFunction(
|
|
functionType->kind() == FunctionType::Kind::Assert,
|
|
arguments.size() > 1 ? arguments[1]->annotation().type : nullptr
|
|
);
|
|
|
|
m_code << move(requireOrAssertFunction) << "(" << m_context.variable(*arguments[0]);
|
|
if (arguments.size() > 1)
|
|
m_code << ", " << m_context.variable(*arguments[1]);
|
|
m_code << ")\n";
|
|
|
|
break;
|
|
}
|
|
default:
|
|
solUnimplemented("");
|
|
}
|
|
}
|
|
|
|
void IRGeneratorForStatements::endVisit(MemberAccess const& _memberAccess)
|
|
{
|
|
ASTString const& member = _memberAccess.memberName();
|
|
if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type))
|
|
if (funType->bound())
|
|
{
|
|
solUnimplementedAssert(false, "");
|
|
}
|
|
|
|
switch (_memberAccess.expression().annotation().type->category())
|
|
{
|
|
case Type::Category::Contract:
|
|
{
|
|
ContractType const& type = dynamic_cast<ContractType const&>(*_memberAccess.expression().annotation().type);
|
|
if (type.isSuper())
|
|
{
|
|
solUnimplementedAssert(false, "");
|
|
}
|
|
// ordinary contract type
|
|
else if (Declaration const* declaration = _memberAccess.annotation().referencedDeclaration)
|
|
{
|
|
u256 identifier;
|
|
if (auto const* variable = dynamic_cast<VariableDeclaration const*>(declaration))
|
|
identifier = FunctionType(*variable).externalIdentifier();
|
|
else if (auto const* function = dynamic_cast<FunctionDefinition const*>(declaration))
|
|
identifier = FunctionType(*function).externalIdentifier();
|
|
else
|
|
solAssert(false, "Contract member is neither variable nor function.");
|
|
|
|
defineExpressionPart(_memberAccess, 1) << expressionAsType(
|
|
_memberAccess.expression(),
|
|
type.isPayable() ? *TypeProvider::payableAddress() : *TypeProvider::address()
|
|
) << "\n";
|
|
defineExpressionPart(_memberAccess, 2) << formatNumber(identifier) << "\n";
|
|
}
|
|
else
|
|
solAssert(false, "Invalid member access in contract");
|
|
break;
|
|
}
|
|
case Type::Category::Integer:
|
|
{
|
|
solAssert(false, "Invalid member access to integer");
|
|
break;
|
|
}
|
|
case Type::Category::Address:
|
|
{
|
|
if (member == "balance")
|
|
defineExpression(_memberAccess) <<
|
|
"balance(" <<
|
|
expressionAsType(_memberAccess.expression(), *TypeProvider::address()) <<
|
|
")\n";
|
|
else if (set<string>{"send", "transfer"}.count(member))
|
|
{
|
|
solAssert(dynamic_cast<AddressType const&>(*_memberAccess.expression().annotation().type).stateMutability() == StateMutability::Payable, "");
|
|
defineExpression(_memberAccess) <<
|
|
expressionAsType(_memberAccess.expression(), *TypeProvider::payableAddress()) <<
|
|
"\n";
|
|
}
|
|
else if (set<string>{"call", "callcode", "delegatecall", "staticcall"}.count(member))
|
|
defineExpression(_memberAccess) <<
|
|
expressionAsType(_memberAccess.expression(), *TypeProvider::address()) <<
|
|
"\n";
|
|
else
|
|
solAssert(false, "Invalid member access to address");
|
|
break;
|
|
}
|
|
case Type::Category::Function:
|
|
if (member == "selector")
|
|
{
|
|
solUnimplementedAssert(false, "");
|
|
}
|
|
else
|
|
solAssert(
|
|
!!_memberAccess.expression().annotation().type->memberType(member),
|
|
"Invalid member access to function."
|
|
);
|
|
break;
|
|
case Type::Category::Magic:
|
|
// we can ignore the kind of magic and only look at the name of the member
|
|
if (member == "coinbase")
|
|
defineExpression(_memberAccess) << "coinbase()\n";
|
|
else if (member == "timestamp")
|
|
defineExpression(_memberAccess) << "timestamp()\n";
|
|
else if (member == "difficulty")
|
|
defineExpression(_memberAccess) << "difficulty()\n";
|
|
else if (member == "number")
|
|
defineExpression(_memberAccess) << "number()\n";
|
|
else if (member == "gaslimit")
|
|
defineExpression(_memberAccess) << "gaslimit()\n";
|
|
else if (member == "sender")
|
|
defineExpression(_memberAccess) << "caller()\n";
|
|
else if (member == "value")
|
|
defineExpression(_memberAccess) << "callvalue()\n";
|
|
else if (member == "origin")
|
|
defineExpression(_memberAccess) << "origin()\n";
|
|
else if (member == "gasprice")
|
|
defineExpression(_memberAccess) << "gasprice()\n";
|
|
else if (member == "data")
|
|
solUnimplementedAssert(false, "");
|
|
else if (member == "sig")
|
|
defineExpression(_memberAccess) <<
|
|
"and(calldataload(0), " <<
|
|
formatNumber(u256(0xffffffff) << (256 - 32)) <<
|
|
")\n";
|
|
else if (member == "gas")
|
|
solAssert(false, "Gas has been removed.");
|
|
else if (member == "blockhash")
|
|
solAssert(false, "Blockhash has been removed.");
|
|
else if (member == "creationCode" || member == "runtimeCode")
|
|
{
|
|
solUnimplementedAssert(false, "");
|
|
}
|
|
else if (member == "name")
|
|
{
|
|
solUnimplementedAssert(false, "");
|
|
}
|
|
else if (set<string>{"encode", "encodePacked", "encodeWithSelector", "encodeWithSignature", "decode"}.count(member))
|
|
{
|
|
// no-op
|
|
}
|
|
else
|
|
solAssert(false, "Unknown magic member.");
|
|
break;
|
|
case Type::Category::Struct:
|
|
{
|
|
solUnimplementedAssert(false, "");
|
|
}
|
|
case Type::Category::Enum:
|
|
{
|
|
EnumType const& type = dynamic_cast<EnumType const&>(*_memberAccess.expression().annotation().type);
|
|
defineExpression(_memberAccess) << to_string(type.memberValue(_memberAccess.memberName())) << "\n";
|
|
break;
|
|
}
|
|
case Type::Category::Array:
|
|
{
|
|
solUnimplementedAssert(false, "");
|
|
}
|
|
case Type::Category::FixedBytes:
|
|
{
|
|
auto const& type = dynamic_cast<FixedBytesType const&>(*_memberAccess.expression().annotation().type);
|
|
if (member == "length")
|
|
defineExpression(_memberAccess) << to_string(type.numBytes());
|
|
else
|
|
solAssert(false, "Illegal fixed bytes member.");
|
|
break;
|
|
}
|
|
default:
|
|
solAssert(false, "Member access to unknown type.");
|
|
}
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(InlineAssembly const& _inlineAsm)
|
|
{
|
|
CopyTranslate bodyCopier{_inlineAsm.dialect(), m_context, _inlineAsm.annotation().externalReferences};
|
|
|
|
yul::Statement modified = bodyCopier(_inlineAsm.operations());
|
|
|
|
solAssert(modified.type() == typeid(yul::Block), "");
|
|
|
|
m_code << yul::AsmPrinter()(boost::get<yul::Block>(std::move(modified))) << "\n";
|
|
return false;
|
|
}
|
|
|
|
|
|
void IRGeneratorForStatements::endVisit(IndexAccess const& _indexAccess)
|
|
{
|
|
Type const& baseType = *_indexAccess.baseExpression().annotation().type;
|
|
|
|
if (baseType.category() == Type::Category::Mapping)
|
|
{
|
|
solAssert(_indexAccess.indexExpression(), "Index expression expected.");
|
|
|
|
MappingType const& mappingType = dynamic_cast<MappingType const&>(baseType);
|
|
Type const& keyType = *_indexAccess.indexExpression()->annotation().type;
|
|
solAssert(keyType.sizeOnStack() <= 1, "");
|
|
|
|
string slot = m_context.newYulVariable();
|
|
Whiskers templ("let <slot> := <indexAccess>(<base> <key>)\n");
|
|
templ("slot", slot);
|
|
templ("indexAccess", m_utils.mappingIndexAccessFunction(mappingType, keyType));
|
|
templ("base", m_context.variable(_indexAccess.baseExpression()));
|
|
if (keyType.sizeOnStack() == 0)
|
|
templ("key", "");
|
|
else
|
|
templ("key", ", " + m_context.variable(*_indexAccess.indexExpression()));
|
|
m_code << templ.render();
|
|
setLValue(_indexAccess, make_unique<IRStorageItem>(
|
|
m_context,
|
|
slot,
|
|
0,
|
|
*_indexAccess.annotation().type
|
|
));
|
|
}
|
|
else if (baseType.category() == Type::Category::Array)
|
|
solUnimplementedAssert(false, "");
|
|
else if (baseType.category() == Type::Category::FixedBytes)
|
|
solUnimplementedAssert(false, "");
|
|
else if (baseType.category() == Type::Category::TypeType)
|
|
{
|
|
solAssert(baseType.sizeOnStack() == 0, "");
|
|
solAssert(_indexAccess.annotation().type->sizeOnStack() == 0, "");
|
|
// no-op - this seems to be a lone array type (`structType[];`)
|
|
}
|
|
else
|
|
solAssert(false, "Index access only allowed for mappings or arrays.");
|
|
}
|
|
|
|
void IRGeneratorForStatements::endVisit(Identifier const& _identifier)
|
|
{
|
|
Declaration const* declaration = _identifier.annotation().referencedDeclaration;
|
|
if (MagicVariableDeclaration const* magicVar = dynamic_cast<MagicVariableDeclaration const*>(declaration))
|
|
{
|
|
switch (magicVar->type()->category())
|
|
{
|
|
case Type::Category::Contract:
|
|
if (dynamic_cast<ContractType const&>(*magicVar->type()).isSuper())
|
|
solAssert(_identifier.name() == "super", "");
|
|
else
|
|
{
|
|
solAssert(_identifier.name() == "this", "");
|
|
defineExpression(_identifier) << "address()\n";
|
|
}
|
|
break;
|
|
case Type::Category::Integer:
|
|
solAssert(_identifier.name() == "now", "");
|
|
defineExpression(_identifier) << "timestamp()\n";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
else if (FunctionDefinition const* functionDef = dynamic_cast<FunctionDefinition const*>(declaration))
|
|
defineExpression(_identifier) << to_string(m_context.virtualFunction(*functionDef).id()) << "\n";
|
|
else if (VariableDeclaration const* varDecl = dynamic_cast<VariableDeclaration const*>(declaration))
|
|
{
|
|
// TODO for the constant case, we have to be careful:
|
|
// If the value is visited twice, `defineExpression` is called twice on
|
|
// the same expression.
|
|
solUnimplementedAssert(!varDecl->isConstant(), "");
|
|
unique_ptr<IRLValue> lvalue;
|
|
if (m_context.isLocalVariable(*varDecl))
|
|
lvalue = make_unique<IRLocalVariable>(m_context, *varDecl);
|
|
else if (m_context.isStateVariable(*varDecl))
|
|
lvalue = make_unique<IRStorageItem>(m_context, *varDecl);
|
|
else
|
|
solAssert(false, "Invalid variable kind.");
|
|
|
|
setLValue(_identifier, move(lvalue));
|
|
}
|
|
else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
|
|
{
|
|
solUnimplementedAssert(!contract->isLibrary(), "Libraries not yet supported.");
|
|
}
|
|
else if (dynamic_cast<EventDefinition const*>(declaration))
|
|
{
|
|
// no-op
|
|
}
|
|
else if (dynamic_cast<EnumDefinition const*>(declaration))
|
|
{
|
|
// no-op
|
|
}
|
|
else if (dynamic_cast<StructDefinition const*>(declaration))
|
|
{
|
|
// no-op
|
|
}
|
|
else
|
|
{
|
|
solAssert(false, "Identifier type not expected in expression context.");
|
|
}
|
|
}
|
|
|
|
bool IRGeneratorForStatements::visit(Literal const& _literal)
|
|
{
|
|
Type const& literalType = type(_literal);
|
|
|
|
switch (literalType.category())
|
|
{
|
|
case Type::Category::RationalNumber:
|
|
case Type::Category::Bool:
|
|
case Type::Category::Address:
|
|
defineExpression(_literal) << toCompactHexWithPrefix(literalType.literalValue(&_literal)) << "\n";
|
|
break;
|
|
case Type::Category::StringLiteral:
|
|
break; // will be done during conversion
|
|
default:
|
|
solUnimplemented("Only integer, boolean and string literals implemented for now.");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void IRGeneratorForStatements::appendExternalFunctionCall(
|
|
FunctionCall const& _functionCall,
|
|
vector<ASTPointer<Expression const>> const& _arguments
|
|
)
|
|
{
|
|
FunctionType const& funType = dynamic_cast<FunctionType const&>(type(_functionCall.expression()));
|
|
solAssert(
|
|
funType.takesArbitraryParameters() ||
|
|
_arguments.size() == funType.parameterTypes().size(), ""
|
|
);
|
|
solUnimplementedAssert(!funType.bound(), "");
|
|
FunctionType::Kind funKind = funType.kind();
|
|
|
|
solAssert(funKind != FunctionType::Kind::BareStaticCall || m_context.evmVersion().hasStaticCall(), "");
|
|
solAssert(funKind != FunctionType::Kind::BareCallCode, "Callcode has been removed.");
|
|
|
|
bool returnSuccessConditionAndReturndata = funKind == FunctionType::Kind::BareCall || funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::BareStaticCall;
|
|
bool isDelegateCall = funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::DelegateCall;
|
|
bool useStaticCall = funKind == FunctionType::Kind::BareStaticCall || (funType.stateMutability() <= StateMutability::View && m_context.evmVersion().hasStaticCall());
|
|
|
|
bool haveReturndatacopy = m_context.evmVersion().supportsReturndata();
|
|
unsigned retSize = 0;
|
|
bool dynamicReturnSize = false;
|
|
TypePointers returnTypes;
|
|
if (!returnSuccessConditionAndReturndata)
|
|
{
|
|
if (haveReturndatacopy)
|
|
returnTypes = funType.returnParameterTypes();
|
|
else
|
|
returnTypes = funType.returnParameterTypesWithoutDynamicTypes();
|
|
|
|
for (auto const& retType: returnTypes)
|
|
if (retType->isDynamicallyEncoded())
|
|
{
|
|
solAssert(haveReturndatacopy, "");
|
|
dynamicReturnSize = true;
|
|
retSize = 0;
|
|
break;
|
|
}
|
|
else if (retType->decodingType())
|
|
retSize += retType->decodingType()->calldataEncodedSize();
|
|
else
|
|
retSize += retType->calldataEncodedSize();
|
|
}
|
|
|
|
TypePointers argumentTypes;
|
|
string argumentString;
|
|
for (auto const& arg: _arguments)
|
|
{
|
|
argumentTypes.emplace_back(&type(*arg));
|
|
string var = m_context.variable(*arg);
|
|
if (!var.empty())
|
|
argumentString += ", " + move(var);
|
|
}
|
|
|
|
solUnimplementedAssert(funKind != FunctionType::Kind::ECRecover, "");
|
|
|
|
if (!m_context.evmVersion().canOverchargeGasForCall())
|
|
{
|
|
// Touch the end of the output area so that we do not pay for memory resize during the call
|
|
// (which we would have to subtract from the gas left)
|
|
// We could also just use MLOAD; POP right before the gas calculation, but the optimizer
|
|
// would remove that, so we use MSTORE here.
|
|
if (!funType.gasSet() && retSize > 0)
|
|
m_code << "mstore(add(" << fetchFreeMem() << ", " << to_string(retSize) << "), 0)\n";
|
|
}
|
|
|
|
ABIFunctions abi(m_context.evmVersion(), m_context.functionCollector());
|
|
|
|
solUnimplementedAssert(!funType.isBareCall(), "");
|
|
Whiskers templ(R"(
|
|
<?checkExistence>
|
|
if iszero(extcodesize(<address>)) { revert(0, 0) }
|
|
</checkExistence>
|
|
|
|
let <pos> := <freeMem>
|
|
mstore(<pos>, <shl28>(<funId>))
|
|
let <end> := <encodeArgs>(add(<pos>, 4) <argumentString>)
|
|
|
|
let <result> := <call>(<gas>, <address>, <value>, <pos>, sub(<end>, <pos>), <pos>, <retSize>)
|
|
if iszero(<result>) { <forwardingRevert> }
|
|
|
|
<?dynamicReturnSize>
|
|
returndatacopy(<pos>, 0, returndatasize())
|
|
</dynamicReturnSize>
|
|
<allocate>
|
|
mstore(<freeMem>, add(<pos>, and(add(<retSize>, 0x1f), not(0x1f))))
|
|
<?returns> let <retvars> := </returns> <abiDecode>(<pos>, <retSize>)
|
|
)");
|
|
templ("pos", m_context.newYulVariable());
|
|
templ("end", m_context.newYulVariable());
|
|
templ("result", m_context.newYulVariable());
|
|
templ("freeMem", fetchFreeMem());
|
|
templ("shl28", m_utils.shiftLeftFunction(8 * (32 - 4)));
|
|
templ("funId", m_context.variablePart(_functionCall.expression(), 2));
|
|
|
|
// If the function takes arbitrary parameters or is a bare call, copy dynamic length data in place.
|
|
// Move arguments to memory, will not update the free memory pointer (but will update the memory
|
|
// pointer on the stack).
|
|
bool encodeInPlace = funType.takesArbitraryParameters() || funType.isBareCall();
|
|
if (funType.kind() == FunctionType::Kind::ECRecover)
|
|
// This would be the only combination of padding and in-place encoding,
|
|
// but all parameters of ecrecover are value types anyway.
|
|
encodeInPlace = false;
|
|
bool encodeForLibraryCall = funKind == FunctionType::Kind::DelegateCall;
|
|
solUnimplementedAssert(!encodeInPlace, "");
|
|
solUnimplementedAssert(!funType.padArguments(), "");
|
|
templ("encodeArgs", abi.tupleEncoder(argumentTypes, funType.parameterTypes(), encodeForLibraryCall));
|
|
templ("argumentString", argumentString);
|
|
|
|
// Output data will replace input data, unless we have ECRecover (then, output
|
|
// area will be 32 bytes just before input area).
|
|
templ("retSize", to_string(retSize));
|
|
solUnimplementedAssert(funKind != FunctionType::Kind::ECRecover, "");
|
|
|
|
if (isDelegateCall)
|
|
solAssert(!funType.valueSet(), "Value set for delegatecall");
|
|
else if (useStaticCall)
|
|
solAssert(!funType.valueSet(), "Value set for staticcall");
|
|
else if (funType.valueSet())
|
|
templ("value", m_context.variablePart(_functionCall.expression(), 4));
|
|
else
|
|
templ("value", "0");
|
|
|
|
// Check that the target contract exists (has code) for non-low-level calls.
|
|
bool checkExistence = (funKind == FunctionType::Kind::External || funKind == FunctionType::Kind::DelegateCall);
|
|
templ("checkExistence", checkExistence);
|
|
|
|
if (funType.gasSet())
|
|
templ("gas", m_context.variablePart(_functionCall.expression(), 3));
|
|
else if (m_context.evmVersion().canOverchargeGasForCall())
|
|
// Send all gas (requires tangerine whistle EVM)
|
|
templ("gas", "gas()");
|
|
else
|
|
{
|
|
// send all gas except the amount needed to execute "SUB" and "CALL"
|
|
// @todo this retains too much gas for now, needs to be fine-tuned.
|
|
u256 gasNeededByCaller = eth::GasCosts::callGas(m_context.evmVersion()) + 10;
|
|
if (funType.valueSet())
|
|
gasNeededByCaller += eth::GasCosts::callValueTransferGas;
|
|
if (!checkExistence)
|
|
gasNeededByCaller += eth::GasCosts::callNewAccountGas; // we never know
|
|
templ("gas", "sub(gas(), " + formatNumber(gasNeededByCaller) + ")");
|
|
}
|
|
// Order is important here, STATICCALL might overlap with DELEGATECALL.
|
|
if (isDelegateCall)
|
|
templ("call", "delegatecall");
|
|
else if (useStaticCall)
|
|
templ("call", "staticcall");
|
|
else
|
|
templ("call", "call");
|
|
|
|
templ("forwardingRevert", m_utils.forwardingRevertFunction());
|
|
|
|
solUnimplementedAssert(!returnSuccessConditionAndReturndata, "");
|
|
solUnimplementedAssert(funKind != FunctionType::Kind::RIPEMD160, "");
|
|
solUnimplementedAssert(funKind != FunctionType::Kind::ECRecover, "");
|
|
|
|
templ("dynamicReturnSize", dynamicReturnSize);
|
|
// Always use the actual return length, and not our calculated expected length, if returndatacopy is supported.
|
|
// This ensures it can catch badly formatted input from external calls.
|
|
if (haveReturndatacopy)
|
|
templ("returnSize", "returndatasize()");
|
|
else
|
|
templ("returnSize", to_string(retSize));
|
|
templ("abiDecode", abi.tupleDecoder(returnTypes, true));
|
|
templ("returns", !returnTypes.empty());
|
|
templ("retVars", m_context.variable(_functionCall));
|
|
}
|
|
|
|
string IRGeneratorForStatements::fetchFreeMem() const
|
|
{
|
|
return "mload(" + to_string(CompilerUtils::freeMemoryPointer) + ")";
|
|
}
|
|
|
|
string IRGeneratorForStatements::expressionAsType(Expression const& _expression, Type const& _to)
|
|
{
|
|
Type const& from = type(_expression);
|
|
if (from.sizeOnStack() == 0)
|
|
{
|
|
solAssert(from != _to, "");
|
|
return m_utils.conversionFunction(from, _to) + "()";
|
|
}
|
|
else
|
|
{
|
|
string varName = m_context.variable(_expression);
|
|
|
|
if (from == _to)
|
|
return varName;
|
|
else
|
|
return m_utils.conversionFunction(from, _to) + "(" + std::move(varName) + ")";
|
|
}
|
|
}
|
|
|
|
ostream& IRGeneratorForStatements::defineExpression(Expression const& _expression)
|
|
{
|
|
string vars = m_context.variable(_expression);
|
|
if (!vars.empty())
|
|
m_code << "let " << move(vars) << " := ";
|
|
return m_code;
|
|
}
|
|
|
|
ostream& IRGeneratorForStatements::defineExpressionPart(Expression const& _expression, size_t _part)
|
|
{
|
|
return m_code << "let " << m_context.variablePart(_expression, _part) << " := ";
|
|
}
|
|
|
|
|
|
void IRGeneratorForStatements::appendSimpleUnaryOperation(UnaryOperation const& _operation, Expression const& _expr)
|
|
{
|
|
string func;
|
|
|
|
if (_operation.getOperator() == Token::Not)
|
|
func = "iszero";
|
|
else if (_operation.getOperator() == Token::BitNot)
|
|
func = "not";
|
|
else
|
|
solAssert(false, "Invalid Token!");
|
|
|
|
defineExpression(_operation) <<
|
|
m_utils.cleanupFunction(type(_expr)) <<
|
|
"(" <<
|
|
func <<
|
|
"(" <<
|
|
m_context.variable(_expr) <<
|
|
")" <<
|
|
")\n";
|
|
}
|
|
|
|
string IRGeneratorForStatements::binaryOperation(
|
|
langutil::Token _operator,
|
|
Type const& _type,
|
|
string const& _left,
|
|
string const& _right
|
|
)
|
|
{
|
|
if (IntegerType const* type = dynamic_cast<IntegerType const*>(&_type))
|
|
{
|
|
string fun;
|
|
// TODO: Only division is implemented for signed integers for now.
|
|
if (!type->isSigned())
|
|
{
|
|
if (_operator == Token::Add)
|
|
fun = m_utils.overflowCheckedUIntAddFunction(type->numBits());
|
|
else if (_operator == Token::Sub)
|
|
fun = m_utils.overflowCheckedUIntSubFunction();
|
|
else if (_operator == Token::Mul)
|
|
fun = m_utils.overflowCheckedUIntMulFunction(type->numBits());
|
|
}
|
|
if (_operator == Token::Div)
|
|
fun = m_utils.overflowCheckedIntDivFunction(*type);
|
|
solUnimplementedAssert(!fun.empty(), "");
|
|
return fun + "(" + _left + ", " + _right + ")\n";
|
|
}
|
|
else
|
|
solUnimplementedAssert(false, "");
|
|
|
|
return {};
|
|
}
|
|
|
|
void IRGeneratorForStatements::appendAndOrOperatorCode(BinaryOperation const& _binOp)
|
|
{
|
|
langutil::Token const op = _binOp.getOperator();
|
|
solAssert(op == Token::Or || op == Token::And, "");
|
|
|
|
_binOp.leftExpression().accept(*this);
|
|
|
|
string value = m_context.variable(_binOp);
|
|
m_code << "let " << value << " := " << m_context.variable(_binOp.leftExpression()) << "\n";
|
|
if (op == Token::Or)
|
|
m_code << "if iszero(" << value << ") {\n";
|
|
else
|
|
m_code << "if " << value << " {\n";
|
|
_binOp.rightExpression().accept(*this);
|
|
m_code << value << " := " + m_context.variable(_binOp.rightExpression()) << "\n";
|
|
m_code << "}\n";
|
|
}
|
|
|
|
void IRGeneratorForStatements::setLValue(Expression const& _expression, unique_ptr<IRLValue> _lvalue)
|
|
{
|
|
solAssert(!m_currentLValue, "");
|
|
|
|
if (_expression.annotation().lValueRequested)
|
|
// Do not define the expression, so it cannot be used as value.
|
|
m_currentLValue = std::move(_lvalue);
|
|
else
|
|
defineExpression(_expression) << _lvalue->retrieveValue() << "\n";
|
|
}
|
|
|
|
void IRGeneratorForStatements::generateLoop(
|
|
Statement const& _body,
|
|
Expression const* _conditionExpression,
|
|
Statement const* _initExpression,
|
|
ExpressionStatement const* _loopExpression,
|
|
bool _isDoWhile
|
|
)
|
|
{
|
|
string firstRun;
|
|
|
|
if (_isDoWhile)
|
|
{
|
|
solAssert(_conditionExpression, "Expected condition for doWhile");
|
|
firstRun = m_context.newYulVariable();
|
|
m_code << "let " << firstRun << " := 1\n";
|
|
}
|
|
|
|
m_code << "for {\n";
|
|
if (_initExpression)
|
|
_initExpression->accept(*this);
|
|
m_code << "} return_flag {\n";
|
|
if (_loopExpression)
|
|
_loopExpression->accept(*this);
|
|
m_code << "}\n";
|
|
m_code << "{\n";
|
|
|
|
if (_conditionExpression)
|
|
{
|
|
if (_isDoWhile)
|
|
m_code << "if iszero(" << firstRun << ") {\n";
|
|
|
|
_conditionExpression->accept(*this);
|
|
m_code <<
|
|
"if iszero(" <<
|
|
expressionAsType(*_conditionExpression, *TypeProvider::boolean()) <<
|
|
") { break }\n";
|
|
|
|
if (_isDoWhile)
|
|
m_code << "}\n" << firstRun << " := 0\n";
|
|
}
|
|
|
|
_body.accept(*this);
|
|
|
|
m_code << "}\n";
|
|
// Bubble up the return condition.
|
|
m_code << "if iszero(return_flag) { break }\n";
|
|
}
|
|
|
|
Type const& IRGeneratorForStatements::type(Expression const& _expression)
|
|
{
|
|
solAssert(_expression.annotation().type, "Type of expression not set.");
|
|
return *_expression.annotation().type;
|
|
}
|