solidity/ExpressionCompiler.cpp
2014-11-06 02:36:39 +01:00

425 lines
13 KiB
C++

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Solidity AST to EVM bytecode compiler for expressions.
*/
#include <utility>
#include <numeric>
#include <libsolidity/AST.h>
#include <libsolidity/ExpressionCompiler.h>
#include <libsolidity/CompilerContext.h>
using namespace std;
namespace dev {
namespace solidity {
void ExpressionCompiler::compileExpression(CompilerContext& _context, Expression& _expression)
{
ExpressionCompiler compiler(_context);
_expression.accept(compiler);
}
void ExpressionCompiler::appendTypeConversion(CompilerContext& _context,
Type const& _typeOnStack, Type const& _targetType)
{
ExpressionCompiler compiler(_context);
compiler.appendTypeConversion(_typeOnStack, _targetType);
}
bool ExpressionCompiler::visit(Assignment& _assignment)
{
m_currentLValue = nullptr;
Expression& rightHandSide = _assignment.getRightHandSide();
rightHandSide.accept(*this);
Type const& resultType = *_assignment.getType();
appendTypeConversion(*rightHandSide.getType(), resultType);
_assignment.getLeftHandSide().accept(*this);
Token::Value op = _assignment.getAssignmentOperator();
if (op != Token::ASSIGN)
{
// compound assignment
m_context << eth::Instruction::SWAP1;
appendOrdinaryBinaryOperatorCode(Token::AssignmentToBinaryOp(op), resultType);
}
else
m_context << eth::Instruction::POP; //@todo do not retrieve the value in the first place
storeInLValue(_assignment);
return false;
}
void ExpressionCompiler::endVisit(UnaryOperation& _unaryOperation)
{
//@todo type checking and creating code for an operator should be in the same place:
// the operator should know how to convert itself and to which types it applies, so
// put this code together with "Type::acceptsBinary/UnaryOperator" into a class that
// represents the operator
switch (_unaryOperation.getOperator())
{
case Token::NOT: // !
m_context << eth::Instruction::ISZERO;
break;
case Token::BIT_NOT: // ~
m_context << eth::Instruction::NOT;
break;
case Token::DELETE: // delete
{
// a -> a xor a (= 0).
// @todo semantics change for complex types
m_context << eth::Instruction::DUP1 << eth::Instruction::XOR;
storeInLValue(_unaryOperation);
break;
}
case Token::INC: // ++ (pre- or postfix)
case Token::DEC: // -- (pre- or postfix)
if (!_unaryOperation.isPrefixOperation())
m_context << eth::Instruction::DUP1;
m_context << u256(1);
if (_unaryOperation.getOperator() == Token::INC)
m_context << eth::Instruction::ADD;
else
m_context << eth::Instruction::SWAP1 << eth::Instruction::SUB; // @todo avoid the swap
if (_unaryOperation.isPrefixOperation())
storeInLValue(_unaryOperation);
else
moveToLValue(_unaryOperation);
break;
case Token::ADD: // +
// unary add, so basically no-op
break;
case Token::SUB: // -
m_context << u256(0) << eth::Instruction::SUB;
break;
default:
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid unary operator: " +
string(Token::toString(_unaryOperation.getOperator()))));
}
}
bool ExpressionCompiler::visit(BinaryOperation& _binaryOperation)
{
Expression& leftExpression = _binaryOperation.getLeftExpression();
Expression& rightExpression = _binaryOperation.getRightExpression();
Type const& commonType = _binaryOperation.getCommonType();
Token::Value const op = _binaryOperation.getOperator();
if (op == Token::AND || op == Token::OR)
{
// special case: short-circuiting
appendAndOrOperatorCode(_binaryOperation);
}
else
{
bool cleanupNeeded = false;
if (commonType.getCategory() == Type::Category::INTEGER)
if (Token::isCompareOp(op) || op == Token::DIV || op == Token::MOD)
cleanupNeeded = true;
leftExpression.accept(*this);
appendTypeConversion(*leftExpression.getType(), commonType, cleanupNeeded);
rightExpression.accept(*this);
appendTypeConversion(*rightExpression.getType(), commonType, cleanupNeeded);
if (Token::isCompareOp(op))
appendCompareOperatorCode(op, commonType);
else
appendOrdinaryBinaryOperatorCode(op, commonType);
}
// do not visit the child nodes, we already did that explicitly
return false;
}
bool ExpressionCompiler::visit(FunctionCall& _functionCall)
{
if (_functionCall.isTypeConversion())
{
//@todo we only have integers and bools for now which cannot be explicitly converted
if (asserts(_functionCall.getArguments().size() == 1))
BOOST_THROW_EXCEPTION(InternalCompilerError());
Expression& firstArgument = *_functionCall.getArguments().front();
firstArgument.accept(*this);
appendTypeConversion(*firstArgument.getType(), *_functionCall.getType());
}
else
{
// Calling convention: Caller pushes return address and arguments
// Callee removes them and pushes return values
m_currentLValue = nullptr;
_functionCall.getExpression().accept(*this);
FunctionDefinition const& function = dynamic_cast<FunctionDefinition&>(*m_currentLValue);
eth::AssemblyItem returnLabel = m_context.pushNewTag();
std::vector<ASTPointer<Expression>> const& arguments = _functionCall.getArguments();
if (asserts(arguments.size() == function.getParameters().size()))
BOOST_THROW_EXCEPTION(InternalCompilerError());
for (unsigned i = 0; i < arguments.size(); ++i)
{
arguments[i]->accept(*this);
appendTypeConversion(*arguments[i]->getType(),
*function.getParameters()[i]->getType());
}
m_context.appendJumpTo(m_context.getFunctionEntryLabel(function));
m_context << returnLabel;
// callee adds return parameters, but removes arguments and return label
m_context.adjustStackOffset(function.getReturnParameters().size() - arguments.size() - 1);
// @todo for now, the return value of a function is its first return value, so remove
// all others
for (unsigned i = 1; i < function.getReturnParameters().size(); ++i)
m_context << eth::Instruction::POP;
}
return false;
}
void ExpressionCompiler::endVisit(MemberAccess&)
{
}
void ExpressionCompiler::endVisit(IndexAccess&)
{
}
void ExpressionCompiler::endVisit(Identifier& _identifier)
{
m_currentLValue = _identifier.getReferencedDeclaration();
switch (_identifier.getType()->getCategory())
{
case Type::Category::BOOL:
case Type::Category::INTEGER:
case Type::Category::REAL:
{
//@todo we also have to check where to retrieve them from once we add storage variables
unsigned stackPos = stackPositionOfLValue();
if (stackPos >= 15) //@todo correct this by fetching earlier or moving to memory
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_identifier.getLocation())
<< errinfo_comment("Stack too deep."));
m_context << eth::dupInstruction(stackPos + 1);
break;
}
default:
break;
}
}
void ExpressionCompiler::endVisit(Literal& _literal)
{
switch (_literal.getType()->getCategory())
{
case Type::Category::INTEGER:
case Type::Category::BOOL:
m_context << _literal.getType()->literalValue(_literal);
break;
default:
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Only integer and boolean literals implemented for now."));
}
}
void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation& _binaryOperation)
{
Token::Value const op = _binaryOperation.getOperator();
if (asserts(op == Token::OR || op == Token::AND))
BOOST_THROW_EXCEPTION(InternalCompilerError());
_binaryOperation.getLeftExpression().accept(*this);
m_context << eth::Instruction::DUP1;
if (op == Token::AND)
m_context << eth::Instruction::ISZERO;
eth::AssemblyItem endLabel = m_context.appendConditionalJump();
m_context << eth::Instruction::POP;
_binaryOperation.getRightExpression().accept(*this);
m_context << endLabel;
}
void ExpressionCompiler::appendCompareOperatorCode(Token::Value _operator, Type const& _type)
{
if (_operator == Token::EQ || _operator == Token::NE)
{
m_context << eth::Instruction::EQ;
if (_operator == Token::NE)
m_context << eth::Instruction::ISZERO;
}
else
{
IntegerType const& type = dynamic_cast<IntegerType const&>(_type);
bool const isSigned = type.isSigned();
// note that EVM opcodes compare like "stack[0] < stack[1]",
// but our left value is at stack[1], so everyhing is reversed.
switch (_operator)
{
case Token::GTE:
m_context << (isSigned ? eth::Instruction::SGT : eth::Instruction::GT)
<< eth::Instruction::ISZERO;
break;
case Token::LTE:
m_context << (isSigned ? eth::Instruction::SLT : eth::Instruction::LT)
<< eth::Instruction::ISZERO;
break;
case Token::GT:
m_context << (isSigned ? eth::Instruction::SLT : eth::Instruction::LT);
break;
case Token::LT:
m_context << (isSigned ? eth::Instruction::SGT : eth::Instruction::GT);
break;
default:
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown comparison operator."));
}
}
}
void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type)
{
if (Token::isArithmeticOp(_operator))
appendArithmeticOperatorCode(_operator, _type);
else if (Token::isBitOp(_operator))
appendBitOperatorCode(_operator);
else if (Token::isShiftOp(_operator))
appendShiftOperatorCode(_operator);
else
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown binary operator."));
}
void ExpressionCompiler::appendArithmeticOperatorCode(Token::Value _operator, Type const& _type)
{
IntegerType const& type = dynamic_cast<IntegerType const&>(_type);
bool const isSigned = type.isSigned();
switch (_operator)
{
case Token::ADD:
m_context << eth::Instruction::ADD;
break;
case Token::SUB:
m_context << eth::Instruction::SWAP1 << eth::Instruction::SUB;
break;
case Token::MUL:
m_context << eth::Instruction::MUL;
break;
case Token::DIV:
m_context << eth::Instruction::SWAP1 << (isSigned ? eth::Instruction::SDIV : eth::Instruction::DIV);
break;
case Token::MOD:
m_context << eth::Instruction::SWAP1 << (isSigned ? eth::Instruction::SMOD : eth::Instruction::MOD);
break;
default:
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown arithmetic operator."));
}
}
void ExpressionCompiler::appendBitOperatorCode(Token::Value _operator)
{
switch (_operator)
{
case Token::BIT_OR:
m_context << eth::Instruction::OR;
break;
case Token::BIT_AND:
m_context << eth::Instruction::AND;
break;
case Token::BIT_XOR:
m_context << eth::Instruction::XOR;
break;
default:
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown bit operator."));
}
}
void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator)
{
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Shift operators not yet implemented."));
switch (_operator)
{
case Token::SHL:
break;
case Token::SAR:
break;
default:
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown shift operator."));
}
}
void ExpressionCompiler::appendTypeConversion(Type const& _typeOnStack, Type const& _targetType, bool _cleanupNeeded)
{
// If the type of one of the operands is extended, we need to remove all
// higher-order bits that we might have ignored in previous operations.
// @todo: store in the AST whether the operand might have "dirty" higher
// order bits
if (_typeOnStack == _targetType && !_cleanupNeeded)
return;
if (_typeOnStack.getCategory() == Type::Category::INTEGER)
{
appendHighBitsCleanup(dynamic_cast<IntegerType const&>(_typeOnStack));
}
else if (_typeOnStack != _targetType)
{
// All other types should not be convertible to non-equal types.
assert(!_typeOnStack.isExplicitlyConvertibleTo(_targetType));
assert(false);
}
}
void ExpressionCompiler::appendHighBitsCleanup(IntegerType const& _typeOnStack)
{
if (_typeOnStack.getNumBits() == 256)
return;
else if (_typeOnStack.isSigned())
m_context << u256(_typeOnStack.getNumBits() / 8 - 1) << eth::Instruction::SIGNEXTEND;
else
m_context << ((u256(1) << _typeOnStack.getNumBits()) - 1) << eth::Instruction::AND;
}
void ExpressionCompiler::storeInLValue(Expression const& _expression)
{
moveToLValue(_expression);
unsigned stackPos = stackPositionOfLValue();
if (stackPos > 16)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation())
<< errinfo_comment("Stack too deep."));
m_context << eth::dupInstruction(stackPos + 1);
}
void ExpressionCompiler::moveToLValue(Expression const& _expression)
{
unsigned stackPos = stackPositionOfLValue();
if (stackPos > 16)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation())
<< errinfo_comment("Stack too deep."));
else if (stackPos > 0)
m_context << eth::swapInstruction(stackPos) << eth::Instruction::POP;
}
unsigned ExpressionCompiler::stackPositionOfLValue() const
{
if (asserts(m_currentLValue))
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("LValue not available on request."));
return m_context.getStackPositionOfVariable(*m_currentLValue);
}
}
}