solidity/libsmtutil/CHCSmtLib2Interface.cpp

782 lines
24 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <libsmtutil/CHCSmtLib2Interface.h>
#include <libsmtutil/SMTLibParser.h>
#include <libsolutil/Keccak256.h>
#include <libsolutil/StringUtils.h>
#include <libsolutil/Visitor.h>
#include <liblangutil/Common.h>
#include <boost/algorithm/string/join.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <range/v3/view.hpp>
#include <range/v3/algorithm/find.hpp>
#include <range/v3/algorithm/find_if.hpp>
#include <array>
#include <fstream>
#include <iostream>
#include <memory>
#include <stack>
#include <stdexcept>
#include <unordered_map>
#include <variant>
using namespace solidity;
using namespace solidity::util;
using namespace solidity::frontend;
using namespace solidity::langutil;
using namespace solidity::smtutil;
CHCSmtLib2Interface::CHCSmtLib2Interface(
std::map<h256, std::string> const& _queryResponses,
ReadCallback::Callback _smtCallback,
SMTSolverChoice _enabledSolvers,
std::optional<unsigned> _queryTimeout
):
CHCSolverInterface(_queryTimeout),
m_smtlib2(std::make_unique<SMTLib2Interface>(_queryResponses, _smtCallback, _enabledSolvers, m_queryTimeout)),
m_queryResponses(std::move(_queryResponses)),
m_smtCallback(_smtCallback),
m_enabledSolvers(_enabledSolvers)
{
reset();
}
void CHCSmtLib2Interface::reset()
{
m_accumulatedOutput.clear();
m_variables.clear();
m_unhandledQueries.clear();
}
void CHCSmtLib2Interface::registerRelation(Expression const& _expr)
{
smtAssert(_expr.sort);
smtAssert(_expr.sort->kind == Kind::Function);
if (!m_variables.count(_expr.name))
{
auto fSort = std::dynamic_pointer_cast<FunctionSort>(_expr.sort);
std::string domain = toSmtLibSort(fSort->domain);
// Relations are predicates which have implicit codomain Bool.
m_variables.insert(_expr.name);
write(
"(declare-fun |" +
_expr.name +
"| " +
domain +
" Bool)"
);
}
}
void CHCSmtLib2Interface::addRule(Expression const& _expr, std::string const& /*_name*/)
{
write(
"(assert\n(forall " + forall() + "\n" +
m_smtlib2->toSExpr(_expr) +
"))\n\n"
);
}
std::tuple<CheckResult, Expression, CHCSolverInterface::CexGraph> CHCSmtLib2Interface::query(Expression const& _block)
{
std::string query = dumpQuery(_block);
std::string response = querySolver(query);
CheckResult result;
// TODO proper parsing
if (boost::starts_with(response, "sat"))
{
result = CheckResult::UNSATISFIABLE;
return {result, invariantsFromSMTLib(response), {}};
}
else if (boost::starts_with(response, "unsat"))
{
result = CheckResult::SATISFIABLE;
return {result, Expression(true), graphFromZ3Proof(response)};
}
else if (boost::starts_with(response, "unknown"))
result = CheckResult::UNKNOWN;
else
result = CheckResult::ERROR;
return {result, Expression(true), {}};
}
void CHCSmtLib2Interface::declareVariable(std::string const& _name, SortPointer const& _sort)
{
smtAssert(_sort);
if (_sort->kind == Kind::Function)
declareFunction(_name, _sort);
else if (!m_variables.count(_name))
{
m_variables.insert(_name);
write("(declare-var |" + _name + "| " + toSmtLibSort(_sort) + ')');
}
}
std::string CHCSmtLib2Interface::toSmtLibSort(SortPointer _sort)
{
return m_smtlib2->toSmtLibSort(_sort);
}
std::string CHCSmtLib2Interface::toSmtLibSort(std::vector<SortPointer> const& _sorts)
{
return m_smtlib2->toSmtLibSort(_sorts);
}
std::string CHCSmtLib2Interface::forall()
{
std::string vars("(");
for (auto const& [name, sort]: m_smtlib2->variables())
{
solAssert(sort, "");
if (sort->kind != Kind::Function)
vars += " (" + name + " " + toSmtLibSort(sort) + ")";
}
vars += ")";
return vars;
}
void CHCSmtLib2Interface::declareFunction(std::string const& _name, SortPointer const& _sort)
{
smtAssert(_sort);
smtAssert(_sort->kind == Kind::Function);
// TODO Use domain and codomain as key as well
if (!m_variables.count(_name))
{
auto fSort = std::dynamic_pointer_cast<FunctionSort>(_sort);
smtAssert(fSort->codomain);
std::string domain = toSmtLibSort(fSort->domain);
std::string codomain = toSmtLibSort(fSort->codomain);
m_variables.insert(_name);
write(
"(declare-fun |" +
_name +
"| " +
domain +
" " +
codomain +
")"
);
}
}
void CHCSmtLib2Interface::write(std::string _data)
{
m_accumulatedOutput += std::move(_data) + "\n";
}
std::string CHCSmtLib2Interface::querySolver(std::string const& _input)
{
util::h256 inputHash = util::keccak256(_input);
if (m_queryResponses.count(inputHash))
return m_queryResponses.at(inputHash);
smtAssert(m_enabledSolvers.eld || m_enabledSolvers.z3);
smtAssert(m_smtCallback, "Callback must be set!");
std::string solverBinary = [&](){
if (m_enabledSolvers.eld)
return "eld";
if (m_enabledSolvers.z3)
return "z3 rlimit=1000000 fp.spacer.q3.use_qgen=true fp.spacer.mbqi=false fp.spacer.ground_pobs=false";
return "";
}();
std::string z3Input = _input + "(get-model)\n";
auto const& query = boost::starts_with(solverBinary, "z3") ? z3Input : _input;
auto result = m_smtCallback(ReadCallback::kindString(ReadCallback::Kind::SMTQuery) + " " + solverBinary, query);
if (result.success)
{
if (m_enabledSolvers.z3 and boost::starts_with(result.responseOrErrorMessage, "unsat"))
{
solverBinary += " fp.xform.slice=false fp.xform.inline_linear=false fp.xform.inline_eager=false";
std::string extendedQuery = "(set-option :produce-proofs true)" + _input + "\n(get-proof)";
auto secondResult = m_smtCallback(ReadCallback::kindString(ReadCallback::Kind::SMTQuery) + " " + solverBinary, extendedQuery);
if (secondResult.success and boost::starts_with(secondResult.responseOrErrorMessage, "unsat"))
return secondResult.responseOrErrorMessage;
}
return result.responseOrErrorMessage;
}
m_unhandledQueries.push_back(_input);
return "unknown\n";
}
std::string CHCSmtLib2Interface::dumpQuery(Expression const& _expr)
{
std::stringstream s;
s
<< createHeaderAndDeclarations()
<< m_accumulatedOutput << std::endl
<< createQueryAssertion(_expr.name) << std::endl
<< "(check-sat)" << std::endl;
return s.str();
}
std::string CHCSmtLib2Interface::createHeaderAndDeclarations() {
std::stringstream s;
if (m_queryTimeout)
s << "(set-option :timeout " + std::to_string(*m_queryTimeout) + ")\n";
s << "(set-logic HORN)" << std::endl;
for (auto const& decl: m_smtlib2->userSorts() | ranges::views::values)
s << decl << std::endl;
return s.str();
}
std::string CHCSmtLib2Interface::createQueryAssertion(std::string name) {
return "(assert\n(forall " + forall() + "\n" + "(=> " + name + " false)))";
}
namespace
{
bool isNumber(std::string const& _expr)
{
for (char c: _expr)
if (!isDigit(c) && c != '.')
return false;
return true;
}
class SMTLibTranslationContext
{
SMTLib2Interface const& m_smtlib2Interface;
std::map<std::string, SortPointer> knownVariables;
public:
SMTLibTranslationContext(SMTLib2Interface const& _smtlib2Interface) : m_smtlib2Interface(_smtlib2Interface)
{
// fill user defined sorts and constructors
auto const& userSorts = _smtlib2Interface.userSorts(); // TODO: It would be better to remember userSorts as SortPointers
for (auto const& [_, definition] : userSorts)
{
std::stringstream ss(definition);
SMTLib2Parser parser(ss);
auto expr = parser.parseExpression();
solAssert(parser.isEOF());
solAssert(!isAtom(expr));
auto const& args = asSubExpressions(expr);
solAssert(args.size() == 3);
solAssert(isAtom(args[0]) && asAtom(args[0]) == "declare-datatypes");
// args[1] is the name of the type
// args[2] is the constructor with the members
solAssert(!isAtom(args[2]) && asSubExpressions(args[2]).size() == 1 && !isAtom(asSubExpressions(args[2])[0]));
auto const& constructors = asSubExpressions(asSubExpressions(args[2])[0]);
solAssert(constructors.size() == 1);
auto const& constructor = constructors[0];
// constructor is a list: name + members
solAssert(!isAtom(constructor));
auto const& constructorArgs = asSubExpressions(constructor);
for (unsigned i = 1u; i < constructorArgs.size(); ++i)
{
auto const& carg = constructorArgs[i];
solAssert(!isAtom(carg) && asSubExpressions(carg).size() == 2);
auto const& nameSortPair = asSubExpressions(carg);
solAssert(isAtom(nameSortPair[0]));
knownVariables.insert({asAtom(nameSortPair[0]), toSort(nameSortPair[1])});
}
}
}
void addVariableDeclaration(std::string name, SortPointer sort)
{
solAssert(knownVariables.find(name) == knownVariables.end());
knownVariables.insert({std::move(name), std::move(sort)});
}
std::optional<SortPointer> lookupKnownTupleSort(std::string const& name) {
std::string quotedName = "|" + name + "|";
auto it = ranges::find_if(m_smtlib2Interface.sortNames(), [&](auto const& entry) {
return entry.second == name || entry.second == quotedName;
});
if (it != m_smtlib2Interface.sortNames().end() && it->first->kind == Kind::Tuple)
{
auto tupleSort = std::dynamic_pointer_cast<TupleSort>(it->first);
smtAssert(tupleSort);
return tupleSort;
}
return {};
}
SortPointer toSort(SMTLib2Expression const& expr)
{
if (isAtom(expr))
{
auto const& name = asAtom(expr);
if (name == "Int")
return SortProvider::sintSort;
if (name == "Bool")
return SortProvider::boolSort;
auto tupleSort = lookupKnownTupleSort(name);
if (tupleSort)
return tupleSort.value();
} else {
auto const& args = asSubExpressions(expr);
if (asAtom(args[0]) == "Array")
{
assert(args.size() == 3);
auto domainSort = toSort(args[1]);
auto codomainSort = toSort(args[2]);
return std::make_shared<ArraySort>(std::move(domainSort), std::move(codomainSort));
}
if (args.size() == 3 && isAtom(args[0]) && asAtom(args[0]) == "_" && isAtom(args[1]) && asAtom(args[1]) == "int2bv")
{
solAssert(isAtom(args[2]));
return std::make_shared<BitVectorSort>(std::stoul(asAtom(args[2])));
}
}
smtAssert(false, "Unknown sort encountered");
}
smtutil::Expression parseQuantifier(
std::string const& quantifierName,
std::vector<SMTLib2Expression> const& varList,
SMTLib2Expression const& coreExpression
)
{
std::vector<std::pair<std::string, SortPointer>> boundVariables;
for (auto const& sortedVar: varList)
{
solAssert(!isAtom(sortedVar));
auto varSortPair = asSubExpressions(sortedVar);
solAssert(varSortPair.size() == 2);
solAssert(isAtom(varSortPair[0]));
boundVariables.emplace_back(asAtom(varSortPair[0]), toSort(varSortPair[1]));
}
for (auto const& [var, sort] : boundVariables)
{
solAssert(knownVariables.find(var) == knownVariables.end()); // TODO: deal with shadowing?
knownVariables.insert({var, sort});
}
auto core = toSMTUtilExpression(coreExpression);
for (auto const& [var, sort] : boundVariables)
{
solAssert(knownVariables.find(var) != knownVariables.end());
knownVariables.erase(var);
}
return Expression(quantifierName, {core}, SortProvider::boolSort); // TODO: what about the bound variables?
}
smtutil::Expression toSMTUtilExpression(SMTLib2Expression const& _expr)
{
return std::visit(GenericVisitor{
[&](std::string const& _atom) {
if (_atom == "true" || _atom == "false")
return smtutil::Expression(_atom == "true");
else if (isNumber(_atom))
return smtutil::Expression(_atom, {}, SortProvider::sintSort);
else if (knownVariables.find(_atom) != knownVariables.end())
return smtutil::Expression(_atom, {}, knownVariables.at(_atom));
else // assume this is a predicate, so has sort bool; TODO: Context should be aware of the predicates!
return smtutil::Expression(_atom, {}, SortProvider::boolSort);
},
[&](std::vector<SMTLib2Expression> const& _subExpr) {
SortPointer sort;
std::vector<smtutil::Expression> arguments;
if (isAtom(_subExpr.front()))
{
std::string const& op = asAtom(_subExpr.front());
if (op == "!")
{
// named term, we ignore the name
solAssert(_subExpr.size() > 2);
return toSMTUtilExpression(_subExpr[1]);
}
if (op == "exists" || op == "forall")
{
solAssert(_subExpr.size() == 3);
solAssert(!isAtom(_subExpr[1]));
return parseQuantifier(op, asSubExpressions(_subExpr[1]), _subExpr[2]);
}
for (size_t i = 1; i < _subExpr.size(); i++)
arguments.emplace_back(toSMTUtilExpression(_subExpr[i]));
if (auto tupleSort = lookupKnownTupleSort(op); tupleSort)
{
auto sortSort = std::make_shared<SortSort>(tupleSort.value());
return Expression::tuple_constructor(Expression(sortSort), arguments);
}
if (knownVariables.find(op) != knownVariables.end())
{
return smtutil::Expression(op, std::move(arguments), knownVariables.at(op));
}
else {
std::set<std::string> boolOperators{"and", "or", "not", "=", "<", ">", "<=", ">=",
"=>"};
sort = contains(boolOperators, op) ? SortProvider::boolSort : arguments.back().sort;
return smtutil::Expression(op, std::move(arguments), std::move(sort));
}
smtAssert(false, "Unhandled case in expression conversion");
} else {
// check for const array
if (_subExpr.size() == 2 and !isAtom(_subExpr[0]))
{
auto const& typeArgs = asSubExpressions(_subExpr.front());
if (typeArgs.size() == 3 && typeArgs[0].toString() == "as" && typeArgs[1].toString() == "const")
{
auto arraySort = toSort(typeArgs[2]);
auto sortSort = std::make_shared<SortSort>(arraySort);
return smtutil::Expression::const_array(Expression(sortSort), toSMTUtilExpression(_subExpr[1]));
}
if (typeArgs.size() == 3 && typeArgs[0].toString() == "_" && typeArgs[1].toString() == "int2bv")
{
auto bvSort = std::dynamic_pointer_cast<BitVectorSort>(toSort(_subExpr[0]));
solAssert(bvSort);
return smtutil::Expression::int2bv(toSMTUtilExpression(_subExpr[1]), bvSort->size);
}
if (typeArgs.size() == 4 && typeArgs[0].toString() == "_")
{
if (typeArgs[1].toString() == "extract")
{
return smtutil::Expression(
"extract",
{toSMTUtilExpression(typeArgs[2]), toSMTUtilExpression(typeArgs[3])},
SortProvider::bitVectorSort // TODO: Compute bit size properly?
);
}
}
}
smtAssert(false, "Unhandled case in expression conversion");
}
}
}, _expr.data);
}
};
struct LetBindings {
using BindingRecord = std::vector<SMTLib2Expression>;
std::unordered_map<std::string, BindingRecord> bindings;
std::vector<std::string> varNames;
std::vector<std::size_t> scopeBounds;
bool has(std::string const& varName)
{
return bindings.find(varName) != bindings.end();
}
SMTLib2Expression & operator[](std::string const& varName)
{
auto it = bindings.find(varName);
solAssert(it != bindings.end());
solAssert(!it->second.empty());
return it->second.back();
}
void pushScope()
{
scopeBounds.push_back(varNames.size());
}
void popScope()
{
smtAssert(scopeBounds.size() > 0);
auto bound = scopeBounds.back();
while (varNames.size() > bound) {
auto const& varName = varNames.back();
auto it = bindings.find(varName);
smtAssert(it != bindings.end());
auto & record = it->second;
record.pop_back();
if (record.empty())
bindings.erase(it);
varNames.pop_back();
}
scopeBounds.pop_back();
}
void addBinding(std::string name, SMTLib2Expression expression)
{
auto it = bindings.find(name);
if (it == bindings.end())
bindings.insert({name, {std::move(expression)}});
else
it->second.push_back(std::move(expression));
varNames.push_back(std::move(name));
}
};
void inlineLetExpressions(SMTLib2Expression& expr, LetBindings & bindings)
{
if (isAtom(expr))
{
auto const& atom = asAtom(expr);
if (bindings.has(atom))
expr = bindings[atom];
return;
}
auto& subexprs = asSubExpressions(expr);
solAssert(!subexprs.empty());
auto const& first = subexprs.at(0);
if (isAtom(first) && asAtom(first) == "let")
{
solAssert(subexprs.size() >= 3);
solAssert(!isAtom(subexprs[1]));
auto& bindingExpressions = asSubExpressions(subexprs[1]);
// process new bindings
std::vector<std::pair<std::string, SMTLib2Expression>> newBindings;
for (auto& binding: bindingExpressions)
{
solAssert(!isAtom(binding));
auto& bindingPair = asSubExpressions(binding);
solAssert(bindingPair.size() == 2);
solAssert(isAtom(bindingPair.at(0)));
inlineLetExpressions(bindingPair.at(1), bindings);
newBindings.emplace_back(asAtom(bindingPair.at(0)), bindingPair.at(1));
}
bindings.pushScope();
for (auto&& [name, expr]: newBindings)
bindings.addBinding(std::move(name), std::move(expr));
newBindings.clear();
// get new subexpression
inlineLetExpressions(subexprs.at(2), bindings);
// remove the new bindings
bindings.popScope();
// update the expression
auto tmp = std::move(subexprs.at(2));
expr = std::move(tmp);
return;
}
// not a let expression, just process all arguments
for (auto& subexpr: subexprs)
{
inlineLetExpressions(subexpr, bindings);
}
}
void inlineLetExpressions(SMTLib2Expression& expr)
{
LetBindings bindings;
inlineLetExpressions(expr, bindings);
}
SMTLib2Expression const& fact(SMTLib2Expression const& _node)
{
if (isAtom(_node))
return _node;
solAssert(!asSubExpressions(_node).empty());
return asSubExpressions(_node).back();
}
CHCSolverInterface::CexGraph graphFromSMTLib2Expression(SMTLib2Expression const& _proof, SMTLibTranslationContext & context)
{
assert(!isAtom(_proof));
auto const& args = asSubExpressions(_proof);
smtAssert(args.size() == 2);
smtAssert(isAtom(args.at(0)) && asAtom(args.at(0)) == "proof");
auto const& proofNode = args.at(1);
auto derivedFact = fact(proofNode);
if (isAtom(proofNode) || !isAtom(derivedFact) || asAtom(derivedFact) != "false")
return {};
CHCSolverInterface::CexGraph graph;
std::stack<SMTLib2Expression const*> proofStack;
proofStack.push(&asSubExpressions(proofNode).at(1));
std::map<SMTLib2Expression const*, unsigned> visitedIds;
unsigned nextId = 0;
auto const* root = proofStack.top();
auto const& derivedRootFact = fact(*root);
visitedIds.insert({root, nextId++});
graph.nodes.emplace(visitedIds.at(root), context.toSMTUtilExpression(derivedRootFact));
auto isHyperRes = [](SMTLib2Expression const& expr) {
if (isAtom(expr)) return false;
auto const& subExprs = asSubExpressions(expr);
solAssert(!subExprs.empty());
auto const& op = subExprs.at(0);
if (isAtom(op)) return false;
auto const& opExprs = asSubExpressions(op);
if (opExprs.size() < 2) return false;
auto const& ruleName = opExprs.at(1);
return isAtom(ruleName) && asAtom(ruleName) == "hyper-res";
};
while (!proofStack.empty())
{
auto const* proofNode = proofStack.top();
smtAssert(visitedIds.find(proofNode) != visitedIds.end(), "");
auto id = visitedIds.at(proofNode);
smtAssert(graph.nodes.count(id), "");
proofStack.pop();
if (isHyperRes(*proofNode))
{
auto const& args = asSubExpressions(*proofNode);
smtAssert(args.size() > 1, "");
// args[0] is the name of the rule
// args[1] is the clause used
// last argument is the derived fact
// the arguments in the middle are the facts where we need to recurse
for (unsigned i = 2; i < args.size() - 1; ++i)
{
auto const* child = &args[i];
if (!visitedIds.count(child))
{
visitedIds.insert({child, nextId++});
proofStack.push(child);
}
auto childId = visitedIds.at(child);
if (!graph.nodes.count(childId))
{
graph.nodes.emplace(childId, context.toSMTUtilExpression(fact(*child)));
graph.edges[childId] = {};
}
graph.edges[id].push_back(childId);
}
}
}
return graph;
}
}
CHCSolverInterface::CexGraph CHCSmtLib2Interface::graphFromZ3Proof(std::string const& _proof)
{
std::stringstream ss(_proof);
std::string answer;
ss >> answer;
solAssert(answer == "unsat");
SMTLib2Parser parser(ss);
if (parser.isEOF()) // No proof from Z3
return {};
// For some reason Z3 outputs everything as a single s-expression
SMTLib2Expression parsedOutput;
try
{
parsedOutput = parser.parseExpression();
}
catch (SMTLib2Parser::ParsingException&)
{
// TODO: What should we do in this case?
smtAssert(false, "SMTLIb2Parser: Error parsing input");
}
solAssert(parser.isEOF());
solAssert(!isAtom(parsedOutput));
auto& commands = asSubExpressions(parsedOutput);
SMTLibTranslationContext context(*m_smtlib2);
for (auto& command: commands)
{
if (isAtom(command))
continue;
auto const& args = asSubExpressions(command);
auto const& head = args[0];
if (!isAtom(head))
continue;
if (asAtom(head) == "declare-fun")
{
solAssert(args.size() == 4);
auto const& name = args[1];
auto const& domainSorts = args[2];
auto const& codomainSort = args[3];
solAssert(isAtom(name));
solAssert(!isAtom(domainSorts));
context.addVariableDeclaration(asAtom(name), context.toSort(codomainSort));
}
else if (asAtom(head) == "proof")
{
// std::cout << "Proof expression!\n" << command.toString() << std::endl;
inlineLetExpressions(command);
// std::cout << "Cleaned Proof expression!\n" << command.toString() << std::endl;
return graphFromSMTLib2Expression(command, context);
}
}
return {};
}
smtutil::Expression CHCSmtLib2Interface::invariantsFromSMTLib(std::string const& _invariants) {
std::stringstream ss(_invariants);
std::string answer;
ss >> answer;
solAssert(answer == "sat");
SMTLib2Parser parser(ss);
if (parser.isEOF()) // No model
return Expression(true);
// For some reason Z3 outputs everything as a single s-expression
SMTLib2Expression parsedOutput;
try {
parsedOutput = parser.parseExpression();
} catch(SMTLib2Parser::ParsingException&)
{
// TODO: What should we do in this case?
smtAssert(false, "SMTLIb2Parser: Error parsing input");
}
solAssert(parser.isEOF());
solAssert(!isAtom(parsedOutput));
auto& commands = asSubExpressions(parsedOutput);
std::vector<Expression> definitions;
for (auto& command: commands)
{
solAssert(!isAtom(command));
auto& args = asSubExpressions(command);
solAssert(args.size() == 5);
// args[0] = "define-fun"
// args[1] = predicate name
// args[2] = formal arguments of the predicate
// args[3] = return sort
// args[4] = body of the predicate's interpretation
solAssert(isAtom(args[0]) && asAtom(args[0]) == "define-fun");
solAssert(isAtom(args[1]));
solAssert(!isAtom(args[2]));
solAssert(isAtom(args[3]) && asAtom(args[3]) == "Bool");
auto& interpretation = args[4];
inlineLetExpressions(interpretation);
SMTLibTranslationContext context(*m_smtlib2);
auto const& formalArguments = asSubExpressions(args[2]);
std::vector<Expression> predicateArgs;
for (auto const& formalArgument: formalArguments)
{
solAssert(!isAtom(formalArgument));
auto const& nameSortPair = asSubExpressions(formalArgument);
solAssert(nameSortPair.size() == 2);
solAssert(isAtom(nameSortPair[0]));
SortPointer varSort = context.toSort(nameSortPair[1]);
context.addVariableDeclaration(asAtom(nameSortPair[0]), varSort);
Expression arg = context.toSMTUtilExpression(nameSortPair[0]);
predicateArgs.push_back(arg);
}
auto parsedInterpretation = context.toSMTUtilExpression(interpretation);
Expression predicate(asAtom(args[1]), predicateArgs, SortProvider::boolSort);
definitions.push_back(predicate == parsedInterpretation);
}
return Expression::mkAnd(std::move(definitions));
}