solidity/test/libsolidity/SolidityEndToEndTest.cpp
2020-04-25 11:10:28 -05:00

6856 lines
208 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @author Gav Wood <g@ethdev.com>
* @date 2014
* Unit tests for the solidity expression compiler, testing the behaviour of the code.
*/
#include <test/libsolidity/SolidityExecutionFramework.h>
#include <test/Common.h>
#include <test/EVMHost.h>
#include <liblangutil/Exceptions.h>
#include <liblangutil/EVMVersion.h>
#include <libevmasm/Assembly.h>
#include <libsolutil/Keccak256.h>
#include <boost/range/adaptor/transformed.hpp>
#include <boost/test/unit_test.hpp>
#include <functional>
#include <string>
#include <tuple>
using namespace std;
using namespace std::placeholders;
using namespace solidity;
using namespace solidity::util;
using namespace solidity::test;
using namespace solidity::langutil;
#define ALSO_VIA_YUL(CODE) \
{ \
{ CODE } \
m_compileViaYul = true; \
{ CODE } \
}
namespace solidity::frontend::test
{
BOOST_FIXTURE_TEST_SUITE(SolidityEndToEndTest, SolidityExecutionFramework)
int constexpr roundTo32(int _num)
{
return (_num + 31) / 32 * 32;
}
BOOST_AUTO_TEST_CASE(exp_operator)
{
char const* sourceCode = R"(
contract test {
function f(uint a) public returns(uint d) { return 2 ** a; }
}
)";
compileAndRun(sourceCode);
testContractAgainstCppOnRange("f(uint256)", [](u256 const& a) -> u256 { return u256(1 << a.convert_to<int>()); }, 0, 16);
}
BOOST_AUTO_TEST_CASE(exp_zero)
{
char const* sourceCode = R"(
contract test {
function f(uint a) public returns(uint d) { return a ** 0; }
}
)";
compileAndRun(sourceCode);
testContractAgainstCppOnRange("f(uint256)", [](u256 const&) -> u256 { return u256(1); }, 0, 16);
}
/* TODO let's add this back when I figure out the correct type conversion.
BOOST_AUTO_TEST_CASE(conditional_expression_string_literal)
{
char const* sourceCode = R"(
contract test {
function f(bool cond) public returns (bytes32) {
return cond ? "true" : "false";
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("f(bool)", true), encodeArgs(string("true", 4)));
ABI_CHECK(callContractFunction("f(bool)", false), encodeArgs(string("false", 5)));
}
*/
BOOST_AUTO_TEST_CASE(recursive_calls)
{
char const* sourceCode = R"(
contract test {
function f(uint n) public returns(uint nfac) {
if (n <= 1) return 1;
else return n * f(n - 1);
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
function<u256(u256)> recursive_calls_cpp = [&recursive_calls_cpp](u256 const& n) -> u256
{
if (n <= 1)
return 1;
else
return n * recursive_calls_cpp(n - 1);
};
testContractAgainstCppOnRange("f(uint256)", recursive_calls_cpp, 0, 5);
)
}
BOOST_AUTO_TEST_CASE(while_loop)
{
char const* sourceCode = R"(
contract test {
function f(uint n) public returns(uint nfac) {
nfac = 1;
uint i = 2;
while (i <= n) nfac *= i++;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto while_loop_cpp = [](u256 const& n) -> u256
{
u256 nfac = 1;
u256 i = 2;
while (i <= n)
nfac *= i++;
return nfac;
};
testContractAgainstCppOnRange("f(uint256)", while_loop_cpp, 0, 5);
)
}
BOOST_AUTO_TEST_CASE(do_while_loop)
{
char const* sourceCode = R"(
contract test {
function f(uint n) public returns(uint nfac) {
nfac = 1;
uint i = 2;
do { nfac *= i++; } while (i <= n);
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto do_while_loop_cpp = [](u256 const& n) -> u256
{
u256 nfac = 1;
u256 i = 2;
do
{
nfac *= i++;
}
while (i <= n);
return nfac;
};
testContractAgainstCppOnRange("f(uint256)", do_while_loop_cpp, 0, 5);
)
}
BOOST_AUTO_TEST_CASE(do_while_loop_multiple_local_vars)
{
char const* sourceCode = R"(
contract test {
function f(uint x) public pure returns(uint r) {
uint i = 0;
do
{
uint z = x * 2;
if (z < 4) break;
else {
uint k = z + 1;
if (k < 8) {
x++;
continue;
}
}
if (z > 12) return 0;
x++;
i++;
} while (true);
return 42;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto do_while = [](u256 n) -> u256
{
u256 i = 0;
do
{
u256 z = n * 2;
if (z < 4) break;
else {
u256 k = z + 1;
if (k < 8) {
n++;
continue;
}
}
if (z > 12) return 0;
n++;
i++;
} while (true);
return 42;
};
testContractAgainstCppOnRange("f(uint256)", do_while, 0, 12);
)
}
BOOST_AUTO_TEST_CASE(nested_loops)
{
// tests that break and continue statements in nested loops jump to the correct place
char const* sourceCode = R"(
contract test {
function f(uint x) public returns(uint y) {
while (x > 1) {
if (x == 10) break;
while (x > 5) {
if (x == 8) break;
x--;
if (x == 6) continue;
return x;
}
x--;
if (x == 3) continue;
break;
}
return x;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto nested_loops_cpp = [](u256 n) -> u256
{
while (n > 1)
{
if (n == 10)
break;
while (n > 5)
{
if (n == 8)
break;
n--;
if (n == 6)
continue;
return n;
}
n--;
if (n == 3)
continue;
break;
}
return n;
};
testContractAgainstCppOnRange("f(uint256)", nested_loops_cpp, 0, 12);
)
}
BOOST_AUTO_TEST_CASE(nested_loops_multiple_local_vars)
{
// tests that break and continue statements in nested loops jump to the correct place
// and free local variables properly
char const* sourceCode = R"(
contract test {
function f(uint x) public returns(uint y) {
while (x > 0) {
uint z = x + 10;
uint k = z + 1;
if (k > 20) {
break;
uint p = 100;
k += p;
}
if (k > 15) {
x--;
continue;
uint t = 1000;
x += t;
}
while (k > 10) {
uint m = k - 1;
if (m == 10) return x;
return k;
uint h = 10000;
z += h;
}
x--;
break;
}
return x;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto nested_loops_cpp = [](u256 n) -> u256
{
while (n > 0)
{
u256 z = n + 10;
u256 k = z + 1;
if (k > 20) break;
if (k > 15) {
n--;
continue;
}
while (k > 10)
{
u256 m = k - 1;
if (m == 10) return n;
return k;
}
n--;
break;
}
return n;
};
testContractAgainstCppOnRange("f(uint256)", nested_loops_cpp, 0, 12);
)
}
BOOST_AUTO_TEST_CASE(for_loop_multiple_local_vars)
{
char const* sourceCode = R"(
contract test {
function f(uint x) public pure returns(uint r) {
for (uint i = 0; i < 12; i++)
{
uint z = x + 1;
if (z < 4) break;
else {
uint k = z * 2;
if (i + k < 10) {
x++;
continue;
}
}
if (z > 8) return 0;
x++;
}
return 42;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto for_loop = [](u256 n) -> u256
{
for (u256 i = 0; i < 12; i++)
{
u256 z = n + 1;
if (z < 4) break;
else {
u256 k = z * 2;
if (i + k < 10) {
n++;
continue;
}
}
if (z > 8) return 0;
n++;
}
return 42;
};
testContractAgainstCppOnRange("f(uint256)", for_loop, 0, 12);
)
}
BOOST_AUTO_TEST_CASE(nested_for_loop_multiple_local_vars)
{
char const* sourceCode = R"(
contract test {
function f(uint x) public pure returns(uint r) {
for (uint i = 0; i < 5; i++)
{
uint z = x + 1;
if (z < 3) {
break;
uint p = z + 2;
}
for (uint j = 0; j < 5; j++)
{
uint k = z * 2;
if (j + k < 8) {
x++;
continue;
uint t = z * 3;
}
x++;
if (x > 20) {
return 84;
uint h = x + 42;
}
}
if (x > 30) {
return 42;
uint b = 0xcafe;
}
}
return 42;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto for_loop = [](u256 n) -> u256
{
for (u256 i = 0; i < 5; i++)
{
u256 z = n + 1;
if (z < 3) break;
for (u256 j = 0; j < 5; j++)
{
u256 k = z * 2;
if (j + k < 8) {
n++;
continue;
}
n++;
if (n > 20) return 84;
}
if (n > 30) return 42;
}
return 42;
};
testContractAgainstCppOnRange("f(uint256)", for_loop, 0, 12);
)
}
BOOST_AUTO_TEST_CASE(for_loop)
{
char const* sourceCode = R"(
contract test {
function f(uint n) public returns(uint nfac) {
nfac = 1;
uint i;
for (i = 2; i <= n; i++)
nfac *= i;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto for_loop_cpp = [](u256 const& n) -> u256
{
u256 nfac = 1;
for (auto i = 2; i <= n; i++)
nfac *= i;
return nfac;
};
testContractAgainstCppOnRange("f(uint256)", for_loop_cpp, 0, 5);
)
}
BOOST_AUTO_TEST_CASE(for_loop_empty)
{
char const* sourceCode = R"(
contract test {
function f() public returns(uint ret) {
ret = 1;
for (;;) {
ret += 1;
if (ret >= 10) break;
}
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto for_loop_empty_cpp = []() -> u256
{
u256 ret = 1;
for (;;)
{
ret += 1;
if (ret >= 10) break;
}
return ret;
};
testContractAgainstCpp("f()", for_loop_empty_cpp);
)
}
BOOST_AUTO_TEST_CASE(for_loop_simple_init_expr)
{
char const* sourceCode = R"(
contract test {
function f(uint n) public returns(uint nfac) {
nfac = 1;
uint256 i;
for (i = 2; i <= n; i++)
nfac *= i;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto for_loop_simple_init_expr_cpp = [](u256 const& n) -> u256
{
u256 nfac = 1;
u256 i;
for (i = 2; i <= n; i++)
nfac *= i;
return nfac;
};
testContractAgainstCppOnRange("f(uint256)", for_loop_simple_init_expr_cpp, 0, 5);
)
}
BOOST_AUTO_TEST_CASE(for_loop_break_continue)
{
char const* sourceCode = R"(
contract test {
function f(uint n) public returns (uint r)
{
uint i = 1;
uint k = 0;
for (i *= 5; k < n; i *= 7)
{
k++;
i += 4;
if (n % 3 == 0)
break;
i += 9;
if (n % 2 == 0)
continue;
i += 19;
}
return i;
}
}
)";
compileAndRun(sourceCode);
auto breakContinue = [](u256 const& n) -> u256
{
u256 i = 1;
u256 k = 0;
for (i *= 5; k < n; i *= 7)
{
k++;
i += 4;
if (n % 3 == 0)
break;
i += 9;
if (n % 2 == 0)
continue;
i += 19;
}
return i;
};
testContractAgainstCppOnRange("f(uint256)", breakContinue, 0, 10);
}
BOOST_AUTO_TEST_CASE(calling_other_functions)
{
char const* sourceCode = R"(
contract collatz {
function run(uint x) public returns(uint y) {
while ((y = x) > 1) {
if (x % 2 == 0) x = evenStep(x);
else x = oddStep(x);
}
}
function evenStep(uint x) public returns(uint y) {
return x / 2;
}
function oddStep(uint x) public returns(uint y) {
return 3 * x + 1;
}
}
)";
compileAndRun(sourceCode);
auto evenStep_cpp = [](u256 const& n) -> u256
{
return n / 2;
};
auto oddStep_cpp = [](u256 const& n) -> u256
{
return 3 * n + 1;
};
auto collatz_cpp = [&evenStep_cpp, &oddStep_cpp](u256 n) -> u256
{
u256 y;
while ((y = n) > 1)
{
if (n % 2 == 0)
n = evenStep_cpp(n);
else
n = oddStep_cpp(n);
}
return y;
};
testContractAgainstCpp("run(uint256)", collatz_cpp, u256(0));
testContractAgainstCpp("run(uint256)", collatz_cpp, u256(1));
testContractAgainstCpp("run(uint256)", collatz_cpp, u256(2));
testContractAgainstCpp("run(uint256)", collatz_cpp, u256(8));
testContractAgainstCpp("run(uint256)", collatz_cpp, u256(127));
}
BOOST_AUTO_TEST_CASE(many_local_variables)
{
char const* sourceCode = R"(
contract test {
function run(uint x1, uint x2, uint x3) public returns(uint y) {
uint8 a = 0x1; uint8 b = 0x10; uint16 c = 0x100;
y = a + b + c + x1 + x2 + x3;
y += b + x2;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto f = [](u256 const& x1, u256 const& x2, u256 const& x3) -> u256
{
u256 a = 0x1;
u256 b = 0x10;
u256 c = 0x100;
u256 y = a + b + c + x1 + x2 + x3;
return y + b + x2;
};
testContractAgainstCpp("run(uint256,uint256,uint256)", f, u256(0x1000), u256(0x10000), u256(0x100000));
)
}
BOOST_AUTO_TEST_CASE(short_circuiting)
{
char const* sourceCode = R"(
contract test {
function run(uint x) public returns(uint y) {
x == 0 || ((x = 8) > 0);
return x;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto short_circuiting_cpp = [](u256 n) -> u256
{
(void)(n == 0 || (n = 8) > 0);
return n;
};
testContractAgainstCppOnRange("run(uint256)", short_circuiting_cpp, 0, 2);
)
}
BOOST_AUTO_TEST_CASE(high_bits_cleaning)
{
char const* sourceCode = R"(
contract test {
function run() public returns(uint256 y) {
uint32 t = uint32(0xffffffff);
uint32 x = t + 10;
if (x >= 0xffffffff) return 0;
return x;
}
}
)";
compileAndRun(sourceCode);
auto high_bits_cleaning_cpp = []() -> u256
{
uint32_t t = uint32_t(0xffffffff);
uint32_t x = t + 10;
if (x >= 0xffffffff)
return 0;
return x;
};
testContractAgainstCpp("run()", high_bits_cleaning_cpp);
}
BOOST_AUTO_TEST_CASE(sign_extension)
{
char const* sourceCode = R"(
contract test {
function run() public returns(uint256 y) {
int64 x = -int32(0xff);
if (x >= 0xff) return 0;
return -uint256(x);
}
}
)";
compileAndRun(sourceCode);
auto sign_extension_cpp = []() -> u256
{
int64_t x = -int32_t(0xff);
if (x >= 0xff)
return 0;
return u256(x) * -1;
};
testContractAgainstCpp("run()", sign_extension_cpp);
}
BOOST_AUTO_TEST_CASE(small_unsigned_types)
{
char const* sourceCode = R"(
contract test {
function run() public returns(uint256 y) {
uint32 t = uint32(0xffffff);
uint32 x = t * 0xffffff;
return x / 0x100;
}
}
)";
compileAndRun(sourceCode);
auto small_unsigned_types_cpp = []() -> u256
{
uint32_t t = uint32_t(0xffffff);
uint32_t x = t * 0xffffff;
return x / 0x100;
};
testContractAgainstCpp("run()", small_unsigned_types_cpp);
}
BOOST_AUTO_TEST_CASE(small_signed_types)
{
char const* sourceCode = R"(
contract test {
function run() public returns(int256 y) {
return -int32(10) * -int64(20);
}
}
)";
compileAndRun(sourceCode);
auto small_signed_types_cpp = []() -> u256
{
return -int32_t(10) * -int64_t(20);
};
testContractAgainstCpp("run()", small_signed_types_cpp);
}
BOOST_AUTO_TEST_CASE(compound_assign)
{
char const* sourceCode = R"(
contract test {
uint value1;
uint value2;
function f(uint x, uint y) public returns (uint w) {
uint value3 = y;
value1 += x;
value3 *= x;
value2 *= value3 + value1;
return value2 += 7;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
u256 value1;
u256 value2;
auto f = [&](u256 const& _x, u256 const& _y) -> u256
{
u256 value3 = _y;
value1 += _x;
value3 *= _x;
value2 *= value3 + value1;
return value2 += 7;
};
testContractAgainstCpp("f(uint256,uint256)", f, u256(0), u256(6));
testContractAgainstCpp("f(uint256,uint256)", f, u256(1), u256(3));
testContractAgainstCpp("f(uint256,uint256)", f, u256(2), u256(25));
testContractAgainstCpp("f(uint256,uint256)", f, u256(3), u256(69));
testContractAgainstCpp("f(uint256,uint256)", f, u256(4), u256(84));
testContractAgainstCpp("f(uint256,uint256)", f, u256(5), u256(2));
testContractAgainstCpp("f(uint256,uint256)", f, u256(6), u256(51));
testContractAgainstCpp("f(uint256,uint256)", f, u256(7), u256(48));
)
}
BOOST_AUTO_TEST_CASE(mapping_state)
{
char const* sourceCode = R"(
contract Ballot {
mapping(address => bool) canVote;
mapping(address => uint) voteCount;
mapping(address => bool) voted;
function getVoteCount(address addr) public returns (uint retVoteCount) {
return voteCount[addr];
}
function grantVoteRight(address addr) public {
canVote[addr] = true;
}
function vote(address voter, address vote) public returns (bool success) {
if (!canVote[voter] || voted[voter]) return false;
voted[voter] = true;
voteCount[vote] = voteCount[vote] + 1;
return true;
}
}
)";
class Ballot
{
public:
u256 getVoteCount(u160 _address) { return m_voteCount[_address]; }
void grantVoteRight(u160 _address) { m_canVote[_address] = true; }
bool vote(u160 _voter, u160 _vote)
{
if (!m_canVote[_voter] || m_voted[_voter]) return false;
m_voted[_voter] = true;
m_voteCount[_vote]++;
return true;
}
private:
map<u160, bool> m_canVote;
map<u160, u256> m_voteCount;
map<u160, bool> m_voted;
};
ALSO_VIA_YUL(
compileAndRun(sourceCode);
Ballot ballot;
auto getVoteCount = bind(&Ballot::getVoteCount, &ballot, _1);
auto grantVoteRight = bind(&Ballot::grantVoteRight, &ballot, _1);
auto vote = bind(&Ballot::vote, &ballot, _1, _2);
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(0));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(1));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(2));
// voting without vote right should be rejected
testContractAgainstCpp("vote(address,address)", vote, u160(0), u160(2));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(0));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(1));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(2));
// grant vote rights
testContractAgainstCpp("grantVoteRight(address)", grantVoteRight, u160(0));
testContractAgainstCpp("grantVoteRight(address)", grantVoteRight, u160(1));
// vote, should increase 2's vote count
testContractAgainstCpp("vote(address,address)", vote, u160(0), u160(2));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(0));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(1));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(2));
// vote again, should be rejected
testContractAgainstCpp("vote(address,address)", vote, u160(0), u160(1));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(0));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(1));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(2));
// vote without right to vote
testContractAgainstCpp("vote(address,address)", vote, u160(2), u160(1));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(0));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(1));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(2));
// grant vote right and now vote again
testContractAgainstCpp("grantVoteRight(address)", grantVoteRight, u160(2));
testContractAgainstCpp("vote(address,address)", vote, u160(2), u160(1));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(0));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(1));
testContractAgainstCpp("getVoteCount(address)", getVoteCount, u160(2));
)
}
BOOST_AUTO_TEST_CASE(mapping_state_inc_dec)
{
char const* sourceCode = R"(
contract test {
uint value;
mapping(uint => uint) table;
function f(uint x) public returns (uint y) {
value = x;
if (x > 0) table[++value] = 8;
if (x > 1) value--;
if (x > 2) table[value]++;
table[value] += 10;
return --table[value++];
}
}
)";
u256 value;
map<u256, u256> table;
auto f = [&](u256 const& _x) -> u256
{
value = _x;
if (_x > 0)
table[++value] = 8;
if (_x > 1)
value --;
if (_x > 2)
table[value]++;
table[value] += 10;
return --table[value++];
};
ALSO_VIA_YUL(
compileAndRun(sourceCode);
value = 0;
table.clear();
testContractAgainstCppOnRange("f(uint256)", f, 0, 5);
)
}
BOOST_AUTO_TEST_CASE(multi_level_mapping)
{
char const* sourceCode = R"(
contract test {
mapping(uint => mapping(uint => uint)) table;
function f(uint x, uint y, uint z) public returns (uint w) {
if (z == 0) return table[x][y];
else return table[x][y] = z;
}
}
)";
map<u256, map<u256, u256>> table;
auto f = [&](u256 const& _x, u256 const& _y, u256 const& _z) -> u256
{
if (_z == 0) return table[_x][_y];
else return table[_x][_y] = _z;
};
ALSO_VIA_YUL(
compileAndRun(sourceCode);
table.clear();
testContractAgainstCpp("f(uint256,uint256,uint256)", f, u256(4), u256(5), u256(0));
testContractAgainstCpp("f(uint256,uint256,uint256)", f, u256(5), u256(4), u256(0));
testContractAgainstCpp("f(uint256,uint256,uint256)", f, u256(4), u256(5), u256(9));
testContractAgainstCpp("f(uint256,uint256,uint256)", f, u256(4), u256(5), u256(0));
testContractAgainstCpp("f(uint256,uint256,uint256)", f, u256(5), u256(4), u256(0));
testContractAgainstCpp("f(uint256,uint256,uint256)", f, u256(5), u256(4), u256(7));
testContractAgainstCpp("f(uint256,uint256,uint256)", f, u256(4), u256(5), u256(0));
testContractAgainstCpp("f(uint256,uint256,uint256)", f, u256(5), u256(4), u256(0));
)
}
BOOST_AUTO_TEST_CASE(constructor)
{
char const* sourceCode = R"(
contract test {
mapping(uint => uint) data;
constructor() public {
data[7] = 8;
}
function get(uint key) public returns (uint value) {
return data[key];
}
}
)";
map<u256, uint8_t> data;
data[7] = 8;
auto get = [&](u256 const& _x) -> u256
{
return data[_x];
};
ALSO_VIA_YUL(
compileAndRun(sourceCode);
testContractAgainstCpp("get(uint256)", get, u256(6));
testContractAgainstCpp("get(uint256)", get, u256(7));
)
}
BOOST_AUTO_TEST_CASE(blockchain)
{
char const* sourceCode = R"(
contract test {
constructor() public payable {}
function someInfo() public payable returns (uint256 value, address coinbase, uint256 blockNumber) {
value = msg.value;
coinbase = block.coinbase;
blockNumber = block.number;
}
}
)";
m_evmHost->tx_context.block_coinbase = EVMHost::convertToEVMC(Address("0x1212121212121212121212121212121212121212"));
m_evmHost->newBlock();
m_evmHost->newBlock();
m_evmHost->newBlock();
m_evmHost->newBlock();
m_evmHost->newBlock();
compileAndRun(sourceCode, 27);
ABI_CHECK(callContractFunctionWithValue("someInfo()", 28), encodeArgs(28, u256("0x1212121212121212121212121212121212121212"), 7));
}
BOOST_AUTO_TEST_CASE(now)
{
char const* sourceCode = R"(
contract test {
function someInfo() public returns (bool equal, uint val) {
equal = block.timestamp == now;
val = now;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
u256 startBlock = blockNumber();
size_t startTime = blockTimestamp(startBlock);
auto ret = callContractFunction("someInfo()");
u256 endBlock = blockNumber();
size_t endTime = blockTimestamp(endBlock);
BOOST_CHECK(startBlock != endBlock);
BOOST_CHECK(startTime != endTime);
ABI_CHECK(ret, encodeArgs(true, endTime));
)
}
BOOST_AUTO_TEST_CASE(send_ether)
{
char const* sourceCode = R"(
contract test {
constructor() payable public {}
function a(address payable addr, uint amount) public returns (uint ret) {
addr.send(amount);
return address(this).balance;
}
}
)";
u256 amount(130);
compileAndRun(sourceCode, amount + 1);
u160 address(23);
ABI_CHECK(callContractFunction("a(address,uint256)", address, amount), encodeArgs(1));
BOOST_CHECK_EQUAL(balanceAt(address), amount);
}
BOOST_AUTO_TEST_CASE(transfer_ether)
{
char const* sourceCode = R"(
contract A {
constructor() public payable {}
function a(address payable addr, uint amount) public returns (uint) {
addr.transfer(amount);
return address(this).balance;
}
function b(address payable addr, uint amount) public {
addr.transfer(amount);
}
}
contract B {
}
contract C {
receive () external payable {
revert();
}
}
)";
compileAndRun(sourceCode, 0, "B");
u160 const nonPayableRecipient = m_contractAddress;
compileAndRun(sourceCode, 0, "C");
u160 const oogRecipient = m_contractAddress;
compileAndRun(sourceCode, 20, "A");
u160 payableRecipient(23);
ABI_CHECK(callContractFunction("a(address,uint256)", payableRecipient, 10), encodeArgs(10));
BOOST_CHECK_EQUAL(balanceAt(payableRecipient), 10);
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 10);
ABI_CHECK(callContractFunction("b(address,uint256)", nonPayableRecipient, 10), encodeArgs());
ABI_CHECK(callContractFunction("b(address,uint256)", oogRecipient, 10), encodeArgs());
}
BOOST_AUTO_TEST_CASE(uncalled_blockhash)
{
char const* code = R"(
contract C {
function f() public view returns (bytes32)
{
return (blockhash)(block.number - 1);
}
}
)";
compileAndRun(code, 0, "C");
bytes result = callContractFunction("f()");
BOOST_REQUIRE_EQUAL(result.size(), 32);
BOOST_CHECK(result[0] != 0 || result[1] != 0 || result[2] != 0);
}
BOOST_AUTO_TEST_CASE(log0)
{
char const* sourceCode = R"(
contract test {
function a() public {
log0(bytes32(uint256(1)));
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
callContractFunction("a()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(h256(logData(0)), h256(u256(1)));
BOOST_CHECK_EQUAL(numLogTopics(0), 0);
)
}
BOOST_AUTO_TEST_CASE(log1)
{
char const* sourceCode = R"(
contract test {
function a() public {
log1(bytes32(uint256(1)), bytes32(uint256(2)));
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
callContractFunction("a()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(h256(logData(0)), h256(u256(1)));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), h256(u256(2)));
)
}
BOOST_AUTO_TEST_CASE(log2)
{
char const* sourceCode = R"(
contract test {
function a() public {
log2(bytes32(uint256(1)), bytes32(uint256(2)), bytes32(uint256(3)));
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
callContractFunction("a()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(h256(logData(0)), h256(u256(1)));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 2);
for (unsigned i = 0; i < 2; ++i)
BOOST_CHECK_EQUAL(logTopic(0, i), h256(u256(i + 2)));
)
}
BOOST_AUTO_TEST_CASE(log3)
{
char const* sourceCode = R"(
contract test {
function a() public {
log3(bytes32(uint256(1)), bytes32(uint256(2)), bytes32(uint256(3)), bytes32(uint256(4)));
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
callContractFunction("a()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(h256(logData(0)), h256(u256(1)));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 3);
for (unsigned i = 0; i < 3; ++i)
BOOST_CHECK_EQUAL(logTopic(0, i), h256(u256(i + 2)));
)
}
BOOST_AUTO_TEST_CASE(log4)
{
char const* sourceCode = R"(
contract test {
function a() public {
log4(bytes32(uint256(1)), bytes32(uint256(2)), bytes32(uint256(3)), bytes32(uint256(4)), bytes32(uint256(5)));
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
callContractFunction("a()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(h256(logData(0)), h256(u256(1)));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 4);
for (unsigned i = 0; i < 4; ++i)
BOOST_CHECK_EQUAL(logTopic(0, i), h256(u256(i + 2)));
)
}
BOOST_AUTO_TEST_CASE(log_in_constructor)
{
char const* sourceCode = R"(
contract test {
constructor() public {
log1(bytes32(uint256(1)), bytes32(uint256(2)));
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(h256(logData(0)), h256(u256(1)));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), h256(u256(2)));
)
}
BOOST_AUTO_TEST_CASE(selfdestruct)
{
char const* sourceCode = R"(
contract test {
constructor() public payable {}
function a(address payable receiver) public returns (uint ret) {
selfdestruct(receiver);
return 10;
}
}
)";
u256 amount(130);
u160 address(23);
ALSO_VIA_YUL(
compileAndRun(sourceCode, amount);
ABI_CHECK(callContractFunction("a(address)", address), bytes());
BOOST_CHECK(!addressHasCode(m_contractAddress));
BOOST_CHECK_EQUAL(balanceAt(address), amount);
)
}
BOOST_AUTO_TEST_CASE(keccak256)
{
char const* sourceCode = R"(
contract test {
function a(bytes32 input) public returns (bytes32 hash) {
return keccak256(abi.encodePacked(input));
}
}
)";
compileAndRun(sourceCode);
auto f = [&](u256 const& _x) -> u256
{
return util::keccak256(toBigEndian(_x));
};
testContractAgainstCpp("a(bytes32)", f, u256(4));
testContractAgainstCpp("a(bytes32)", f, u256(5));
testContractAgainstCpp("a(bytes32)", f, u256(-1));
}
BOOST_AUTO_TEST_CASE(sha256)
{
char const* sourceCode = R"(
contract test {
function a(bytes32 input) public returns (bytes32 sha256hash) {
return sha256(abi.encodePacked(input));
}
}
)";
compileAndRun(sourceCode);
auto f = [&](u256 const& _x) -> bytes
{
if (_x == u256(4))
return fromHex("e38990d0c7fc009880a9c07c23842e886c6bbdc964ce6bdd5817ad357335ee6f");
if (_x == u256(5))
return fromHex("96de8fc8c256fa1e1556d41af431cace7dca68707c78dd88c3acab8b17164c47");
if (_x == u256(-1))
return fromHex("af9613760f72635fbdb44a5a0a63c39f12af30f950a6ee5c971be188e89c4051");
return fromHex("");
};
testContractAgainstCpp("a(bytes32)", f, u256(4));
testContractAgainstCpp("a(bytes32)", f, u256(5));
testContractAgainstCpp("a(bytes32)", f, u256(-1));
}
BOOST_AUTO_TEST_CASE(ripemd)
{
char const* sourceCode = R"(
contract test {
function a(bytes32 input) public returns (bytes32 sha256hash) {
return ripemd160(abi.encodePacked(input));
}
}
)";
compileAndRun(sourceCode);
auto f = [&](u256 const& _x) -> bytes
{
if (_x == u256(4))
return fromHex("1b0f3c404d12075c68c938f9f60ebea4f74941a0000000000000000000000000");
if (_x == u256(5))
return fromHex("ee54aa84fc32d8fed5a5fe160442ae84626829d9000000000000000000000000");
if (_x == u256(-1))
return fromHex("1cf4e77f5966e13e109703cd8a0df7ceda7f3dc3000000000000000000000000");
return fromHex("");
};
testContractAgainstCpp("a(bytes32)", f, u256(4));
testContractAgainstCpp("a(bytes32)", f, u256(5));
testContractAgainstCpp("a(bytes32)", f, u256(-1));
}
BOOST_AUTO_TEST_CASE(packed_keccak256)
{
char const* sourceCode = R"(
contract test {
function a(bytes32 input) public returns (bytes32 hash) {
uint24 b = 65536;
uint c = 256;
return keccak256(abi.encodePacked(uint8(8), input, b, input, c));
}
}
)";
compileAndRun(sourceCode);
auto f = [&](u256 const& _x) -> u256
{
return util::keccak256(
toCompactBigEndian(unsigned(8)) +
toBigEndian(_x) +
toCompactBigEndian(unsigned(65536)) +
toBigEndian(_x) +
toBigEndian(u256(256))
);
};
testContractAgainstCpp("a(bytes32)", f, u256(4));
testContractAgainstCpp("a(bytes32)", f, u256(5));
testContractAgainstCpp("a(bytes32)", f, u256(-1));
}
BOOST_AUTO_TEST_CASE(packed_keccak256_complex_types)
{
char const* sourceCode = R"(
contract test {
uint120[3] x;
function f() public returns (bytes32 hash1, bytes32 hash2, bytes32 hash3) {
uint120[] memory y = new uint120[](3);
x[0] = y[0] = uint120(-2);
x[1] = y[1] = uint120(-3);
x[2] = y[2] = uint120(-4);
hash1 = keccak256(abi.encodePacked(x));
hash2 = keccak256(abi.encodePacked(y));
hash3 = keccak256(abi.encodePacked(this.f));
}
}
)";
compileAndRun(sourceCode);
// Strangely, arrays are encoded with intra-element padding.
ABI_CHECK(callContractFunction("f()"), encodeArgs(
util::keccak256(encodeArgs(u256("0xfffffffffffffffffffffffffffffe"), u256("0xfffffffffffffffffffffffffffffd"), u256("0xfffffffffffffffffffffffffffffc"))),
util::keccak256(encodeArgs(u256("0xfffffffffffffffffffffffffffffe"), u256("0xfffffffffffffffffffffffffffffd"), u256("0xfffffffffffffffffffffffffffffc"))),
util::keccak256(fromHex(m_contractAddress.hex() + "26121ff0"))
));
}
BOOST_AUTO_TEST_CASE(packed_sha256)
{
char const* sourceCode = R"(
contract test {
function a(bytes32 input) public returns (bytes32 hash) {
uint24 b = 65536;
uint c = 256;
return sha256(abi.encodePacked(uint8(8), input, b, input, c));
}
}
)";
compileAndRun(sourceCode);
auto f = [&](u256 const& _x) -> bytes
{
if (_x == u256(4))
return fromHex("804e0d7003cfd70fc925dc103174d9f898ebb142ecc2a286da1abd22ac2ce3ac");
if (_x == u256(5))
return fromHex("e94921945f9068726c529a290a954f412bcac53184bb41224208a31edbf63cf0");
if (_x == u256(-1))
return fromHex("f14def4d07cd185ddd8b10a81b2238326196a38867e6e6adbcc956dc913488c7");
return fromHex("");
};
testContractAgainstCpp("a(bytes32)", f, u256(4));
testContractAgainstCpp("a(bytes32)", f, u256(5));
testContractAgainstCpp("a(bytes32)", f, u256(-1));
}
BOOST_AUTO_TEST_CASE(packed_ripemd160)
{
char const* sourceCode = R"(
contract test {
function a(bytes32 input) public returns (bytes32 hash) {
uint24 b = 65536;
uint c = 256;
return ripemd160(abi.encodePacked(uint8(8), input, b, input, c));
}
}
)";
compileAndRun(sourceCode);
auto f = [&](u256 const& _x) -> bytes
{
if (_x == u256(4))
return fromHex("f93175303eba2a7b372174fc9330237f5ad202fc000000000000000000000000");
if (_x == u256(5))
return fromHex("04f4fc112e2bfbe0d38f896a46629e08e2fcfad5000000000000000000000000");
if (_x == u256(-1))
return fromHex("c0a2e4b1f3ff766a9a0089e7a410391730872495000000000000000000000000");
return fromHex("");
};
testContractAgainstCpp("a(bytes32)", f, u256(4));
testContractAgainstCpp("a(bytes32)", f, u256(5));
testContractAgainstCpp("a(bytes32)", f, u256(-1));
}
BOOST_AUTO_TEST_CASE(inter_contract_calls)
{
char const* sourceCode = R"(
contract Helper {
function multiply(uint a, uint b) public returns (uint c) {
return a * b;
}
}
contract Main {
Helper h;
function callHelper(uint a, uint b) public returns (uint c) {
return h.multiply(a, b);
}
function getHelper() public returns (address haddress) {
return address(h);
}
function setHelper(address haddress) public {
h = Helper(haddress);
}
}
)";
compileAndRun(sourceCode, 0, "Helper");
u160 const c_helperAddress = m_contractAddress;
compileAndRun(sourceCode, 0, "Main");
BOOST_REQUIRE(callContractFunction("setHelper(address)", c_helperAddress) == bytes());
BOOST_REQUIRE(callContractFunction("getHelper()", c_helperAddress) == encodeArgs(c_helperAddress));
u256 a(3456789);
u256 b("0x282837623374623234aa74");
BOOST_REQUIRE(callContractFunction("callHelper(uint256,uint256)", a, b) == encodeArgs(a * b));
}
BOOST_AUTO_TEST_CASE(inter_contract_calls_with_complex_parameters)
{
char const* sourceCode = R"(
contract Helper {
function sel(uint a, bool select, uint b) public returns (uint c) {
if (select) return a; else return b;
}
}
contract Main {
Helper h;
function callHelper(uint a, bool select, uint b) public returns (uint c) {
return h.sel(a, select, b) * 3;
}
function getHelper() public returns (address haddress) {
return address(h);
}
function setHelper(address haddress) public {
h = Helper(haddress);
}
}
)";
compileAndRun(sourceCode, 0, "Helper");
u160 const c_helperAddress = m_contractAddress;
compileAndRun(sourceCode, 0, "Main");
BOOST_REQUIRE(callContractFunction("setHelper(address)", c_helperAddress) == bytes());
BOOST_REQUIRE(callContractFunction("getHelper()", c_helperAddress) == encodeArgs(c_helperAddress));
u256 a(3456789);
u256 b("0x282837623374623234aa74");
BOOST_REQUIRE(callContractFunction("callHelper(uint256,bool,uint256)", a, true, b) == encodeArgs(a * 3));
BOOST_REQUIRE(callContractFunction("callHelper(uint256,bool,uint256)", a, false, b) == encodeArgs(b * 3));
}
BOOST_AUTO_TEST_CASE(inter_contract_calls_accessing_this)
{
char const* sourceCode = R"(
contract Helper {
function getAddress() public returns (address addr) {
return address(this);
}
}
contract Main {
Helper h;
function callHelper() public returns (address addr) {
return h.getAddress();
}
function getHelper() public returns (address addr) {
return address(h);
}
function setHelper(address addr) public {
h = Helper(addr);
}
}
)";
compileAndRun(sourceCode, 0, "Helper");
u160 const c_helperAddress = m_contractAddress;
compileAndRun(sourceCode, 0, "Main");
BOOST_REQUIRE(callContractFunction("setHelper(address)", c_helperAddress) == bytes());
BOOST_REQUIRE(callContractFunction("getHelper()", c_helperAddress) == encodeArgs(c_helperAddress));
BOOST_REQUIRE(callContractFunction("callHelper()") == encodeArgs(c_helperAddress));
}
BOOST_AUTO_TEST_CASE(calls_to_this)
{
char const* sourceCode = R"(
contract Helper {
function invoke(uint a, uint b) public returns (uint c) {
return this.multiply(a, b, 10);
}
function multiply(uint a, uint b, uint8 c) public returns (uint ret) {
return a * b + c;
}
}
contract Main {
Helper h;
function callHelper(uint a, uint b) public returns (uint ret) {
return h.invoke(a, b);
}
function getHelper() public returns (address addr) {
return address(h);
}
function setHelper(address addr) public {
h = Helper(addr);
}
}
)";
compileAndRun(sourceCode, 0, "Helper");
u160 const c_helperAddress = m_contractAddress;
compileAndRun(sourceCode, 0, "Main");
BOOST_REQUIRE(callContractFunction("setHelper(address)", c_helperAddress) == bytes());
BOOST_REQUIRE(callContractFunction("getHelper()", c_helperAddress) == encodeArgs(c_helperAddress));
u256 a(3456789);
u256 b("0x282837623374623234aa74");
BOOST_REQUIRE(callContractFunction("callHelper(uint256,uint256)", a, b) == encodeArgs(a * b + 10));
}
BOOST_AUTO_TEST_CASE(inter_contract_calls_with_local_vars)
{
// note that a reference to another contract's function occupies two stack slots,
// so this tests correct stack slot allocation
char const* sourceCode = R"(
contract Helper {
function multiply(uint a, uint b) public returns (uint c) {
return a * b;
}
}
contract Main {
Helper h;
function callHelper(uint a, uint b) public returns (uint c) {
uint8 y = 9;
uint256 ret = h.multiply(a, b);
return ret + y;
}
function getHelper() public returns (address haddress) {
return address(h);
}
function setHelper(address haddress) public {
h = Helper(haddress);
}
}
)";
compileAndRun(sourceCode, 0, "Helper");
u160 const c_helperAddress = m_contractAddress;
compileAndRun(sourceCode, 0, "Main");
BOOST_REQUIRE(callContractFunction("setHelper(address)", c_helperAddress) == bytes());
BOOST_REQUIRE(callContractFunction("getHelper()", c_helperAddress) == encodeArgs(c_helperAddress));
u256 a(3456789);
u256 b("0x282837623374623234aa74");
BOOST_REQUIRE(callContractFunction("callHelper(uint256,uint256)", a, b) == encodeArgs(a * b + 9));
}
BOOST_AUTO_TEST_CASE(fixed_bytes_in_calls)
{
char const* sourceCode = R"(
contract Helper {
function invoke(bytes3 x, bool stop) public returns (bytes4 ret) {
return x;
}
}
contract Main {
Helper h;
function callHelper(bytes2 x, bool stop) public returns (bytes5 ret) {
return h.invoke(x, stop);
}
function getHelper() public returns (address addr) {
return address(h);
}
function setHelper(address addr) public {
h = Helper(addr);
}
}
)";
compileAndRun(sourceCode, 0, "Helper");
u160 const c_helperAddress = m_contractAddress;
compileAndRun(sourceCode, 0, "Main");
BOOST_REQUIRE(callContractFunction("setHelper(address)", c_helperAddress) == bytes());
BOOST_REQUIRE(callContractFunction("getHelper()", c_helperAddress) == encodeArgs(c_helperAddress));
ABI_CHECK(callContractFunction("callHelper(bytes2,bool)", string("\0a", 2), true), encodeArgs(string("\0a\0\0\0", 5)));
}
BOOST_AUTO_TEST_CASE(constructor_with_long_arguments)
{
char const* sourceCode = R"(
contract Main {
string public a;
string public b;
constructor(string memory _a, string memory _b) public {
a = _a;
b = _b;
}
}
)";
string a = "01234567890123gabddunaouhdaoneudapcgadi4567890789012oneudapcgadi4567890789012oneudapcgadi4567890789012oneudapcgadi4567890789012oneudapcgadi4567890789012oneudapcgadi4567890789012oneudapcgadi4567890789012oneudapcgadi45678907890123456789abcd123456787890123456789abcd90123456789012345678901234567890123456789aboneudapcgadi4567890789012oneudapcgadi4567890789012oneudapcgadi45678907890123456789abcd123456787890123456789abcd90123456789012345678901234567890123456789aboneudapcgadi4567890789012oneudapcgadi4567890789012oneudapcgadi45678907890123456789abcd123456787890123456789abcd90123456789012345678901234567890123456789aboneudapcgadi4567890789012cdef";
string b = "AUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PYAUTAHIACIANOTUHAOCUHAOEUNAOEHUNTHDYDHPYDRCPYDRSTITOEUBXHUDGO>PY";
compileAndRun(sourceCode, 0, "Main", encodeArgs(
u256(0x40),
u256(0x40 + 0x20 + ((a.length() + 31) / 32) * 32),
u256(a.length()),
a,
u256(b.length()),
b
));
ABI_CHECK(callContractFunction("a()"), encodeDyn(a));
ABI_CHECK(callContractFunction("b()"), encodeDyn(b));
}
BOOST_AUTO_TEST_CASE(contracts_as_addresses)
{
char const* sourceCode = R"(
contract helper {
receive() external payable { } // can receive ether
}
contract test {
helper h;
constructor() public payable { h = new helper(); address(h).send(5); }
function getBalance() public returns (uint256 myBalance, uint256 helperBalance) {
myBalance = address(this).balance;
helperBalance = address(h).balance;
}
}
)";
compileAndRun(sourceCode, 20);
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 20 - 5);
BOOST_REQUIRE(callContractFunction("getBalance()") == encodeArgs(u256(20 - 5), u256(5)));
}
BOOST_AUTO_TEST_CASE(gaslimit)
{
char const* sourceCode = R"(
contract C {
function f() public returns (uint) {
return block.gaslimit;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
auto result = callContractFunction("f()");
ABI_CHECK(result, encodeArgs(gasLimit()));
)
}
BOOST_AUTO_TEST_CASE(gasprice)
{
char const* sourceCode = R"(
contract C {
function f() public returns (uint) {
return tx.gasprice;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("f()"), encodeArgs(gasPrice()));
)
}
BOOST_AUTO_TEST_CASE(blockhash)
{
char const* sourceCode = R"(
contract C {
uint256 counter;
function g() public returns (bool) { counter++; return true; }
function f() public returns (bytes32[] memory r) {
r = new bytes32[](259);
for (uint i = 0; i < 259; i++)
r[i] = blockhash(block.number - 257 + i);
}
}
)";
compileAndRun(sourceCode);
// generate a sufficient amount of blocks
while (blockNumber() < u256(255))
ABI_CHECK(callContractFunction("g()"), encodeArgs(true));
vector<u256> hashes;
// ``blockhash()`` is only valid for the last 256 blocks, otherwise zero
hashes.emplace_back(0);
for (u256 i = blockNumber() - u256(255); i <= blockNumber(); i++)
hashes.emplace_back(blockHash(i));
// the current block hash is not yet known at execution time and therefore zero
hashes.emplace_back(0);
// future block hashes are zero
hashes.emplace_back(0);
ABI_CHECK(callContractFunction("f()"), encodeDyn(hashes));
}
BOOST_AUTO_TEST_CASE(internal_constructor)
{
char const* sourceCode = R"(
contract C {
constructor() internal {}
}
)";
BOOST_CHECK(compileAndRunWithoutCheck(sourceCode, 0, "C").empty());
}
BOOST_AUTO_TEST_CASE(default_fallback_throws)
{
char const* sourceCode = R"YY(
contract A {
function f() public returns (bool) {
(bool success,) = address(this).call("");
return success;
}
}
)YY";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("f()"), encodeArgs(0));
if (solidity::test::CommonOptions::get().evmVersion().hasStaticCall())
{
char const* sourceCode = R"YY(
contract A {
function f() public returns (bool) {
(bool success, bytes memory data) = address(this).staticcall("");
assert(data.length == 0);
return success;
}
}
)YY";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("f()"), encodeArgs(0));
}
}
BOOST_AUTO_TEST_CASE(event)
{
char const* sourceCode = R"(
contract ClientReceipt {
event Deposit(address indexed _from, bytes32 indexed _id, uint _value);
function deposit(bytes32 _id, bool _manually) public payable {
if (_manually) {
bytes32 s = 0x19dacbf83c5de6658e14cbf7bcae5c15eca2eedecf1c66fbca928e4d351bea0f;
log3(bytes32(msg.value), s, bytes32(uint256(msg.sender)), _id);
} else {
emit Deposit(msg.sender, _id, msg.value);
}
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
u256 value(18);
u256 id(0x1234);
for (bool manually: {true, false})
{
callContractFunctionWithValue("deposit(bytes32,bool)", value, id, manually);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(h256(logData(0)), h256(u256(value)));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 3);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(address,bytes32,uint256)")));
BOOST_CHECK_EQUAL(logTopic(0, 1), h256(m_sender, h256::AlignRight));
BOOST_CHECK_EQUAL(logTopic(0, 2), h256(id));
}
)
}
BOOST_AUTO_TEST_CASE(event_emit)
{
char const* sourceCode = R"(
contract ClientReceipt {
event Deposit(address indexed _from, bytes32 indexed _id, uint _value);
function deposit(bytes32 _id) public payable {
emit Deposit(msg.sender, _id, msg.value);
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
u256 value(18);
u256 id(0x1234);
callContractFunctionWithValue("deposit(bytes32)", value, id);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(h256(logData(0)), h256(u256(value)));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 3);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(address,bytes32,uint256)")));
BOOST_CHECK_EQUAL(logTopic(0, 1), h256(m_sender, h256::AlignRight));
BOOST_CHECK_EQUAL(logTopic(0, 2), h256(id));
)
}
BOOST_AUTO_TEST_CASE(event_no_arguments)
{
char const* sourceCode = R"(
contract ClientReceipt {
event Deposit();
function deposit() public {
emit Deposit();
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
callContractFunction("deposit()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0).empty());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit()")));
)
}
BOOST_AUTO_TEST_CASE(event_access_through_base_name_emit)
{
char const* sourceCode = R"(
contract A {
event x();
}
contract B is A {
function f() public returns (uint) {
emit A.x();
return 1;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
callContractFunction("f()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0).empty());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("x()")));
);
}
BOOST_AUTO_TEST_CASE(events_with_same_name)
{
char const* sourceCode = R"(
contract ClientReceipt {
event Deposit();
event Deposit(address _addr);
event Deposit(address _addr, uint _amount);
event Deposit(address _addr, bool _flag);
function deposit() public returns (uint) {
emit Deposit();
return 1;
}
function deposit(address _addr) public returns (uint) {
emit Deposit(_addr);
return 2;
}
function deposit(address _addr, uint _amount) public returns (uint) {
emit Deposit(_addr, _amount);
return 3;
}
function deposit(address _addr, bool _flag) public returns (uint) {
emit Deposit(_addr, _flag);
return 4;
}
}
)";
u160 const c_loggedAddress = m_contractAddress;
ALSO_VIA_YUL(
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("deposit()"), encodeArgs(u256(1)));
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0).empty());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit()")));
ABI_CHECK(callContractFunction("deposit(address)", c_loggedAddress), encodeArgs(u256(2)));
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
ABI_CHECK(logData(0), encodeArgs(c_loggedAddress));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(address)")));
ABI_CHECK(callContractFunction("deposit(address,uint256)", c_loggedAddress, u256(100)), encodeArgs(u256(3)));
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
ABI_CHECK(logData(0), encodeArgs(c_loggedAddress, 100));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(address,uint256)")));
ABI_CHECK(callContractFunction("deposit(address,bool)", c_loggedAddress, false), encodeArgs(u256(4)));
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
ABI_CHECK(logData(0), encodeArgs(c_loggedAddress, false));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(address,bool)")));
)
}
BOOST_AUTO_TEST_CASE(events_with_same_name_inherited_emit)
{
char const* sourceCode = R"(
contract A {
event Deposit();
}
contract B {
event Deposit(address _addr);
}
contract ClientReceipt is A, B {
event Deposit(address _addr, uint _amount);
function deposit() public returns (uint) {
emit Deposit();
return 1;
}
function deposit(address _addr) public returns (uint) {
emit Deposit(_addr);
return 1;
}
function deposit(address _addr, uint _amount) public returns (uint) {
emit Deposit(_addr, _amount);
return 1;
}
}
)";
u160 const c_loggedAddress = m_contractAddress;
ALSO_VIA_YUL(
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("deposit()"), encodeArgs(u256(1)));
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0).empty());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit()")));
ABI_CHECK(callContractFunction("deposit(address)", c_loggedAddress), encodeArgs(u256(1)));
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(c_loggedAddress));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(address)")));
ABI_CHECK(callContractFunction("deposit(address,uint256)", c_loggedAddress, u256(100)), encodeArgs(u256(1)));
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
ABI_CHECK(logData(0), encodeArgs(c_loggedAddress, 100));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(address,uint256)")));
)
}
BOOST_AUTO_TEST_CASE(event_anonymous)
{
char const* sourceCode = R"(
contract ClientReceipt {
event Deposit() anonymous;
function deposit() public {
emit Deposit();
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
callContractFunction("deposit()");
BOOST_REQUIRE_EQUAL(numLogTopics(0), 0);
)
}
BOOST_AUTO_TEST_CASE(event_anonymous_with_topics)
{
char const* sourceCode = R"(
contract ClientReceipt {
event Deposit(address indexed _from, bytes32 indexed _id, uint indexed _value, uint indexed _value2, bytes32 data) anonymous;
function deposit(bytes32 _id) public payable {
emit Deposit(msg.sender, _id, msg.value, 2, "abc");
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
u256 value(18);
u256 id(0x1234);
callContractFunctionWithValue("deposit(bytes32)", value, id);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs("abc"));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 4);
BOOST_CHECK_EQUAL(logTopic(0, 0), h256(m_sender, h256::AlignRight));
BOOST_CHECK_EQUAL(logTopic(0, 1), h256(id));
BOOST_CHECK_EQUAL(logTopic(0, 2), h256(value));
BOOST_CHECK_EQUAL(logTopic(0, 3), h256(2));
)
}
BOOST_AUTO_TEST_CASE(event_lots_of_data)
{
char const* sourceCode = R"(
contract ClientReceipt {
event Deposit(address _from, bytes32 _id, uint _value, bool _flag);
function deposit(bytes32 _id) public payable {
emit Deposit(msg.sender, _id, msg.value, true);
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
u256 value(18);
u256 id(0x1234);
callContractFunctionWithValue("deposit(bytes32)", value, id);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs((u160)m_sender, id, value, true));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(address,bytes32,uint256,bool)")));
)
}
BOOST_AUTO_TEST_CASE(event_really_lots_of_data)
{
char const* sourceCode = R"(
contract ClientReceipt {
event Deposit(uint fixeda, bytes dynx, uint fixedb);
function deposit() public {
emit Deposit(10, msg.data, 15);
}
}
)";
compileAndRun(sourceCode);
callContractFunction("deposit()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(toHex(logData(0)), toHex(encodeArgs(10, 0x60, 15, 4, asString(FixedHash<4>(util::keccak256("deposit()")).asBytes()))));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(uint256,bytes,uint256)")));
}
BOOST_AUTO_TEST_CASE(event_really_lots_of_data_from_storage)
{
char const* sourceCode = R"(
contract ClientReceipt {
bytes x;
event Deposit(uint fixeda, bytes dynx, uint fixedb);
function deposit() public {
x.push("A");
x.push("B");
x.push("C");
emit Deposit(10, x, 15);
}
}
)";
compileAndRun(sourceCode);
callContractFunction("deposit()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK_EQUAL(toHex(logData(0)), toHex(encodeArgs(10, 0x60, 15, 3, string("ABC"))));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(uint256,bytes,uint256)")));
}
BOOST_AUTO_TEST_CASE(event_really_really_lots_of_data_from_storage)
{
char const* sourceCode = R"(
contract ClientReceipt {
bytes x;
event Deposit(uint fixeda, bytes dynx, uint fixedb);
function deposit() public {
x = new bytes(31);
x[0] = "A";
x[1] = "B";
x[2] = "C";
x[30] = "Z";
emit Deposit(10, x, 15);
}
}
)";
compileAndRun(sourceCode);
callContractFunction("deposit()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(10, 0x60, 15, 31, string("ABC") + string(27, 0) + "Z"));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(uint256,bytes,uint256)")));
}
BOOST_AUTO_TEST_CASE(event_struct_memory_v2)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S { uint a; }
event E(S);
function createEvent(uint x) public {
emit E(S(x));
}
}
)";
compileAndRun(sourceCode);
u256 x(42);
callContractFunction("createEvent(uint256)", x);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(x));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E((uint256))")));
}
BOOST_AUTO_TEST_CASE(event_struct_storage_v2)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S { uint a; }
event E(S);
S s;
function createEvent(uint x) public {
s.a = x;
emit E(s);
}
}
)";
compileAndRun(sourceCode);
u256 x(42);
callContractFunction("createEvent(uint256)", x);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(x));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E((uint256))")));
}
BOOST_AUTO_TEST_CASE(event_dynamic_array_memory)
{
char const* sourceCode = R"(
contract C {
event E(uint[]);
function createEvent(uint x) public {
uint[] memory arr = new uint[](3);
arr[0] = x;
arr[1] = x + 1;
arr[2] = x + 2;
emit E(arr);
}
}
)";
compileAndRun(sourceCode);
u256 x(42);
callContractFunction("createEvent(uint256)", x);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(0x20, 3, x, x + 1, x + 2));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E(uint256[])")));
}
BOOST_AUTO_TEST_CASE(event_dynamic_array_memory_v2)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
event E(uint[]);
function createEvent(uint x) public {
uint[] memory arr = new uint[](3);
arr[0] = x;
arr[1] = x + 1;
arr[2] = x + 2;
emit E(arr);
}
}
)";
compileAndRun(sourceCode);
u256 x(42);
callContractFunction("createEvent(uint256)", x);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(0x20, 3, x, x + 1, x + 2));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E(uint256[])")));
}
BOOST_AUTO_TEST_CASE(event_dynamic_nested_array_memory_v2)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
event E(uint[][]);
function createEvent(uint x) public {
uint[][] memory arr = new uint[][](2);
arr[0] = new uint[](2);
arr[1] = new uint[](2);
arr[0][0] = x;
arr[0][1] = x + 1;
arr[1][0] = x + 2;
arr[1][1] = x + 3;
emit E(arr);
}
}
)";
compileAndRun(sourceCode);
u256 x(42);
callContractFunction("createEvent(uint256)", x);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(0x20, 2, 0x40, 0xa0, 2, x, x + 1, 2, x + 2, x + 3));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E(uint256[][])")));
}
BOOST_AUTO_TEST_CASE(event_dynamic_array_storage)
{
char const* sourceCode = R"(
contract C {
event E(uint[]);
uint[] arr;
function createEvent(uint x) public {
while (arr.length < 3)
arr.push();
arr[0] = x;
arr[1] = x + 1;
arr[2] = x + 2;
emit E(arr);
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
u256 x(42);
callContractFunction("createEvent(uint256)", x);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(0x20, 3, x, x + 1, x + 2));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E(uint256[])")));
)
}
BOOST_AUTO_TEST_CASE(event_dynamic_array_storage_v2)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
event E(uint[]);
uint[] arr;
function createEvent(uint x) public {
while (arr.length < 3)
arr.push();
arr[0] = x;
arr[1] = x + 1;
arr[2] = x + 2;
emit E(arr);
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
u256 x(42);
callContractFunction("createEvent(uint256)", x);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(0x20, 3, x, x + 1, x + 2));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E(uint256[])")));
)
}
BOOST_AUTO_TEST_CASE(event_dynamic_nested_array_storage_v2)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
event E(uint[][]);
uint[][] arr;
function createEvent(uint x) public {
arr.push(new uint[](2));
arr.push(new uint[](2));
arr[0][0] = x;
arr[0][1] = x + 1;
arr[1][0] = x + 2;
arr[1][1] = x + 3;
emit E(arr);
}
}
)";
/// TODO enable again after push(..) via yul is implemented for nested arrays.
/// ALSO_VIA_YUL()
compileAndRun(sourceCode);
u256 x(42);
callContractFunction("createEvent(uint256)", x);
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(0x20, 2, 0x40, 0xa0, 2, x, x + 1, 2, x + 2, x + 3));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E(uint256[][])")));
}
BOOST_AUTO_TEST_CASE(event_indexed_string)
{
char const* sourceCode = R"(
contract C {
string x;
uint[4] y;
event E(string indexed r, uint[4] indexed t);
function deposit() public {
for (uint i = 0; i < 90; i++)
bytes(x).push(0);
for (uint8 i = 0; i < 90; i++)
bytes(x)[i] = byte(i);
y[0] = 4;
y[1] = 5;
y[2] = 6;
y[3] = 7;
emit E(x, y);
}
}
)";
compileAndRun(sourceCode);
callContractFunction("deposit()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
string dynx(90, 0);
for (size_t i = 0; i < dynx.size(); ++i)
dynx[i] = i;
BOOST_CHECK(logData(0) == bytes());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 3);
BOOST_CHECK_EQUAL(logTopic(0, 1), util::keccak256(dynx));
BOOST_CHECK_EQUAL(logTopic(0, 2), util::keccak256(
encodeArgs(u256(4), u256(5), u256(6), u256(7))
));
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E(string,uint256[4])")));
}
BOOST_AUTO_TEST_CASE(empty_name_input_parameter_with_named_one)
{
char const* sourceCode = R"(
contract test {
function f(uint, uint k) public returns(uint ret_k, uint ret_g){
uint g = 8;
ret_k = k;
ret_g = g;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction("f(uint256,uint256)", 5, 9) != encodeArgs(5, 8));
ABI_CHECK(callContractFunction("f(uint256,uint256)", 5, 9), encodeArgs(9, 8));
)
}
BOOST_AUTO_TEST_CASE(generic_call)
{
char const* sourceCode = R"**(
contract receiver {
uint public received;
function recv(uint256 x) public payable { received = x; }
}
contract sender {
constructor() public payable {}
function doSend(address rec) public returns (uint d)
{
bytes4 signature = bytes4(bytes32(keccak256("recv(uint256)")));
rec.call.value(2)(abi.encodeWithSelector(signature, 23));
return receiver(rec).received();
}
}
)**";
compileAndRun(sourceCode, 0, "receiver");
u160 const c_receiverAddress = m_contractAddress;
compileAndRun(sourceCode, 50, "sender");
BOOST_REQUIRE(callContractFunction("doSend(address)", c_receiverAddress) == encodeArgs(23));
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 50 - 2);
}
BOOST_AUTO_TEST_CASE(generic_delegatecall)
{
char const* sourceCode = R"**(
contract Receiver {
uint public received;
address public sender;
uint public value;
constructor() public payable {}
function recv(uint256 x) public payable { received = x; sender = msg.sender; value = msg.value; }
}
contract Sender {
uint public received;
address public sender;
uint public value;
constructor() public payable {}
function doSend(address rec) public payable
{
bytes4 signature = bytes4(bytes32(keccak256("recv(uint256)")));
(bool success,) = rec.delegatecall(abi.encodeWithSelector(signature, 23));
success;
}
}
)**";
for (auto v2: {false, true})
{
string source = (v2 ? "pragma experimental ABIEncoderV2;\n" : "") + string(sourceCode);
compileAndRun(source, 0, "Receiver");
u160 const c_receiverAddress = m_contractAddress;
compileAndRun(source, 50, "Sender");
u160 const c_senderAddress = m_contractAddress;
BOOST_CHECK(m_sender != c_senderAddress); // just for sanity
ABI_CHECK(callContractFunctionWithValue("doSend(address)", 11, c_receiverAddress), encodeArgs());
ABI_CHECK(callContractFunction("received()"), encodeArgs(u256(23)));
ABI_CHECK(callContractFunction("sender()"), encodeArgs(u160(m_sender)));
ABI_CHECK(callContractFunction("value()"), encodeArgs(u256(11)));
m_contractAddress = c_receiverAddress;
ABI_CHECK(callContractFunction("received()"), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("sender()"), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("value()"), encodeArgs(u256(0)));
BOOST_CHECK(storageEmpty(c_receiverAddress));
BOOST_CHECK(!storageEmpty(c_senderAddress));
BOOST_CHECK_EQUAL(balanceAt(c_receiverAddress), 0);
BOOST_CHECK_EQUAL(balanceAt(c_senderAddress), 50 + 11);
}
}
BOOST_AUTO_TEST_CASE(generic_staticcall)
{
if (solidity::test::CommonOptions::get().evmVersion().hasStaticCall())
{
char const* sourceCode = R"**(
contract A {
uint public x;
constructor() public { x = 42; }
function pureFunction(uint256 p) public pure returns (uint256) { return p; }
function viewFunction(uint256 p) public view returns (uint256) { return p + x; }
function nonpayableFunction(uint256 p) public returns (uint256) { x = p; return x; }
function assertFunction(uint256 p) public view returns (uint256) { assert(x == p); return x; }
}
contract C {
function f(address a) public view returns (bool, bytes memory)
{
return a.staticcall(abi.encodeWithSignature("pureFunction(uint256)", 23));
}
function g(address a) public view returns (bool, bytes memory)
{
return a.staticcall(abi.encodeWithSignature("viewFunction(uint256)", 23));
}
function h(address a) public view returns (bool, bytes memory)
{
return a.staticcall(abi.encodeWithSignature("nonpayableFunction(uint256)", 23));
}
function i(address a, uint256 v) public view returns (bool, bytes memory)
{
return a.staticcall(abi.encodeWithSignature("assertFunction(uint256)", v));
}
}
)**";
compileAndRun(sourceCode, 0, "A");
u160 const c_addressA = m_contractAddress;
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(address)", c_addressA), encodeArgs(true, 0x40, 0x20, 23));
ABI_CHECK(callContractFunction("g(address)", c_addressA), encodeArgs(true, 0x40, 0x20, 23 + 42));
ABI_CHECK(callContractFunction("h(address)", c_addressA), encodeArgs(false, 0x40, 0x00));
ABI_CHECK(callContractFunction("i(address,uint256)", c_addressA, 42), encodeArgs(true, 0x40, 0x20, 42));
ABI_CHECK(callContractFunction("i(address,uint256)", c_addressA, 23), encodeArgs(false, 0x40, 0x00));
}
}
BOOST_AUTO_TEST_CASE(library_call_in_homestead)
{
char const* sourceCode = R"(
library Lib { function m() public returns (address) { return msg.sender; } }
contract Test {
address public sender;
function f() public {
sender = Lib.m();
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs());
ABI_CHECK(callContractFunction("sender()"), encodeArgs(u160(m_sender)));
}
BOOST_AUTO_TEST_CASE(library_call_protection)
{
// This tests code that reverts a call if it is a direct call to a library
// as opposed to a delegatecall.
char const* sourceCode = R"(
library Lib {
struct S { uint x; }
// a direct call to this should revert
function np(S storage s) public returns (address) { s.x = 3; return msg.sender; }
// a direct call to this is fine
function v(S storage) public view returns (address) { return msg.sender; }
// a direct call to this is fine
function pu() public pure returns (uint) { return 2; }
}
contract Test {
Lib.S public s;
function np() public returns (address) { return Lib.np(s); }
function v() public view returns (address) { return Lib.v(s); }
function pu() public pure returns (uint) { return Lib.pu(); }
}
)";
compileAndRun(sourceCode, 0, "Lib");
ABI_CHECK(callContractFunction("np(Lib.S storage)", 0), encodeArgs());
ABI_CHECK(callContractFunction("v(Lib.S storage)", 0), encodeArgs(u160(m_sender)));
ABI_CHECK(callContractFunction("pu()"), encodeArgs(2));
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("s()"), encodeArgs(0));
ABI_CHECK(callContractFunction("np()"), encodeArgs(u160(m_sender)));
ABI_CHECK(callContractFunction("s()"), encodeArgs(3));
ABI_CHECK(callContractFunction("v()"), encodeArgs(u160(m_sender)));
ABI_CHECK(callContractFunction("pu()"), encodeArgs(2));
}
BOOST_AUTO_TEST_CASE(library_staticcall_delegatecall)
{
char const* sourceCode = R"(
library Lib {
function x() public view returns (uint) {
return 1;
}
}
contract Test {
uint t;
function f() public returns (uint) {
t = 2;
return this.g();
}
function g() public view returns (uint) {
return Lib.x();
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(1));
}
BOOST_AUTO_TEST_CASE(bytes_from_calldata_to_memory)
{
char const* sourceCode = R"(
contract C {
function f() public returns (bytes32) {
return keccak256(abi.encodePacked("abc", msg.data));
}
}
)";
compileAndRun(sourceCode);
bytes calldata1 = FixedHash<4>(util::keccak256("f()")).asBytes() + bytes(61, 0x22) + bytes(12, 0x12);
sendMessage(calldata1, false);
BOOST_CHECK(m_transactionSuccessful);
BOOST_CHECK(m_output == encodeArgs(util::keccak256(bytes{'a', 'b', 'c'} + calldata1)));
}
BOOST_AUTO_TEST_CASE(call_forward_bytes)
{
char const* sourceCode = R"(
contract receiver {
uint public received;
function recv(uint x) public { received += x + 1; }
fallback() external { received = 0x80; }
}
contract sender {
constructor() public { rec = new receiver(); }
fallback() external { savedData = msg.data; }
function forward() public returns (bool) { address(rec).call(savedData); return true; }
function clear() public returns (bool) { delete savedData; return true; }
function val() public returns (uint) { return rec.received(); }
receiver rec;
bytes savedData;
}
)";
compileAndRun(sourceCode, 0, "sender");
ABI_CHECK(callContractFunction("recv(uint256)", 7), bytes());
ABI_CHECK(callContractFunction("val()"), encodeArgs(0));
ABI_CHECK(callContractFunction("forward()"), encodeArgs(true));
ABI_CHECK(callContractFunction("val()"), encodeArgs(8));
ABI_CHECK(callContractFunction("clear()"), encodeArgs(true));
ABI_CHECK(callContractFunction("val()"), encodeArgs(8));
ABI_CHECK(callContractFunction("forward()"), encodeArgs(true));
ABI_CHECK(callContractFunction("val()"), encodeArgs(0x80));
}
BOOST_AUTO_TEST_CASE(call_forward_bytes_length)
{
char const* sourceCode = R"(
contract receiver {
uint public calledLength;
fallback() external { calledLength = msg.data.length; }
}
contract sender {
receiver rec;
constructor() public { rec = new receiver(); }
function viaCalldata() public returns (uint) {
(bool success,) = address(rec).call(msg.data);
require(success);
return rec.calledLength();
}
function viaMemory() public returns (uint) {
bytes memory x = msg.data;
(bool success,) = address(rec).call(x);
require(success);
return rec.calledLength();
}
bytes s;
function viaStorage() public returns (uint) {
s = msg.data;
(bool success,) = address(rec).call(s);
require(success);
return rec.calledLength();
}
}
)";
compileAndRun(sourceCode, 0, "sender");
// No additional data, just function selector
ABI_CHECK(callContractFunction("viaCalldata()"), encodeArgs(4));
ABI_CHECK(callContractFunction("viaMemory()"), encodeArgs(4));
ABI_CHECK(callContractFunction("viaStorage()"), encodeArgs(4));
// Some additional unpadded data
bytes unpadded = asBytes(string("abc"));
ABI_CHECK(callContractFunctionNoEncoding("viaCalldata()", unpadded), encodeArgs(7));
ABI_CHECK(callContractFunctionNoEncoding("viaMemory()", unpadded), encodeArgs(7));
ABI_CHECK(callContractFunctionNoEncoding("viaStorage()", unpadded), encodeArgs(7));
}
BOOST_AUTO_TEST_CASE(copying_bytes_multiassign)
{
char const* sourceCode = R"(
contract receiver {
uint public received;
function recv(uint x) public { received += x + 1; }
fallback() external { received = 0x80; }
}
contract sender {
constructor() public { rec = new receiver(); }
fallback() external { savedData1 = savedData2 = msg.data; }
function forward(bool selector) public returns (bool) {
if (selector) { address(rec).call(savedData1); delete savedData1; }
else { address(rec).call(savedData2); delete savedData2; }
return true;
}
function val() public returns (uint) { return rec.received(); }
receiver rec;
bytes savedData1;
bytes savedData2;
}
)";
compileAndRun(sourceCode, 0, "sender");
ABI_CHECK(callContractFunction("recv(uint256)", 7), bytes());
ABI_CHECK(callContractFunction("val()"), encodeArgs(0));
ABI_CHECK(callContractFunction("forward(bool)", true), encodeArgs(true));
ABI_CHECK(callContractFunction("val()"), encodeArgs(8));
ABI_CHECK(callContractFunction("forward(bool)", false), encodeArgs(true));
ABI_CHECK(callContractFunction("val()"), encodeArgs(16));
ABI_CHECK(callContractFunction("forward(bool)", true), encodeArgs(true));
ABI_CHECK(callContractFunction("val()"), encodeArgs(0x80));
}
BOOST_AUTO_TEST_CASE(delete_removes_bytes_data)
{
char const* sourceCode = R"(
contract c {
fallback() external { data = msg.data; }
function del() public returns (bool) { delete data; return true; }
bytes data;
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("---", 7), bytes());
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("del()", 7), encodeArgs(true));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(copy_from_calldata_removes_bytes_data)
{
char const* sourceCode = R"(
contract c {
function set() public returns (bool) { data = msg.data; return true; }
fallback() external { data = msg.data; }
bytes data;
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("set()", 1, 2, 3, 4, 5), encodeArgs(true));
BOOST_CHECK(!storageEmpty(m_contractAddress));
sendMessage(bytes(), false);
BOOST_CHECK(m_transactionSuccessful);
BOOST_CHECK(m_output.empty());
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(copy_removes_bytes_data)
{
char const* sourceCode = R"(
contract c {
function set() public returns (bool) { data1 = msg.data; return true; }
function reset() public returns (bool) { data1 = data2; return true; }
bytes data1;
bytes data2;
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("set()", 1, 2, 3, 4, 5), encodeArgs(true));
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("reset()"), encodeArgs(true));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(bytes_inside_mappings)
{
char const* sourceCode = R"(
contract c {
function set(uint key) public returns (bool) { data[key] = msg.data; return true; }
function copy(uint from, uint to) public returns (bool) { data[to] = data[from]; return true; }
mapping(uint => bytes) data;
}
)";
compileAndRun(sourceCode);
// store a short byte array at 1 and a longer one at 2
ABI_CHECK(callContractFunction("set(uint256)", 1, 2), encodeArgs(true));
ABI_CHECK(callContractFunction("set(uint256)", 2, 2, 3, 4, 5), encodeArgs(true));
BOOST_CHECK(!storageEmpty(m_contractAddress));
// copy shorter to longer
ABI_CHECK(callContractFunction("copy(uint256,uint256)", 1, 2), encodeArgs(true));
BOOST_CHECK(!storageEmpty(m_contractAddress));
// copy empty to both
ABI_CHECK(callContractFunction("copy(uint256,uint256)", 99, 1), encodeArgs(true));
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("copy(uint256,uint256)", 99, 2), encodeArgs(true));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(struct_containing_bytes_copy_and_delete)
{
char const* sourceCode = R"(
contract c {
struct Struct { uint a; bytes data; uint b; }
Struct data1;
Struct data2;
function set(uint _a, bytes calldata _data, uint _b) external returns (bool) {
data1.a = _a;
data1.b = _b;
data1.data = _data;
return true;
}
function copy() public returns (bool) {
data1 = data2;
return true;
}
function del() public returns (bool) {
delete data1;
return true;
}
}
)";
compileAndRun(sourceCode);
string data = "123456789012345678901234567890123";
BOOST_CHECK(storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("set(uint256,bytes,uint256)", 12, 0x60, 13, u256(data.length()), data), encodeArgs(true));
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("copy()"), encodeArgs(true));
BOOST_CHECK(storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("set(uint256,bytes,uint256)", 12, 0x60, 13, u256(data.length()), data), encodeArgs(true));
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("del()"), encodeArgs(true));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(storing_invalid_boolean)
{
char const* sourceCode = R"(
contract C {
event Ev(bool);
bool public perm;
function set() public returns(uint) {
bool tmp;
assembly {
tmp := 5
}
perm = tmp;
return 1;
}
function ret() public returns(bool) {
bool tmp;
assembly {
tmp := 5
}
return tmp;
}
function ev() public returns(uint) {
bool tmp;
assembly {
tmp := 5
}
emit Ev(tmp);
return 1;
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("set()"), encodeArgs(1));
ABI_CHECK(callContractFunction("perm()"), encodeArgs(1));
ABI_CHECK(callContractFunction("ret()"), encodeArgs(1));
ABI_CHECK(callContractFunction("ev()"), encodeArgs(1));
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_CHECK(logData(0) == encodeArgs(1));
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Ev(bool)")));
}
BOOST_AUTO_TEST_CASE(struct_referencing)
{
static char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
interface I {
struct S { uint a; }
}
library L {
struct S { uint b; uint a; }
function f() public pure returns (S memory) {
S memory s;
s.a = 3;
return s;
}
function g() public pure returns (I.S memory) {
I.S memory s;
s.a = 4;
return s;
}
// argument-dependant lookup tests
function a(I.S memory) public pure returns (uint) { return 1; }
function a(S memory) public pure returns (uint) { return 2; }
}
contract C is I {
function f() public pure returns (S memory) {
S memory s;
s.a = 1;
return s;
}
function g() public pure returns (I.S memory) {
I.S memory s;
s.a = 2;
return s;
}
function h() public pure returns (L.S memory) {
L.S memory s;
s.a = 5;
return s;
}
function x() public pure returns (L.S memory) {
return L.f();
}
function y() public pure returns (I.S memory) {
return L.g();
}
function a1() public pure returns (uint) { S memory s; return L.a(s); }
function a2() public pure returns (uint) { L.S memory s; return L.a(s); }
}
)";
compileAndRun(sourceCode, 0, "L");
ABI_CHECK(callContractFunction("f()"), encodeArgs(0, 3));
ABI_CHECK(callContractFunction("g()"), encodeArgs(4));
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{ {"L", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(1));
ABI_CHECK(callContractFunction("g()"), encodeArgs(2));
ABI_CHECK(callContractFunction("h()"), encodeArgs(0, 5));
ABI_CHECK(callContractFunction("x()"), encodeArgs(0, 3));
ABI_CHECK(callContractFunction("y()"), encodeArgs(4));
ABI_CHECK(callContractFunction("a1()"), encodeArgs(1));
ABI_CHECK(callContractFunction("a2()"), encodeArgs(2));
}
BOOST_AUTO_TEST_CASE(enum_referencing)
{
char const* sourceCode = R"(
interface I {
enum Direction { A, B, Left, Right }
}
library L {
enum Direction { Left, Right }
function f() public pure returns (Direction) {
return Direction.Right;
}
function g() public pure returns (I.Direction) {
return I.Direction.Right;
}
}
contract C is I {
function f() public pure returns (Direction) {
return Direction.Right;
}
function g() public pure returns (I.Direction) {
return I.Direction.Right;
}
function h() public pure returns (L.Direction) {
return L.Direction.Right;
}
function x() public pure returns (L.Direction) {
return L.f();
}
function y() public pure returns (I.Direction) {
return L.g();
}
}
)";
compileAndRun(sourceCode, 0, "L");
ABI_CHECK(callContractFunction("f()"), encodeArgs(1));
ABI_CHECK(callContractFunction("g()"), encodeArgs(3));
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"L", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(3));
ABI_CHECK(callContractFunction("g()"), encodeArgs(3));
ABI_CHECK(callContractFunction("h()"), encodeArgs(1));
ABI_CHECK(callContractFunction("x()"), encodeArgs(1));
ABI_CHECK(callContractFunction("y()"), encodeArgs(3));
}
BOOST_AUTO_TEST_CASE(bytes_in_arguments)
{
char const* sourceCode = R"(
contract c {
uint result;
function f(uint a, uint b) public { result += a + b; }
function g(uint a) public { result *= a; }
function test(uint a, bytes calldata data1, bytes calldata data2, uint b) external returns (uint r_a, uint r, uint r_b, uint l) {
r_a = a;
address(this).call(data1);
address(this).call(data2);
r = result;
r_b = b;
l = data1.length;
}
}
)";
compileAndRun(sourceCode);
string innercalldata1 = asString(FixedHash<4>(util::keccak256("f(uint256,uint256)")).asBytes() + encodeArgs(8, 9));
string innercalldata2 = asString(FixedHash<4>(util::keccak256("g(uint256)")).asBytes() + encodeArgs(3));
bytes calldata = encodeArgs(
12, 32 * 4, u256(32 * 4 + 32 + (innercalldata1.length() + 31) / 32 * 32), 13,
u256(innercalldata1.length()), innercalldata1,
u256(innercalldata2.length()), innercalldata2);
ABI_CHECK(
callContractFunction("test(uint256,bytes,bytes,uint256)", calldata),
encodeArgs(12, (8 + 9) * 3, 13, u256(innercalldata1.length()))
);
}
BOOST_AUTO_TEST_CASE(fixed_array_cleanup)
{
char const* sourceCode = R"(
contract c {
uint spacer1;
uint spacer2;
uint[20] data;
function fill() public {
for (uint i = 0; i < data.length; ++i) data[i] = i+1;
}
function clear() public { delete data; }
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
BOOST_CHECK(storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("fill()"), bytes());
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("clear()"), bytes());
BOOST_CHECK(storageEmpty(m_contractAddress));
);
}
BOOST_AUTO_TEST_CASE(short_fixed_array_cleanup)
{
char const* sourceCode = R"(
contract c {
uint spacer1;
uint spacer2;
uint[3] data;
function fill() public {
for (uint i = 0; i < data.length; ++i) data[i] = i+1;
}
function clear() public { delete data; }
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
BOOST_CHECK(storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("fill()"), bytes());
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("clear()"), bytes());
BOOST_CHECK(storageEmpty(m_contractAddress));
);
}
BOOST_AUTO_TEST_CASE(dynamic_array_cleanup)
{
char const* sourceCode = R"(
contract c {
uint[20] spacer;
uint[] dynamic;
function fill() public {
for (uint i = 0; i < 21; ++i)
dynamic.push(i + 1);
}
function halfClear() public {
while (dynamic.length > 5)
dynamic.pop();
}
function fullClear() public { delete dynamic; }
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
BOOST_CHECK(storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("fill()"), bytes());
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("halfClear()"), bytes());
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("fullClear()"), bytes());
BOOST_CHECK(storageEmpty(m_contractAddress));
);
}
BOOST_AUTO_TEST_CASE(dynamic_multi_array_cleanup)
{
char const* sourceCode = R"(
contract c {
struct s { uint[][] d; }
s[] data;
function fill() public returns (uint) {
while (data.length < 3)
data.push();
while (data[2].d.length < 4)
data[2].d.push();
while (data[2].d[3].length < 5)
data[2].d[3].push();
data[2].d[3][4] = 8;
return data[2].d[3][4];
}
function clear() public { delete data; }
}
)";
compileAndRun(sourceCode);
BOOST_CHECK(storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("fill()"), encodeArgs(8));
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("clear()"), bytes());
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(array_copy_storage_storage_dyn_dyn)
{
char const* sourceCode = R"(
contract c {
uint[] data1;
uint[] data2;
function setData1(uint length, uint index, uint value) public {
data1 = new uint[](length);
if (index < length)
data1[index] = value;
}
function copyStorageStorage() public { data2 = data1; }
function getData2(uint index) public returns (uint len, uint val) {
len = data2.length; if (index < len) val = data2[index];
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("setData1(uint256,uint256,uint256)", 10, 5, 4), bytes());
ABI_CHECK(callContractFunction("copyStorageStorage()"), bytes());
ABI_CHECK(callContractFunction("getData2(uint256)", 5), encodeArgs(10, 4));
ABI_CHECK(callContractFunction("setData1(uint256,uint256,uint256)", 0, 0, 0), bytes());
ABI_CHECK(callContractFunction("copyStorageStorage()"), bytes());
ABI_CHECK(callContractFunction("getData2(uint256)", 0), encodeArgs(0, 0));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(array_copy_target_leftover)
{
// test that leftover elements in the last slot of target are correctly cleared during assignment
char const* sourceCode = R"(
contract c {
byte[10] data1;
bytes2[32] data2;
function test() public returns (uint check, uint res1, uint res2) {
uint i;
for (i = 0; i < data2.length; ++i)
data2[i] = 0xffff;
check = uint(uint16(data2[31])) * 0x10000 | uint(uint16(data2[14]));
for (i = 0; i < data1.length; ++i)
data1[i] = byte(uint8(1 + i));
data2 = data1;
for (i = 0; i < 16; ++i)
res1 |= uint(uint16(data2[i])) * 0x10000**i;
for (i = 0; i < 16; ++i)
res2 |= uint(uint16(data2[16 + i])) * 0x10000**i;
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs(u256("0xffffffff"), asString(fromHex("0000000000000000000000000a00090008000700060005000400030002000100")), asString(fromHex("0000000000000000000000000000000000000000000000000000000000000000"))));
}
BOOST_AUTO_TEST_CASE(array_copy_storage_storage_struct)
{
char const* sourceCode = R"(
contract c {
struct Data { uint x; uint y; }
Data[] data1;
Data[] data2;
function test() public returns (uint x, uint y) {
while (data1.length < 9)
data1.push();
data1[8].x = 4;
data1[8].y = 5;
data2 = data1;
x = data2[8].x;
y = data2[8].y;
while (data1.length > 0)
data1.pop();
data2 = data1;
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs(4, 5));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(array_copy_storage_abi)
{
// NOTE: This does not really test copying from storage to ABI directly,
// because it will always copy to memory first.
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract c {
uint8[] x;
uint16[] y;
uint24[] z;
uint24[][] w;
function test1() public returns (uint8[] memory) {
for (uint i = 0; i < 101; ++i)
x.push(uint8(i));
return x;
}
function test2() public returns (uint16[] memory) {
for (uint i = 0; i < 101; ++i)
y.push(uint16(i));
return y;
}
function test3() public returns (uint24[] memory) {
for (uint i = 0; i < 101; ++i)
z.push(uint24(i));
return z;
}
function test4() public returns (uint24[][] memory) {
w = new uint24[][](5);
for (uint i = 0; i < 5; ++i)
for (uint j = 0; j < 101; ++j)
w[i].push(uint24(j));
return w;
}
}
)";
compileAndRun(sourceCode);
bytes valueSequence;
for (size_t i = 0; i < 101; ++i)
valueSequence += toBigEndian(u256(i));
ABI_CHECK(callContractFunction("test1()"), encodeArgs(0x20, 101) + valueSequence);
ABI_CHECK(callContractFunction("test2()"), encodeArgs(0x20, 101) + valueSequence);
ABI_CHECK(callContractFunction("test3()"), encodeArgs(0x20, 101) + valueSequence);
ABI_CHECK(callContractFunction("test4()"),
encodeArgs(0x20, 5, 0xa0, 0xa0 + 102 * 32 * 1, 0xa0 + 102 * 32 * 2, 0xa0 + 102 * 32 * 3, 0xa0 + 102 * 32 * 4) +
encodeArgs(101) + valueSequence +
encodeArgs(101) + valueSequence +
encodeArgs(101) + valueSequence +
encodeArgs(101) + valueSequence +
encodeArgs(101) + valueSequence
);
}
BOOST_AUTO_TEST_CASE(array_pop_uint16_transition)
{
char const* sourceCode = R"(
contract c {
uint16[] data;
function test() public returns (uint16 x, uint16 y, uint16 z) {
for (uint i = 1; i <= 48; i++)
data.push(uint16(i));
for (uint j = 1; j <= 10; j++)
data.pop();
x = data[data.length - 1];
for (uint k = 1; k <= 10; k++)
data.pop();
y = data[data.length - 1];
for (uint l = 1; l <= 10; l++)
data.pop();
z = data[data.length - 1];
for (uint m = 1; m <= 18; m++)
data.pop();
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs(38, 28, 18));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(array_pop_uint24_transition)
{
char const* sourceCode = R"(
contract c {
uint256 a;
uint256 b;
uint256 c;
uint24[] data;
function test() public returns (uint24 x, uint24 y) {
for (uint i = 1; i <= 30; i++)
data.push(uint24(i));
for (uint j = 1; j <= 10; j++)
data.pop();
x = data[data.length - 1];
for (uint k = 1; k <= 10; k++)
data.pop();
y = data[data.length - 1];
for (uint l = 1; l <= 10; l++)
data.pop();
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs(20, 10));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(array_pop_array_transition)
{
char const* sourceCode = R"(
contract c {
uint256 a;
uint256 b;
uint256 c;
uint16[] inner = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
uint16[][] data;
function test() public returns (uint x, uint y, uint z) {
for (uint i = 1; i <= 48; i++)
data.push(inner);
for (uint j = 1; j <= 10; j++)
data.pop();
x = data[data.length - 1][0];
for (uint k = 1; k <= 10; k++)
data.pop();
y = data[data.length - 1][1];
for (uint l = 1; l <= 10; l++)
data.pop();
z = data[data.length - 1][2];
for (uint m = 1; m <= 18; m++)
data.pop();
delete inner;
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs(1, 2, 3));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(array_pop_storage_empty)
{
char const* sourceCode = R"(
contract c {
uint[] data;
function test() public {
data.push(7);
data.pop();
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs());
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(byte_array_pop_storage_empty)
{
char const* sourceCode = R"(
contract c {
bytes data;
function test() public {
data.push(0x07);
data.push(0x05);
data.push(0x03);
data.pop();
data.pop();
data.pop();
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs());
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(byte_array_pop_long_storage_empty)
{
char const* sourceCode = R"(
contract c {
uint256 a;
uint256 b;
uint256 c;
bytes data;
function test() public returns (bool) {
for (uint8 i = 0; i <= 40; i++)
data.push(byte(i+1));
for (int8 j = 40; j >= 0; j--) {
require(data[uint8(j)] == byte(j+1));
require(data.length == uint8(j+1));
data.pop();
}
return true;
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs(true));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(byte_array_pop_long_storage_empty_garbage_ref)
{
char const* sourceCode = R"(
contract c {
uint256 a;
uint256 b;
bytes data;
function test() public {
for (uint8 i = 0; i <= 40; i++)
data.push(0x03);
for (uint8 j = 0; j <= 40; j++) {
assembly {
mstore(0, "garbage")
}
data.pop();
}
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs());
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(external_array_args)
{
char const* sourceCode = R"(
contract c {
function test(uint[8] calldata a, uint[] calldata b, uint[5] calldata c, uint a_index, uint b_index, uint c_index)
external returns (uint av, uint bv, uint cv) {
av = a[a_index];
bv = b[b_index];
cv = c[c_index];
}
}
)";
compileAndRun(sourceCode);
bytes params = encodeArgs(
1, 2, 3, 4, 5, 6, 7, 8, // a
32 * (8 + 1 + 5 + 1 + 1 + 1), // offset to b
21, 22, 23, 24, 25, // c
0, 1, 2, // (a,b,c)_index
3, // b.length
11, 12, 13 // b
);
ABI_CHECK(callContractFunction("test(uint256[8],uint256[],uint256[5],uint256,uint256,uint256)", params), encodeArgs(1, 12, 23));
}
BOOST_AUTO_TEST_CASE(bytes_index_access)
{
char const* sourceCode = R"(
contract c {
bytes data;
function direct(bytes calldata arg, uint index) external returns (uint) {
return uint(uint8(arg[index]));
}
function storageCopyRead(bytes calldata arg, uint index) external returns (uint) {
data = arg;
return uint(uint8(data[index]));
}
function storageWrite() external returns (uint) {
data = new bytes(35);
data[31] = 0x77;
data[32] = 0x14;
data[31] = 0x01;
data[31] |= 0x08;
data[30] = 0x01;
data[32] = 0x03;
return uint(uint8(data[30])) * 0x100 | uint(uint8(data[31])) * 0x10 | uint(uint8(data[32]));
}
}
)";
compileAndRun(sourceCode);
string array{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33};
ABI_CHECK(callContractFunction("direct(bytes,uint256)", 64, 33, u256(array.length()), array), encodeArgs(33));
ABI_CHECK(callContractFunction("storageCopyRead(bytes,uint256)", 64, 33, u256(array.length()), array), encodeArgs(33));
ABI_CHECK(callContractFunction("storageWrite()"), encodeArgs(0x193));
}
BOOST_AUTO_TEST_CASE(array_copy_calldata_storage)
{
char const* sourceCode = R"(
contract c {
uint[9] m_data;
uint[] m_data_dyn;
uint8[][] m_byte_data;
function store(uint[9] calldata a, uint8[3][] calldata b) external returns (uint8) {
m_data = a;
m_data_dyn = a;
m_byte_data = b;
return b[3][1]; // note that access and declaration are reversed to each other
}
function retrieve() public returns (uint a, uint b, uint c, uint d, uint e, uint f, uint g) {
a = m_data.length;
b = m_data[7];
c = m_data_dyn.length;
d = m_data_dyn[7];
e = m_byte_data.length;
f = m_byte_data[3].length;
g = m_byte_data[3][1];
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("store(uint256[9],uint8[3][])", encodeArgs(21, 22, 23, 24, 25, 26, 27, 28, 29, u256(32 * (9 + 1)), 4, 1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33 )), encodeArgs(32));
ABI_CHECK(callContractFunction("retrieve()"), encodeArgs(9, 28, 9, 28, 4, 3, 32));
}
BOOST_AUTO_TEST_CASE(array_copy_including_mapping)
{
char const* sourceCode = R"(
contract c {
mapping(uint=>uint)[90][] large;
mapping(uint=>uint)[3][] small;
function test() public returns (uint r) {
for (uint i = 0; i < 7; i++) {
large.push();
small.push();
}
large[3][2][0] = 2;
large[1] = large[3];
small[3][2][0] = 2;
small[1] = small[2];
r = ((
small[3][2][0] * 0x100 |
small[1][2][0]) * 0x100 |
large[3][2][0]) * 0x100 |
large[1][2][0];
delete small;
delete large;
}
function clear() public returns (uint, uint) {
for (uint i = 0; i < 7; i++) {
large.push();
small.push();
}
small[3][2][0] = 0;
large[3][2][0] = 0;
while (small.length > 0)
small.pop();
while (large.length > 0)
large.pop();
return (small.length, large.length);
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs(0x02000200));
// storage is not empty because we cannot delete the mappings
BOOST_CHECK(!storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("clear()"), encodeArgs(0, 0));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
//BOOST_AUTO_TEST_CASE(assignment_to_const_array_vars)
//{
// char const* sourceCode = R"(
// contract C {
// uint[3] constant x = [uint(1), 2, 3];
// uint constant y = x[0] + x[1] + x[2];
// function f() public returns (uint) { return y; }
// }
// )";
// compileAndRun(sourceCode);
// ABI_CHECK(callContractFunction("f()"), encodeArgs(1 + 2 + 3));
//}
// Disabled until https://github.com/ethereum/solidity/issues/715 is implemented
//BOOST_AUTO_TEST_CASE(constant_struct)
//{
// char const* sourceCode = R"(
// contract C {
// struct S { uint x; uint[] y; }
// S constant x = S(5, new uint[](4));
// function f() public returns (uint) { return x.x; }
// }
// )";
// compileAndRun(sourceCode);
// ABI_CHECK(callContractFunction("f()"), encodeArgs(5));
//}
BOOST_AUTO_TEST_CASE(packed_storage_structs_delete)
{
char const* sourceCode = R"(
contract C {
struct str { uint8 a; uint16 b; uint8 c; }
uint8 x;
uint16 y;
str data;
function test() public returns (uint) {
x = 1;
y = 2;
data.a = 2;
data.b = 0xabcd;
data.c = 0xfa;
if (x != 1 || y != 2 || data.a != 2 || data.b != 0xabcd || data.c != 0xfa)
return 2;
delete y;
delete data.b;
if (x != 1 || y != 0 || data.a != 2 || data.b != 0 || data.c != 0xfa)
return 3;
delete x;
delete data;
return 1;
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("test()"), encodeArgs(1));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(invalid_enum_logged)
{
char const* sourceCode = R"(
contract C {
enum X { A, B }
event Log(X);
function test_log() public returns (uint) {
X garbled = X.A;
assembly {
garbled := 5
}
emit Log(garbled);
return 1;
}
function test_log_ok() public returns (uint) {
X x = X.A;
emit Log(x);
return 1;
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("test_log_ok()"), encodeArgs(u256(1)));
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_REQUIRE_EQUAL(numLogTopics(0), 1);
BOOST_REQUIRE_EQUAL(logTopic(0, 0), util::keccak256(string("Log(uint8)")));
BOOST_CHECK_EQUAL(h256(logData(0)), h256(u256(0)));
// should throw
ABI_CHECK(callContractFunction("test_log()"), encodeArgs());
}
BOOST_AUTO_TEST_CASE(evm_exceptions_in_constructor_out_of_baund)
{
char const* sourceCode = R"(
contract A {
uint public test = 1;
uint[3] arr;
constructor() public
{
uint index = 5;
test = arr[index];
++test;
}
}
)";
ABI_CHECK(compileAndRunWithoutCheck(sourceCode, 0, "A"), encodeArgs());
BOOST_CHECK(!m_transactionSuccessful);
}
BOOST_AUTO_TEST_CASE(failing_send)
{
char const* sourceCode = R"(
contract Helper {
uint[] data;
fallback () external {
data[9]; // trigger exception
}
}
contract Main {
constructor() public payable {}
function callHelper(address payable _a) public returns (bool r, uint bal) {
r = !_a.send(5);
bal = address(this).balance;
}
}
)";
compileAndRun(sourceCode, 0, "Helper");
u160 const c_helperAddress = m_contractAddress;
compileAndRun(sourceCode, 20, "Main");
BOOST_REQUIRE(callContractFunction("callHelper(address)", c_helperAddress) == encodeArgs(true, 20));
}
BOOST_AUTO_TEST_CASE(return_string)
{
char const* sourceCode = R"(
contract Main {
string public s;
function set(string calldata _s) external {
s = _s;
}
function get1() public returns (string memory r) {
return s;
}
function get2() public returns (string memory r) {
r = s;
}
}
)";
compileAndRun(sourceCode, 0, "Main");
string s("Julia");
bytes args = encodeArgs(u256(0x20), u256(s.length()), s);
BOOST_REQUIRE(callContractFunction("set(string)", asString(args)) == encodeArgs());
ABI_CHECK(callContractFunction("get1()"), args);
ABI_CHECK(callContractFunction("get2()"), args);
ABI_CHECK(callContractFunction("s()"), args);
}
BOOST_AUTO_TEST_CASE(return_multiple_strings_of_various_sizes)
{
char const* sourceCode = R"(
contract Main {
string public s1;
string public s2;
function set(string calldata _s1, uint x, string calldata _s2) external returns (uint) {
s1 = _s1;
s2 = _s2;
return x;
}
function get() public returns (string memory r1, string memory r2) {
r1 = s1;
r2 = s2;
}
}
)";
compileAndRun(sourceCode, 0, "Main");
string s1(
"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
);
string s2(
"ABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZ"
"ABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZ"
"ABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZ"
"ABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZ"
"ABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZ"
);
vector<size_t> lengths{0, 30, 32, 63, 64, 65, 210, 300};
for (auto l1: lengths)
for (auto l2: lengths)
{
bytes dyn1 = encodeArgs(u256(l1), s1.substr(0, l1));
bytes dyn2 = encodeArgs(u256(l2), s2.substr(0, l2));
bytes args = encodeArgs(u256(0x60), u256(l1), u256(0x60 + dyn1.size())) + dyn1 + dyn2;
BOOST_REQUIRE(
callContractFunction("set(string,uint256,string)", asString(args)) ==
encodeArgs(u256(l1))
);
bytes result = encodeArgs(u256(0x40), u256(0x40 + dyn1.size())) + dyn1 + dyn2;
ABI_CHECK(callContractFunction("get()"), result);
ABI_CHECK(callContractFunction("s1()"), encodeArgs(0x20) + dyn1);
ABI_CHECK(callContractFunction("s2()"), encodeArgs(0x20) + dyn2);
}
}
BOOST_AUTO_TEST_CASE(accessor_involving_strings)
{
char const* sourceCode = R"(
contract Main {
struct stringData { string a; uint b; string c; }
mapping(uint => stringData[]) public data;
function set(uint x, uint y, string calldata a, uint b, string calldata c) external returns (bool) {
while (data[x].length < y + 1)
data[x].push();
data[x][y].a = a;
data[x][y].b = b;
data[x][y].c = c;
return true;
}
}
)";
compileAndRun(sourceCode, 0, "Main");
string s1("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz");
string s2("ABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZ");
bytes s1Data = encodeArgs(u256(s1.length()), s1);
bytes s2Data = encodeArgs(u256(s2.length()), s2);
u256 b = 765;
u256 x = 7;
u256 y = 123;
bytes args = encodeArgs(x, y, u256(0xa0), b, u256(0xa0 + s1Data.size()), s1Data, s2Data);
bytes result = encodeArgs(u256(0x60), b, u256(0x60 + s1Data.size()), s1Data, s2Data);
BOOST_REQUIRE(callContractFunction("set(uint256,uint256,string,uint256,string)", asString(args)) == encodeArgs(true));
BOOST_REQUIRE(callContractFunction("data(uint256,uint256)", x, y) == result);
}
BOOST_AUTO_TEST_CASE(bytes_in_function_calls)
{
char const* sourceCode = R"(
contract Main {
string public s1;
string public s2;
function set(string memory _s1, uint x, string memory _s2) public returns (uint) {
s1 = _s1;
s2 = _s2;
return x;
}
function setIndirectFromMemory(string memory _s1, uint x, string memory _s2) public returns (uint) {
return this.set(_s1, x, _s2);
}
function setIndirectFromCalldata(string calldata _s1, uint x, string calldata _s2) external returns (uint) {
return this.set(_s1, x, _s2);
}
}
)";
compileAndRun(sourceCode, 0, "Main");
string s1("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz");
string s2("ABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZABCDEFGHIJKLMNOPQRSTUVXYZ");
vector<size_t> lengths{0, 31, 64, 65};
for (auto l1: lengths)
for (auto l2: lengths)
{
bytes dyn1 = encodeArgs(u256(l1), s1.substr(0, l1));
bytes dyn2 = encodeArgs(u256(l2), s2.substr(0, l2));
bytes args1 = encodeArgs(u256(0x60), u256(l1), u256(0x60 + dyn1.size())) + dyn1 + dyn2;
BOOST_REQUIRE(
callContractFunction("setIndirectFromMemory(string,uint256,string)", asString(args1)) ==
encodeArgs(u256(l1))
);
ABI_CHECK(callContractFunction("s1()"), encodeArgs(0x20) + dyn1);
ABI_CHECK(callContractFunction("s2()"), encodeArgs(0x20) + dyn2);
// swapped
bytes args2 = encodeArgs(u256(0x60), u256(l1), u256(0x60 + dyn2.size())) + dyn2 + dyn1;
BOOST_REQUIRE(
callContractFunction("setIndirectFromCalldata(string,uint256,string)", asString(args2)) ==
encodeArgs(u256(l1))
);
ABI_CHECK(callContractFunction("s1()"), encodeArgs(0x20) + dyn2);
ABI_CHECK(callContractFunction("s2()"), encodeArgs(0x20) + dyn1);
}
}
BOOST_AUTO_TEST_CASE(return_bytes_internal)
{
char const* sourceCode = R"(
contract Main {
bytes s1;
function doSet(bytes memory _s1) public returns (bytes memory _r1) {
s1 = _s1;
_r1 = s1;
}
function set(bytes calldata _s1) external returns (uint _r, bytes memory _r1) {
_r1 = doSet(_s1);
_r = _r1.length;
}
}
)";
compileAndRun(sourceCode, 0, "Main");
string s1("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz");
vector<size_t> lengths{0, 31, 64, 65};
for (auto l1: lengths)
{
bytes dyn1 = encodeArgs(u256(l1), s1.substr(0, l1));
bytes args1 = encodeArgs(u256(0x20)) + dyn1;
BOOST_REQUIRE(
callContractFunction("set(bytes)", asString(args1)) ==
encodeArgs(u256(l1), u256(0x40)) + dyn1
);
}
}
BOOST_AUTO_TEST_CASE(bytes_index_access_memory)
{
char const* sourceCode = R"(
contract Main {
function f(bytes memory _s1, uint i1, uint i2, uint i3) public returns (byte c1, byte c2, byte c3) {
c1 = _s1[i1];
c2 = intern(_s1, i2);
c3 = internIndirect(_s1)[i3];
}
function intern(bytes memory _s1, uint i) public returns (byte c) {
return _s1[i];
}
function internIndirect(bytes memory _s1) public returns (bytes memory) {
return _s1;
}
}
)";
compileAndRun(sourceCode, 0, "Main");
string s1("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz");
bytes dyn1 = encodeArgs(u256(s1.length()), s1);
bytes args1 = encodeArgs(u256(0x80), u256(3), u256(4), u256(5)) + dyn1;
BOOST_REQUIRE(
callContractFunction("f(bytes,uint256,uint256,uint256)", asString(args1)) ==
encodeArgs(string{s1[3]}, string{s1[4]}, string{s1[5]})
);
}
BOOST_AUTO_TEST_CASE(bytes_in_constructors_unpacker)
{
char const* sourceCode = R"(
contract Test {
uint public m_x;
bytes public m_s;
constructor(uint x, bytes memory s) public {
m_x = x;
m_s = s;
}
}
)";
string s1("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz");
bytes dyn1 = encodeArgs(u256(s1.length()), s1);
u256 x = 7;
bytes args1 = encodeArgs(x, u256(0x40)) + dyn1;
compileAndRun(sourceCode, 0, "Test", args1);
BOOST_REQUIRE(callContractFunction("m_x()") == encodeArgs(x));
BOOST_REQUIRE(callContractFunction("m_s()") == encodeArgs(u256(0x20)) + dyn1);
}
BOOST_AUTO_TEST_CASE(bytes_in_constructors_packer)
{
char const* sourceCode = R"(
contract Base {
uint public m_x;
bytes m_s;
constructor(uint x, bytes memory s) public {
m_x = x;
m_s = s;
}
function part(uint i) public returns (byte) {
return m_s[i];
}
}
contract Main is Base {
constructor(bytes memory s, uint x) Base(x, f(s)) public {}
function f(bytes memory s) public returns (bytes memory) {
return s;
}
}
contract Creator {
function f(uint x, bytes memory s) public returns (uint r, byte ch) {
Main c = new Main(s, x);
r = c.m_x();
ch = c.part(x);
}
}
)";
compileAndRun(sourceCode, 0, "Creator");
string s1("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz");
bytes dyn1 = encodeArgs(u256(s1.length()), s1);
u256 x = 7;
bytes args1 = encodeArgs(x, u256(0x40)) + dyn1;
BOOST_REQUIRE(
callContractFunction("f(uint256,bytes)", asString(args1)) ==
encodeArgs(x, string{s1[unsigned(x)]})
);
}
BOOST_AUTO_TEST_CASE(arrays_in_constructors)
{
char const* sourceCode = R"(
contract Base {
uint public m_x;
address[] m_s;
constructor(uint x, address[] memory s) public {
m_x = x;
m_s = s;
}
function part(uint i) public returns (address) {
return m_s[i];
}
}
contract Main is Base {
constructor(address[] memory s, uint x) Base(x, f(s)) public {}
function f(address[] memory s) public returns (address[] memory) {
return s;
}
}
contract Creator {
function f(uint x, address[] memory s) public returns (uint r, address ch) {
Main c = new Main(s, x);
r = c.m_x();
ch = c.part(x);
}
}
)";
compileAndRun(sourceCode, 0, "Creator");
vector<u256> s1{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
bytes dyn1 = encodeArgs(u256(s1.size()), s1);
u256 x = 7;
bytes args1 = encodeArgs(x, u256(0x40)) + dyn1;
BOOST_REQUIRE(
callContractFunction("f(uint256,address[])", asString(args1)) ==
encodeArgs(x, s1[unsigned(x)])
);
}
BOOST_AUTO_TEST_CASE(arrays_from_and_to_storage)
{
char const* sourceCode = R"(
contract Test {
uint24[] public data;
function set(uint24[] memory _data) public returns (uint) {
data = _data;
return data.length;
}
function get() public returns (uint24[] memory) {
return data;
}
}
)";
compileAndRun(sourceCode, 0, "Test");
vector<u256> data{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18};
BOOST_REQUIRE(
callContractFunction("set(uint24[])", u256(0x20), u256(data.size()), data) ==
encodeArgs(u256(data.size()))
);
ABI_CHECK(callContractFunction("data(uint256)", u256(7)), encodeArgs(u256(8)));
ABI_CHECK(callContractFunction("data(uint256)", u256(15)), encodeArgs(u256(16)));
ABI_CHECK(callContractFunction("data(uint256)", u256(18)), encodeArgs());
ABI_CHECK(callContractFunction("get()"), encodeArgs(u256(0x20), u256(data.size()), data));
}
BOOST_AUTO_TEST_CASE(memory_types_initialisation)
{
char const* sourceCode = R"(
contract Test {
mapping(uint=>uint) data;
function stat() public returns (uint[5] memory)
{
data[2] = 3; // make sure to use some memory
}
function dyn() public returns (uint[] memory) { stat(); }
function nested() public returns (uint[3][] memory) { stat(); }
function nestedStat() public returns (uint[3][7] memory) { stat(); }
}
)";
compileAndRun(sourceCode, 0, "Test");
ABI_CHECK(callContractFunction("stat()"), encodeArgs(vector<u256>(5)));
ABI_CHECK(callContractFunction("dyn()"), encodeArgs(u256(0x20), u256(0)));
ABI_CHECK(callContractFunction("nested()"), encodeArgs(u256(0x20), u256(0)));
ABI_CHECK(callContractFunction("nestedStat()"), encodeArgs(vector<u256>(3 * 7)));
}
BOOST_AUTO_TEST_CASE(memory_arrays_delete)
{
char const* sourceCode = R"(
contract Test {
function del() public returns (uint24[3][4] memory) {
uint24[3][4] memory x;
for (uint24 i = 0; i < x.length; i ++)
for (uint24 j = 0; j < x[i].length; j ++)
x[i][j] = i * 0x10 + j;
delete x[1];
delete x[3][2];
return x;
}
}
)";
compileAndRun(sourceCode, 0, "Test");
vector<u256> data(3 * 4);
for (unsigned i = 0; i < 4; i++)
for (unsigned j = 0; j < 3; j++)
{
u256 v = 0;
if (!(i == 1 || (i == 3 && j == 2)))
v = i * 0x10 + j;
data[i * 3 + j] = v;
}
ABI_CHECK(callContractFunction("del()"), encodeArgs(data));
}
BOOST_AUTO_TEST_CASE(calldata_struct_short)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S { uint256 a; uint256 b; }
function f(S calldata) external pure returns (uint256) {
return msg.data.length;
}
}
)";
compileAndRun(sourceCode, 0, "C");
// double check that the valid case goes through
ABI_CHECK(callContractFunction("f((uint256,uint256))", u256(1), u256(2)), encodeArgs(0x44));
ABI_CHECK(callContractFunctionNoEncoding("f((uint256,uint256))", bytes(63,0)), encodeArgs());
ABI_CHECK(callContractFunctionNoEncoding("f((uint256,uint256))", bytes(33,0)), encodeArgs());
ABI_CHECK(callContractFunctionNoEncoding("f((uint256,uint256))", bytes(32,0)), encodeArgs());
ABI_CHECK(callContractFunctionNoEncoding("f((uint256,uint256))", bytes(31,0)), encodeArgs());
ABI_CHECK(callContractFunctionNoEncoding("f((uint256,uint256))", bytes()), encodeArgs());
}
BOOST_AUTO_TEST_CASE(calldata_struct_function_type)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S { function (uint) external returns (uint) fn; }
function f(S calldata s) external returns (uint256) {
return s.fn(42);
}
function g(uint256 a) external returns (uint256) {
return a * 3;
}
function h(uint256 a) external returns (uint256) {
return 23;
}
}
)";
compileAndRun(sourceCode, 0, "C");
bytes fn_C_g = m_contractAddress.asBytes() + FixedHash<4>(util::keccak256("g(uint256)")).asBytes() + bytes(8,0);
bytes fn_C_h = m_contractAddress.asBytes() + FixedHash<4>(util::keccak256("h(uint256)")).asBytes() + bytes(8,0);
ABI_CHECK(callContractFunctionNoEncoding("f((function))", fn_C_g), encodeArgs(42 * 3));
ABI_CHECK(callContractFunctionNoEncoding("f((function))", fn_C_h), encodeArgs(23));
}
BOOST_AUTO_TEST_CASE(calldata_bytes_array_bounds)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
function f(bytes[] calldata a, uint256 i) external returns (uint) {
return uint8(a[0][i]);
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(
callContractFunction("f(bytes[],uint256)", 0x40, 0, 1, 0x20, 2, bytes{'a', 'b'} + bytes(30, 0)),
encodeArgs('a')
);
ABI_CHECK(
callContractFunction("f(bytes[],uint256)", 0x40, 1, 1, 0x20, 2, bytes{'a', 'b'} + bytes(30, 0)),
encodeArgs('b')
);
ABI_CHECK(
callContractFunction("f(bytes[],uint256)", 0x40, 2, 1, 0x20, 2, bytes{'a', 'b'} + bytes(30, 0)),
encodeArgs()
);
}
BOOST_AUTO_TEST_CASE(calldata_array_two_dimensional)
{
vector<vector<u256>> data {
{ 0x0A01, 0x0A02, 0x0A03 },
{ 0x0B01, 0x0B02, 0x0B03, 0x0B04 }
};
for (bool outerDynamicallySized: { true, false })
{
string arrayType = outerDynamicallySized ? "uint256[][]" : "uint256[][2]";
string sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
function test()" + arrayType + R"( calldata a) external returns (uint256) {
return a.length;
}
function test()" + arrayType + R"( calldata a, uint256 i) external returns (uint256) {
return a[i].length;
}
function test()" + arrayType + R"( calldata a, uint256 i, uint256 j) external returns (uint256) {
return a[i][j];
}
function reenc()" + arrayType + R"( calldata a, uint256 i, uint256 j) external returns (uint256) {
return this.test(a, i, j);
}
}
)";
compileAndRun(sourceCode, 0, "C");
bytes encoding = encodeArray(
outerDynamicallySized,
true,
data | boost::adaptors::transformed([&](vector<u256> const& _values) {
return encodeArray(true, false, _values);
})
);
ABI_CHECK(callContractFunction("test(" + arrayType + ")", 0x20, encoding), encodeArgs(data.size()));
for (size_t i = 0; i < data.size(); i++)
{
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256)", 0x40, i, encoding), encodeArgs(data[i].size()));
for (size_t j = 0; j < data[i].size(); j++)
{
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256,uint256)", 0x60, i, j, encoding), encodeArgs(data[i][j]));
ABI_CHECK(callContractFunction("reenc(" + arrayType + ",uint256,uint256)", 0x60, i, j, encoding), encodeArgs(data[i][j]));
}
// out of bounds access
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256,uint256)", 0x60, i, data[i].size(), encoding), encodeArgs());
}
// out of bounds access
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256)", 0x40, data.size(), encoding), encodeArgs());
}
}
BOOST_AUTO_TEST_CASE(calldata_array_dynamic_three_dimensional)
{
vector<vector<vector<u256>>> data {
{
{ 0x010A01, 0x010A02, 0x010A03 },
{ 0x010B01, 0x010B02, 0x010B03 }
},
{
{ 0x020A01, 0x020A02, 0x020A03 },
{ 0x020B01, 0x020B02, 0x020B03 }
}
};
for (bool outerDynamicallySized: { true, false })
for (bool middleDynamicallySized: { true, false })
for (bool innerDynamicallySized: { true, false })
{
// only test dynamically encoded arrays
if (!outerDynamicallySized && !middleDynamicallySized && !innerDynamicallySized)
continue;
string arrayType = "uint256";
arrayType += innerDynamicallySized ? "[]" : "[3]";
arrayType += middleDynamicallySized ? "[]" : "[2]";
arrayType += outerDynamicallySized ? "[]" : "[2]";
string sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
function test()" + arrayType + R"( calldata a) external returns (uint256) {
return a.length;
}
function test()" + arrayType + R"( calldata a, uint256 i) external returns (uint256) {
return a[i].length;
}
function test()" + arrayType + R"( calldata a, uint256 i, uint256 j) external returns (uint256) {
return a[i][j].length;
}
function test()" + arrayType + R"( calldata a, uint256 i, uint256 j, uint256 k) external returns (uint256) {
return a[i][j][k];
}
function reenc()" + arrayType + R"( calldata a, uint256 i, uint256 j, uint256 k) external returns (uint256) {
return this.test(a, i, j, k);
}
}
)";
compileAndRun(sourceCode, 0, "C");
bytes encoding = encodeArray(
outerDynamicallySized,
middleDynamicallySized || innerDynamicallySized,
data | boost::adaptors::transformed([&](auto const& _middleData) {
return encodeArray(
middleDynamicallySized,
innerDynamicallySized,
_middleData | boost::adaptors::transformed([&](auto const& _values) {
return encodeArray(innerDynamicallySized, false, _values);
})
);
})
);
ABI_CHECK(callContractFunction("test(" + arrayType + ")", 0x20, encoding), encodeArgs(data.size()));
for (size_t i = 0; i < data.size(); i++)
{
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256)", 0x40, i, encoding), encodeArgs(data[i].size()));
for (size_t j = 0; j < data[i].size(); j++)
{
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256,uint256)", 0x60, i, j, encoding), encodeArgs(data[i][j].size()));
for (size_t k = 0; k < data[i][j].size(); k++)
{
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256,uint256,uint256)", 0x80, i, j, k, encoding), encodeArgs(data[i][j][k]));
ABI_CHECK(callContractFunction("reenc(" + arrayType + ",uint256,uint256,uint256)", 0x80, i, j, k, encoding), encodeArgs(data[i][j][k]));
}
// out of bounds access
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256,uint256,uint256)", 0x80, i, j, data[i][j].size(), encoding), encodeArgs());
}
// out of bounds access
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256,uint256)", 0x60, i, data[i].size(), encoding), encodeArgs());
}
// out of bounds access
ABI_CHECK(callContractFunction("test(" + arrayType + ",uint256)", 0x40, data.size(), encoding), encodeArgs());
}
}
BOOST_AUTO_TEST_CASE(literal_strings)
{
char const* sourceCode = R"(
contract Test {
string public long;
string public medium;
string public short;
string public empty;
function f() public returns (string memory) {
long = "0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890";
medium = "01234567890123456789012345678901234567890123456789012345678901234567890123456789";
short = "123";
empty = "";
return "Hello, World!";
}
}
)";
compileAndRun(sourceCode, 0, "Test");
string longStr = "0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890";
string medium = "01234567890123456789012345678901234567890123456789012345678901234567890123456789";
string shortStr = "123";
string hello = "Hello, World!";
ABI_CHECK(callContractFunction("f()"), encodeDyn(hello));
ABI_CHECK(callContractFunction("long()"), encodeDyn(longStr));
ABI_CHECK(callContractFunction("medium()"), encodeDyn(medium));
ABI_CHECK(callContractFunction("short()"), encodeDyn(shortStr));
ABI_CHECK(callContractFunction("empty()"), encodeDyn(string()));
}
BOOST_AUTO_TEST_CASE(initialise_string_constant)
{
char const* sourceCode = R"(
contract Test {
string public short = "abcdef";
string public long = "0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890";
}
)";
compileAndRun(sourceCode, 0, "Test");
string longStr = "0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890";
string shortStr = "abcdef";
ABI_CHECK(callContractFunction("long()"), encodeDyn(longStr));
ABI_CHECK(callContractFunction("short()"), encodeDyn(shortStr));
}
BOOST_AUTO_TEST_CASE(string_as_mapping_key)
{
char const* sourceCode = R"(
contract Test {
mapping(string => uint) data;
function set(string memory _s, uint _v) public { data[_s] = _v; }
function get(string memory _s) public returns (uint) { return data[_s]; }
}
)";
vector<string> strings{
"Hello, World!",
"Hello, World!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1111",
"",
"1"
};
ALSO_VIA_YUL(
compileAndRun(sourceCode, 0, "Test");
for (unsigned i = 0; i < strings.size(); i++)
ABI_CHECK(callContractFunction(
"set(string,uint256)",
u256(0x40),
u256(7 + i),
u256(strings[i].size()),
strings[i]
), encodeArgs());
for (unsigned i = 0; i < strings.size(); i++)
ABI_CHECK(callContractFunction(
"get(string)",
u256(0x20),
u256(strings[i].size()),
strings[i]
), encodeArgs(u256(7 + i)));
)
}
BOOST_AUTO_TEST_CASE(string_as_public_mapping_key)
{
char const* sourceCode = R"(
contract Test {
mapping(string => uint) public data;
function set(string memory _s, uint _v) public { data[_s] = _v; }
}
)";
compileAndRun(sourceCode, 0, "Test");
vector<string> strings{
"Hello, World!",
"Hello, World!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1111",
"",
"1"
};
for (unsigned i = 0; i < strings.size(); i++)
ABI_CHECK(callContractFunction(
"set(string,uint256)",
u256(0x40),
u256(7 + i),
u256(strings[i].size()),
strings[i]
), encodeArgs());
for (unsigned i = 0; i < strings.size(); i++)
ABI_CHECK(callContractFunction(
"data(string)",
u256(0x20),
u256(strings[i].size()),
strings[i]
), encodeArgs(u256(7 + i)));
}
BOOST_AUTO_TEST_CASE(nested_string_as_public_mapping_key)
{
char const* sourceCode = R"(
contract Test {
mapping(string => mapping(string => uint)) public data;
function set(string memory _s, string memory _s2, uint _v) public {
data[_s][_s2] = _v; }
}
)";
compileAndRun(sourceCode, 0, "Test");
vector<string> strings{
"Hello, World!",
"Hello, World!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1111",
"",
"1",
"last one"
};
for (unsigned i = 0; i + 1 < strings.size(); i++)
ABI_CHECK(callContractFunction(
"set(string,string,uint256)",
u256(0x60),
u256(roundTo32(0x80 + strings[i].size())),
u256(7 + i),
u256(strings[i].size()),
strings[i],
u256(strings[i+1].size()),
strings[i+1]
), encodeArgs());
for (unsigned i = 0; i + 1 < strings.size(); i++)
ABI_CHECK(callContractFunction(
"data(string,string)",
u256(0x40),
u256(roundTo32(0x60 + strings[i].size())),
u256(strings[i].size()),
strings[i],
u256(strings[i+1].size()),
strings[i+1]
), encodeArgs(u256(7 + i)));
}
BOOST_AUTO_TEST_CASE(nested_mixed_string_as_public_mapping_key)
{
char const* sourceCode = R"(
contract Test {
mapping(string =>
mapping(int =>
mapping(address =>
mapping(bytes => int)))) public data;
function set(
string memory _s1,
int _s2,
address _s3,
bytes memory _s4,
int _value
) public
{
data[_s1][_s2][_s3][_s4] = _value;
}
}
)";
compileAndRun(sourceCode, 0, "Test");
struct Index
{
string s1;
int s2;
int s3;
string s4;
};
vector<Index> data{
{ "aabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcbc", 4, 23, "efg" },
{ "tiaron", 456, 63245, "908apzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapz" },
{ "", 2345, 12934, "665i65i65i65i65i65i65i65i65i65i65i65i65i65i65i65i65i65i5iart" },
{ "¡¿…", 9781, 8148, "" },
{ "ρν♀♀ω₂₃♀", 929608, 303030, "" }
};
for (size_t i = 0; i + 1 < data.size(); i++)
ABI_CHECK(callContractFunction(
"set(string,int256,address,bytes,int256)",
u256(0xA0),
u256(data[i].s2),
u256(data[i].s3),
u256(roundTo32(0xC0 + data[i].s1.size())),
u256(i - 3),
u256(data[i].s1.size()),
data[i].s1,
u256(data[i].s4.size()),
data[i].s4
), encodeArgs());
for (size_t i = 0; i + 1 < data.size(); i++)
ABI_CHECK(callContractFunction(
"data(string,int256,address,bytes)",
u256(0x80),
u256(data[i].s2),
u256(data[i].s3),
u256(roundTo32(0xA0 + data[i].s1.size())),
u256(data[i].s1.size()),
data[i].s1,
u256(data[i].s4.size()),
data[i].s4
), encodeArgs(u256(i - 3)));
}
BOOST_AUTO_TEST_CASE(constant_string_literal)
{
char const* sourceCode = R"(
contract Test {
bytes32 constant public b = "abcdefghijklmnopq";
string constant public x = "abefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabca";
constructor() public {
string memory xx = x;
bytes32 bb = b;
}
function getB() public returns (bytes32) { return b; }
function getX() public returns (string memory) { return x; }
function getX2() public returns (string memory r) { r = x; }
function unused() public returns (uint) {
"unusedunusedunusedunusedunusedunusedunusedunusedunusedunusedunusedunused";
return 2;
}
}
)";
compileAndRun(sourceCode);
string longStr = "abefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabca";
string shortStr = "abcdefghijklmnopq";
ABI_CHECK(callContractFunction("b()"), encodeArgs(shortStr));
ABI_CHECK(callContractFunction("x()"), encodeDyn(longStr));
ABI_CHECK(callContractFunction("getB()"), encodeArgs(shortStr));
ABI_CHECK(callContractFunction("getX()"), encodeDyn(longStr));
ABI_CHECK(callContractFunction("getX2()"), encodeDyn(longStr));
ABI_CHECK(callContractFunction("unused()"), encodeArgs(2));
}
BOOST_AUTO_TEST_CASE(library_call)
{
char const* sourceCode = R"(
library Lib { function m(uint x, uint y) public returns (uint) { return x * y; } }
contract Test {
function f(uint x) public returns (uint) {
return Lib.m(x, 9);
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f(uint256)", u256(33)), encodeArgs(u256(33) * 9));
}
BOOST_AUTO_TEST_CASE(library_function_external)
{
char const* sourceCode = R"(
library Lib { function m(bytes calldata b) external pure returns (byte) { return b[2]; } }
contract Test {
function f(bytes memory b) public pure returns (byte) {
return Lib.m(b);
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f(bytes)", u256(0x20), u256(5), "abcde"), encodeArgs("c"));
}
BOOST_AUTO_TEST_CASE(library_stray_values)
{
char const* sourceCode = R"(
library Lib { function m(uint x, uint y) public returns (uint) { return x * y; } }
contract Test {
function f(uint x) public returns (uint) {
Lib;
Lib.m;
return x + 9;
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f(uint256)", u256(33)), encodeArgs(u256(42)));
}
BOOST_AUTO_TEST_CASE(internal_types_in_library)
{
char const* sourceCode = R"(
library Lib {
function find(uint16[] storage _haystack, uint16 _needle) public view returns (uint)
{
for (uint i = 0; i < _haystack.length; ++i)
if (_haystack[i] == _needle)
return i;
return uint(-1);
}
}
contract Test {
mapping(string => uint16[]) data;
function f() public returns (uint a, uint b)
{
while (data["abc"].length < 20)
data["abc"].push();
data["abc"][4] = 9;
data["abc"][17] = 3;
a = Lib.find(data["abc"], 9);
b = Lib.find(data["abc"], 3);
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(4), u256(17)));
}
BOOST_AUTO_TEST_CASE(mapping_arguments_in_library)
{
char const* sourceCode = R"(
library Lib {
function set(mapping(uint => uint) storage m, uint key, uint value) internal
{
m[key] = value;
}
function get(mapping(uint => uint) storage m, uint key) internal view returns (uint)
{
return m[key];
}
}
contract Test {
mapping(uint => uint) m;
function set(uint256 key, uint256 value) public returns (uint)
{
uint oldValue = Lib.get(m, key);
Lib.set(m, key, value);
return oldValue;
}
function get(uint256 key) public view returns (uint) {
return Lib.get(m, key);
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("set(uint256,uint256)", u256(1), u256(42)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("set(uint256,uint256)", u256(2), u256(84)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("set(uint256,uint256)", u256(21), u256(7)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get(uint256)", u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get(uint256)", u256(1)), encodeArgs(u256(42)));
ABI_CHECK(callContractFunction("get(uint256)", u256(2)), encodeArgs(u256(84)));
ABI_CHECK(callContractFunction("get(uint256)", u256(21)), encodeArgs(u256(7)));
ABI_CHECK(callContractFunction("set(uint256,uint256)", u256(1), u256(21)), encodeArgs(u256(42)));
ABI_CHECK(callContractFunction("set(uint256,uint256)", u256(2), u256(42)), encodeArgs(u256(84)));
ABI_CHECK(callContractFunction("set(uint256,uint256)", u256(21), u256(14)), encodeArgs(u256(7)));
ABI_CHECK(callContractFunction("get(uint256)", u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get(uint256)", u256(1)), encodeArgs(u256(21)));
ABI_CHECK(callContractFunction("get(uint256)", u256(2)), encodeArgs(u256(42)));
ABI_CHECK(callContractFunction("get(uint256)", u256(21)), encodeArgs(u256(14)));
}
BOOST_AUTO_TEST_CASE(mapping_returns_in_library)
{
char const* sourceCode = R"(
library Lib {
function choose_mapping(mapping(uint => uint) storage a, mapping(uint => uint) storage b, bool c) internal pure returns(mapping(uint=>uint) storage)
{
return c ? a : b;
}
}
contract Test {
mapping(uint => uint) a;
mapping(uint => uint) b;
function set(bool choice, uint256 key, uint256 value) public returns (uint)
{
mapping(uint => uint) storage m = Lib.choose_mapping(a, b, choice);
uint oldValue = m[key];
m[key] = value;
return oldValue;
}
function get(bool choice, uint256 key) public view returns (uint) {
return Lib.choose_mapping(a, b, choice)[key];
}
function get_a(uint256 key) public view returns (uint) {
return a[key];
}
function get_b(uint256 key) public view returns (uint) {
return b[key];
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", true, u256(1), u256(42)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", true, u256(2), u256(84)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", true, u256(21), u256(7)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", false, u256(1), u256(10)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", false, u256(2), u256(11)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", false, u256(21), u256(12)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get(bool,uint256)", true, u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get(bool,uint256)", true, u256(1)), encodeArgs(u256(42)));
ABI_CHECK(callContractFunction("get(bool,uint256)", true, u256(2)), encodeArgs(u256(84)));
ABI_CHECK(callContractFunction("get(bool,uint256)", true, u256(21)), encodeArgs(u256(7)));
ABI_CHECK(callContractFunction("get_a(uint256)", u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get_a(uint256)", u256(1)), encodeArgs(u256(42)));
ABI_CHECK(callContractFunction("get_a(uint256)", u256(2)), encodeArgs(u256(84)));
ABI_CHECK(callContractFunction("get_a(uint256)", u256(21)), encodeArgs(u256(7)));
ABI_CHECK(callContractFunction("get(bool,uint256)", false, u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get(bool,uint256)", false, u256(1)), encodeArgs(u256(10)));
ABI_CHECK(callContractFunction("get(bool,uint256)", false, u256(2)), encodeArgs(u256(11)));
ABI_CHECK(callContractFunction("get(bool,uint256)", false, u256(21)), encodeArgs(u256(12)));
ABI_CHECK(callContractFunction("get_b(uint256)", u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get_b(uint256)", u256(1)), encodeArgs(u256(10)));
ABI_CHECK(callContractFunction("get_b(uint256)", u256(2)), encodeArgs(u256(11)));
ABI_CHECK(callContractFunction("get_b(uint256)", u256(21)), encodeArgs(u256(12)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", true, u256(1), u256(21)), encodeArgs(u256(42)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", true, u256(2), u256(42)), encodeArgs(u256(84)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", true, u256(21), u256(14)), encodeArgs(u256(7)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", false, u256(1), u256(30)), encodeArgs(u256(10)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", false, u256(2), u256(31)), encodeArgs(u256(11)));
ABI_CHECK(callContractFunction("set(bool,uint256,uint256)", false, u256(21), u256(32)), encodeArgs(u256(12)));
ABI_CHECK(callContractFunction("get_a(uint256)", u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get_a(uint256)", u256(1)), encodeArgs(u256(21)));
ABI_CHECK(callContractFunction("get_a(uint256)", u256(2)), encodeArgs(u256(42)));
ABI_CHECK(callContractFunction("get_a(uint256)", u256(21)), encodeArgs(u256(14)));
ABI_CHECK(callContractFunction("get(bool,uint256)", true, u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get(bool,uint256)", true, u256(1)), encodeArgs(u256(21)));
ABI_CHECK(callContractFunction("get(bool,uint256)", true, u256(2)), encodeArgs(u256(42)));
ABI_CHECK(callContractFunction("get(bool,uint256)", true, u256(21)), encodeArgs(u256(14)));
ABI_CHECK(callContractFunction("get_b(uint256)", u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get_b(uint256)", u256(1)), encodeArgs(u256(30)));
ABI_CHECK(callContractFunction("get_b(uint256)", u256(2)), encodeArgs(u256(31)));
ABI_CHECK(callContractFunction("get_b(uint256)", u256(21)), encodeArgs(u256(32)));
ABI_CHECK(callContractFunction("get(bool,uint256)", false, u256(0)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("get(bool,uint256)", false, u256(1)), encodeArgs(u256(30)));
ABI_CHECK(callContractFunction("get(bool,uint256)", false, u256(2)), encodeArgs(u256(31)));
ABI_CHECK(callContractFunction("get(bool,uint256)", false, u256(21)), encodeArgs(u256(32)));
}
BOOST_AUTO_TEST_CASE(mapping_returns_in_library_named)
{
char const* sourceCode = R"(
library Lib {
function f(mapping(uint => uint) storage a, mapping(uint => uint) storage b) internal returns(mapping(uint=>uint) storage r)
{
r = a;
r[1] = 42;
r = b;
r[1] = 21;
}
}
contract Test {
mapping(uint => uint) a;
mapping(uint => uint) b;
function f() public returns (uint, uint, uint, uint, uint, uint)
{
Lib.f(a, b)[2] = 84;
return (a[0], a[1], a[2], b[0], b[1], b[2]);
}
function g() public returns (uint, uint, uint, uint, uint, uint)
{
mapping(uint => uint) storage m = Lib.f(a, b);
m[2] = 17;
return (a[0], a[1], a[2], b[0], b[1], b[2]);
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(0), u256(42), u256(0), u256(0), u256(21), u256(84)));
ABI_CHECK(callContractFunction("g()"), encodeArgs(u256(0), u256(42), u256(0), u256(0), u256(21), u256(17)));
}
BOOST_AUTO_TEST_CASE(using_library_mappings_public)
{
char const* sourceCode = R"(
library Lib {
function set(mapping(uint => uint) storage m, uint key, uint value) public
{
m[key] = value;
}
}
contract Test {
mapping(uint => uint) m1;
mapping(uint => uint) m2;
function f() public returns (uint, uint, uint, uint, uint, uint)
{
Lib.set(m1, 0, 1);
Lib.set(m1, 2, 42);
Lib.set(m2, 0, 23);
Lib.set(m2, 2, 99);
return (m1[0], m1[1], m1[2], m2[0], m2[1], m2[2]);
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(1), u256(0), u256(42), u256(23), u256(0), u256(99)));
}
BOOST_AUTO_TEST_CASE(using_library_mappings_external)
{
char const* libSourceCode = R"(
library Lib {
function set(mapping(uint => uint) storage m, uint key, uint value) external
{
m[key] = value * 2;
}
}
)";
char const* sourceCode = R"(
library Lib {
function set(mapping(uint => uint) storage m, uint key, uint value) external {}
}
contract Test {
mapping(uint => uint) m1;
mapping(uint => uint) m2;
function f() public returns (uint, uint, uint, uint, uint, uint)
{
Lib.set(m1, 0, 1);
Lib.set(m1, 2, 42);
Lib.set(m2, 0, 23);
Lib.set(m2, 2, 99);
return (m1[0], m1[1], m1[2], m2[0], m2[1], m2[2]);
}
}
)";
for (auto v2: {false, true})
{
string prefix = v2 ? "pragma experimental ABIEncoderV2;\n" : "";
compileAndRun(prefix + libSourceCode, 0, "Lib");
compileAndRun(prefix + sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(2), u256(0), u256(84), u256(46), u256(0), u256(198)));
}
}
BOOST_AUTO_TEST_CASE(using_library_mappings_return)
{
char const* sourceCode = R"(
library Lib {
function choose(mapping(uint => mapping(uint => uint)) storage m, uint key) external returns (mapping(uint => uint) storage) {
return m[key];
}
}
contract Test {
mapping(uint => mapping(uint => uint)) m;
function f() public returns (uint, uint, uint, uint, uint, uint)
{
Lib.choose(m, 0)[0] = 1;
Lib.choose(m, 0)[2] = 42;
Lib.choose(m, 1)[0] = 23;
Lib.choose(m, 1)[2] = 99;
return (m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2]);
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(1), u256(0), u256(42), u256(23), u256(0), u256(99)));
}
BOOST_AUTO_TEST_CASE(using_library_structs)
{
char const* sourceCode = R"(
library Lib {
struct Data { uint a; uint[] b; }
function set(Data storage _s) public
{
_s.a = 7;
while (_s.b.length < 20)
_s.b.push();
_s.b[19] = 8;
}
}
contract Test {
mapping(string => Lib.Data) data;
function f() public returns (uint a, uint b)
{
Lib.set(data["abc"]);
a = data["abc"].a;
b = data["abc"].b[19];
}
}
)";
compileAndRun(sourceCode, 0, "Lib");
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"Lib", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(7), u256(8)));
}
BOOST_AUTO_TEST_CASE(short_strings)
{
// This test verifies that the byte array encoding that combines length and data works
// correctly.
char const* sourceCode = R"(
contract A {
bytes public data1 = "123";
bytes data2;
function lengthChange() public returns (uint)
{
// store constant in short and long string
data1 = "123";
if (!equal(data1, "123")) return 1;
data2 = "12345678901234567890123456789012345678901234567890a";
if (data2[17] != "8") return 3;
if (data2.length != 51) return 4;
if (data2[data2.length - 1] != "a") return 5;
// change length: short -> short
while (data1.length < 5)
data1.push();
if (data1.length != 5) return 6;
data1[4] = "4";
if (data1[0] != "1") return 7;
if (data1[4] != "4") return 8;
// change length: short -> long
while (data1.length < 80)
data1.push();
if (data1.length != 80) return 9;
while (data1.length > 70)
data1.pop();
if (data1.length != 70) return 9;
if (data1[0] != "1") return 10;
if (data1[4] != "4") return 11;
for (uint i = 0; i < data1.length; i ++)
data1[i] = byte(uint8(i * 3));
if (uint8(data1[4]) != 4 * 3) return 12;
if (uint8(data1[67]) != 67 * 3) return 13;
// change length: long -> short
while (data1.length > 22)
data1.pop();
if (data1.length != 22) return 14;
if (uint8(data1[21]) != 21 * 3) return 15;
if (uint8(data1[2]) != 2 * 3) return 16;
// change length: short -> shorter
while (data1.length > 19)
data1.pop();
if (data1.length != 19) return 17;
if (uint8(data1[7]) != 7 * 3) return 18;
// and now again to original size
while (data1.length < 22)
data1.push();
if (data1.length != 22) return 19;
if (data1[21] != 0) return 20;
while (data1.length > 0)
data1.pop();
while (data2.length > 0)
data2.pop();
}
function copy() public returns (uint) {
bytes memory x = "123";
bytes memory y = "012345678901234567890123456789012345678901234567890123456789";
bytes memory z = "1234567";
data1 = x;
data2 = y;
if (!equal(data1, x)) return 1;
if (!equal(data2, y)) return 2;
// lengthen
data1 = y;
if (!equal(data1, y)) return 3;
// shorten
data1 = x;
if (!equal(data1, x)) return 4;
// change while keeping short
data1 = z;
if (!equal(data1, z)) return 5;
// copy storage -> storage
data1 = x;
data2 = y;
// lengthen
data1 = data2;
if (!equal(data1, y)) return 6;
// shorten
data1 = x;
data2 = data1;
if (!equal(data2, x)) return 7;
bytes memory c = data2;
data1 = c;
if (!equal(data1, x)) return 8;
data1 = "";
data2 = "";
}
function deleteElements() public returns (uint) {
data1 = "01234";
delete data1[2];
if (data1[2] != 0) return 1;
if (data1[0] != "0") return 2;
if (data1[3] != "3") return 3;
delete data1;
if (data1.length != 0) return 4;
}
function equal(bytes storage a, bytes memory b) internal returns (bool) {
if (a.length != b.length) return false;
for (uint i = 0; i < a.length; ++i) if (a[i] != b[i]) return false;
return true;
}
}
)";
compileAndRun(sourceCode, 0, "A");
ABI_CHECK(callContractFunction("data1()"), encodeDyn(string("123")));
ABI_CHECK(callContractFunction("lengthChange()"), encodeArgs(u256(0)));
BOOST_CHECK(storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("deleteElements()"), encodeArgs(u256(0)));
BOOST_CHECK(storageEmpty(m_contractAddress));
ABI_CHECK(callContractFunction("copy()"), encodeArgs(u256(0)));
BOOST_CHECK(storageEmpty(m_contractAddress));
}
BOOST_AUTO_TEST_CASE(calldata_offset)
{
// This tests a specific bug that was caused by not using the correct memory offset in the
// calldata unpacker.
char const* sourceCode = R"(
contract CB
{
address[] _arr;
string public last = "nd";
constructor(address[] memory guardians) public
{
_arr = guardians;
}
}
)";
compileAndRun(sourceCode, 0, "CB", encodeArgs(u256(0x20), u256(0x00)));
ABI_CHECK(callContractFunction("last()", encodeArgs()), encodeDyn(string("nd")));
}
BOOST_AUTO_TEST_CASE(reject_ether_sent_to_library)
{
char const* sourceCode = R"(
library lib {}
contract c {
constructor() public payable {}
function f(address payable x) public returns (bool) {
return x.send(1);
}
receive () external payable {}
}
)";
compileAndRun(sourceCode, 0, "lib");
Address libraryAddress = m_contractAddress;
compileAndRun(sourceCode, 10, "c");
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 10);
BOOST_CHECK_EQUAL(balanceAt(libraryAddress), 0);
ABI_CHECK(callContractFunction("f(address)", encodeArgs(u160(libraryAddress))), encodeArgs(false));
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 10);
BOOST_CHECK_EQUAL(balanceAt(libraryAddress), 0);
ABI_CHECK(callContractFunction("f(address)", encodeArgs(u160(m_contractAddress))), encodeArgs(true));
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 10);
BOOST_CHECK_EQUAL(balanceAt(libraryAddress), 0);
}
BOOST_AUTO_TEST_CASE(create_memory_array_allocation_size)
{
// Check allocation size of byte array. Should be 32 plus length rounded up to next
// multiple of 32
char const* sourceCode = R"(
contract C {
function f() public pure returns (uint d1, uint d2, uint d3, uint memsize) {
bytes memory b1 = new bytes(31);
bytes memory b2 = new bytes(32);
bytes memory b3 = new bytes(256);
bytes memory b4 = new bytes(31);
assembly {
d1 := sub(b2, b1)
d2 := sub(b3, b2)
d3 := sub(b4, b3)
memsize := msize()
}
}
}
)";
if (!m_optimiserSettings.runYulOptimiser)
{
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("f()"), encodeArgs(0x40, 0x40, 0x20 + 256, 0x260));
}
}
BOOST_AUTO_TEST_CASE(using_for_function_on_int)
{
char const* sourceCode = R"(
library D { function double(uint self) public returns (uint) { return 2*self; } }
contract C {
using D for uint;
function f(uint a) public returns (uint) {
return a.double();
}
}
)";
compileAndRun(sourceCode, 0, "D");
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"D", m_contractAddress}});
ABI_CHECK(callContractFunction("f(uint256)", u256(9)), encodeArgs(u256(2 * 9)));
}
BOOST_AUTO_TEST_CASE(using_for_function_on_struct)
{
char const* sourceCode = R"(
library D { struct s { uint a; } function mul(s storage self, uint x) public returns (uint) { return self.a *= x; } }
contract C {
using D for D.s;
D.s public x;
function f(uint a) public returns (uint) {
x.a = 3;
return x.mul(a);
}
}
)";
compileAndRun(sourceCode, 0, "D");
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"D", m_contractAddress}});
ABI_CHECK(callContractFunction("f(uint256)", u256(7)), encodeArgs(u256(3 * 7)));
ABI_CHECK(callContractFunction("x()"), encodeArgs(u256(3 * 7)));
}
BOOST_AUTO_TEST_CASE(using_for_overload)
{
char const* sourceCode = R"(
library D {
struct s { uint a; }
function mul(s storage self, uint x) public returns (uint) { return self.a *= x; }
function mul(s storage self, bytes32 x) public returns (bytes32) { }
}
contract C {
using D for D.s;
D.s public x;
function f(uint a) public returns (uint) {
x.a = 6;
return x.mul(a);
}
}
)";
compileAndRun(sourceCode, 0, "D");
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"D", m_contractAddress}});
ABI_CHECK(callContractFunction("f(uint256)", u256(7)), encodeArgs(u256(6 * 7)));
ABI_CHECK(callContractFunction("x()"), encodeArgs(u256(6 * 7)));
}
BOOST_AUTO_TEST_CASE(using_for_by_name)
{
char const* sourceCode = R"(
library D { struct s { uint a; } function mul(s storage self, uint x) public returns (uint) { return self.a *= x; } }
contract C {
using D for D.s;
D.s public x;
function f(uint a) public returns (uint) {
x.a = 6;
return x.mul({x: a});
}
}
)";
compileAndRun(sourceCode, 0, "D");
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"D", m_contractAddress}});
ABI_CHECK(callContractFunction("f(uint256)", u256(7)), encodeArgs(u256(6 * 7)));
ABI_CHECK(callContractFunction("x()"), encodeArgs(u256(6 * 7)));
}
BOOST_AUTO_TEST_CASE(bound_function_in_function)
{
char const* sourceCode = R"(
library L {
function g(function() internal returns (uint) _t) internal returns (uint) { return _t(); }
}
contract C {
using L for *;
function f() public returns (uint) {
return t.g();
}
function t() public pure returns (uint) { return 7; }
}
)";
compileAndRun(sourceCode, 0, "L");
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"L", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(7)));
}
BOOST_AUTO_TEST_CASE(bound_function_in_var)
{
char const* sourceCode = R"(
library D { struct s { uint a; } function mul(s storage self, uint x) public returns (uint) { return self.a *= x; } }
contract C {
using D for D.s;
D.s public x;
function f(uint a) public returns (uint) {
x.a = 6;
return (x.mul)({x: a});
}
}
)";
compileAndRun(sourceCode, 0, "D");
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"D", m_contractAddress}});
ABI_CHECK(callContractFunction("f(uint256)", u256(7)), encodeArgs(u256(6 * 7)));
ABI_CHECK(callContractFunction("x()"), encodeArgs(u256(6 * 7)));
}
BOOST_AUTO_TEST_CASE(bound_function_to_string)
{
char const* sourceCode = R"(
library D { function length(string memory self) public returns (uint) { return bytes(self).length; } }
contract C {
using D for string;
string x;
function f() public returns (uint) {
x = "abc";
return x.length();
}
function g() public returns (uint) {
string memory s = "abc";
return s.length();
}
}
)";
compileAndRun(sourceCode, 0, "D");
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"D", m_contractAddress}});
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(3)));
ABI_CHECK(callContractFunction("g()"), encodeArgs(u256(3)));
}
BOOST_AUTO_TEST_CASE(inline_long_string_return)
{
char const* sourceCode = R"(
contract C {
function f() public returns (string memory) {
return (["somethingShort", "0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890"][1]);
}
}
)";
string strLong = "0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f()"), encodeDyn(strLong));
}
BOOST_AUTO_TEST_CASE(index_access_with_type_conversion)
{
// Test for a bug where higher order bits cleanup was not done for array index access.
char const* sourceCode = R"(
contract C {
function f(uint x) public returns (uint[256] memory r){
r[uint8(x)] = 2;
}
}
)";
compileAndRun(sourceCode, 0, "C");
// neither of the two should throw due to out-of-bounds access
BOOST_CHECK(callContractFunction("f(uint256)", u256(0x01)).size() == 256 * 32);
BOOST_CHECK(callContractFunction("f(uint256)", u256(0x101)).size() == 256 * 32);
}
BOOST_AUTO_TEST_CASE(failed_create)
{
char const* sourceCode = R"(
contract D { constructor() public payable {} }
contract C {
uint public x;
constructor() public payable {}
function f(uint amount) public returns (D) {
x++;
return (new D).value(amount)();
}
function stack(uint depth) public returns (address) {
if (depth < 1024)
return this.stack(depth - 1);
else
return address(f(0));
}
}
)";
compileAndRun(sourceCode, 20, "C");
BOOST_CHECK(callContractFunction("f(uint256)", 20) != encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("x()"), encodeArgs(u256(1)));
ABI_CHECK(callContractFunction("f(uint256)", 20), encodeArgs());
ABI_CHECK(callContractFunction("x()"), encodeArgs(u256(1)));
ABI_CHECK(callContractFunction("stack(uint256)", 1023), encodeArgs());
ABI_CHECK(callContractFunction("x()"), encodeArgs(u256(1)));
}
BOOST_AUTO_TEST_CASE(correctly_initialize_memory_array_in_constructor)
{
// Memory arrays are initialized using calldatacopy past the size of the calldata.
// This test checks that it also works in the constructor context.
char const* sourceCode = R"(
contract C {
bool public success;
constructor() public {
// Make memory dirty.
assembly {
for { let i := 0 } lt(i, 64) { i := add(i, 1) } {
mstore(msize(), not(0))
}
}
uint16[3] memory c;
require(c[0] == 0 && c[1] == 0 && c[2] == 0);
uint16[] memory x = new uint16[](3);
require(x[0] == 0 && x[1] == 0 && x[2] == 0);
success = true;
}
}
)";
// Cannot run against yul optimizer because of msize
if (!m_optimiserSettings.runYulOptimiser)
{
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("success()"), encodeArgs(u256(1)));
}
}
BOOST_AUTO_TEST_CASE(mutex)
{
char const* sourceCode = R"(
contract mutexed {
bool locked;
modifier protected {
if (locked) revert();
locked = true;
_;
locked = false;
}
}
contract Fund is mutexed {
uint shares;
constructor() public payable { shares = msg.value; }
function withdraw(uint amount) public protected returns (uint) {
// NOTE: It is very bad practice to write this function this way.
// Please refer to the documentation of how to do this properly.
if (amount > shares) revert();
(bool success,) = msg.sender.call.value(amount)("");
require(success);
shares -= amount;
return shares;
}
function withdrawUnprotected(uint amount) public returns (uint) {
// NOTE: It is very bad practice to write this function this way.
// Please refer to the documentation of how to do this properly.
if (amount > shares) revert();
(bool success,) = msg.sender.call.value(amount)("");
require(success);
shares -= amount;
return shares;
}
}
contract Attacker {
Fund public fund;
uint callDepth;
bool protected;
function setProtected(bool _protected) public { protected = _protected; }
constructor(Fund _fund) public { fund = _fund; }
function attack() public returns (uint) {
callDepth = 0;
return attackInternal();
}
function attackInternal() internal returns (uint) {
if (protected)
return fund.withdraw(10);
else
return fund.withdrawUnprotected(10);
}
fallback() external payable {
callDepth++;
if (callDepth < 4)
attackInternal();
}
}
)";
compileAndRun(sourceCode, 500, "Fund");
auto fund = m_contractAddress;
BOOST_CHECK_EQUAL(balanceAt(fund), 500);
compileAndRun(sourceCode, 0, "Attacker", encodeArgs(u160(fund)));
ABI_CHECK(callContractFunction("setProtected(bool)", true), encodeArgs());
ABI_CHECK(callContractFunction("attack()"), encodeArgs());
BOOST_CHECK_EQUAL(balanceAt(fund), 500);
ABI_CHECK(callContractFunction("setProtected(bool)", false), encodeArgs());
ABI_CHECK(callContractFunction("attack()"), encodeArgs(u256(460)));
BOOST_CHECK_EQUAL(balanceAt(fund), 460);
}
BOOST_AUTO_TEST_CASE(payable_function)
{
char const* sourceCode = R"(
contract C {
uint public a;
function f() payable public returns (uint) {
return msg.value;
}
fallback() external payable {
a = msg.value + 1;
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunctionWithValue("f()", 27), encodeArgs(u256(27)));
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 27);
ABI_CHECK(callContractFunctionWithValue("", 27), encodeArgs());
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 27 + 27);
ABI_CHECK(callContractFunction("a()"), encodeArgs(u256(28)));
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 27 + 27);
}
BOOST_AUTO_TEST_CASE(payable_function_calls_library)
{
char const* sourceCode = R"(
library L {
function f() public returns (uint) { return 7; }
}
contract C {
function f() public payable returns (uint) {
return L.f();
}
}
)";
compileAndRun(sourceCode, 0, "L");
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"L", m_contractAddress}});
ABI_CHECK(callContractFunctionWithValue("f()", 27), encodeArgs(u256(7)));
}
BOOST_AUTO_TEST_CASE(non_payable_throw)
{
char const* sourceCode = R"(
contract C {
uint public a;
function f() public returns (uint) {
return msgvalue();
}
function msgvalue() internal returns (uint) {
return msg.value;
}
fallback() external {
update();
}
function update() internal {
a = msg.value + 1;
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunctionWithValue("f()", 27), encodeArgs());
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 0);
ABI_CHECK(callContractFunction(""), encodeArgs());
ABI_CHECK(callContractFunction("a()"), encodeArgs(u256(1)));
ABI_CHECK(callContractFunctionWithValue("", 27), encodeArgs());
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 0);
ABI_CHECK(callContractFunction("a()"), encodeArgs(u256(1)));
ABI_CHECK(callContractFunctionWithValue("a()", 27), encodeArgs());
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 0);
}
BOOST_AUTO_TEST_CASE(no_nonpayable_circumvention_by_modifier)
{
char const* sourceCode = R"(
contract C {
modifier tryCircumvent {
if (false) _; // avoid the function, we should still not accept ether
}
function f() tryCircumvent public returns (uint) {
return msgvalue();
}
function msgvalue() internal returns (uint) {
return msg.value;
}
}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode);
ABI_CHECK(callContractFunctionWithValue("f()", 27), encodeArgs());
BOOST_CHECK_EQUAL(balanceAt(m_contractAddress), 0);
)
}
BOOST_AUTO_TEST_CASE(mem_resize_is_not_paid_at_call)
{
// This tests that memory resize for return values is not paid during the call, which would
// make the gas calculation overly complex. We access the end of the output area before
// the call is made.
// Tests that this also survives the optimizer.
char const* sourceCode = R"(
contract C {
function f() public returns (uint[200] memory) {}
}
contract D {
function f(C c) public returns (uint) { c.f(); return 7; }
}
)";
compileAndRun(sourceCode, 0, "C");
u160 cAddr = m_contractAddress;
compileAndRun(sourceCode, 0, "D");
ABI_CHECK(callContractFunction("f(address)", cAddr), encodeArgs(u256(7)));
}
BOOST_AUTO_TEST_CASE(receive_external_function_type)
{
char const* sourceCode = R"(
contract C {
function g() public returns (uint) { return 7; }
function f(function() external returns (uint) g) public returns (uint) {
return g();
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction(
"f(function)",
m_contractAddress.asBytes() + FixedHash<4>(util::keccak256("g()")).asBytes() + bytes(32 - 4 - 20, 0)
), encodeArgs(u256(7)));
}
BOOST_AUTO_TEST_CASE(return_external_function_type)
{
char const* sourceCode = R"(
contract C {
function g() public {}
function f() public returns (function() external) {
return this.g;
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(
callContractFunction("f()"),
m_contractAddress.asBytes() + FixedHash<4>(util::keccak256("g()")).asBytes() + bytes(32 - 4 - 20, 0)
);
}
// TODO: store bound internal library functions
BOOST_AUTO_TEST_CASE(shift_bytes)
{
char const* sourceCode = R"(
contract C {
function left(bytes20 x, uint8 y) public returns (bytes20) {
return x << y;
}
function right(bytes20 x, uint8 y) public returns (bytes20) {
return x >> y;
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("left(bytes20,uint8)", "12345678901234567890", 8 * 8), encodeArgs("901234567890" + string(8, 0)));
ABI_CHECK(callContractFunction("right(bytes20,uint8)", "12345678901234567890", 8 * 8), encodeArgs(string(8, 0) + "123456789012"));
}
BOOST_AUTO_TEST_CASE(shift_bytes_cleanup)
{
char const* sourceCode = R"(
contract C {
function left(uint8 y) public returns (bytes20) {
bytes20 x;
assembly { x := "12345678901234567890abcde" }
return x << y;
}
function right(uint8 y) public returns (bytes20) {
bytes20 x;
assembly { x := "12345678901234567890abcde" }
return x >> y;
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("left(uint8)", 8 * 8), encodeArgs("901234567890" + string(8, 0)));
ABI_CHECK(callContractFunction("right(uint8)", 8 * 8), encodeArgs(string(8, 0) + "123456789012"));
}
BOOST_AUTO_TEST_CASE(contracts_separated_with_comment)
{
char const* sourceCode = R"(
contract C1 {}
/**
**/
contract C2 {}
)";
ALSO_VIA_YUL(
compileAndRun(sourceCode, 0, "C1");
compileAndRun(sourceCode, 0, "C2");
)
}
BOOST_AUTO_TEST_CASE(include_creation_bytecode_only_once)
{
char const* sourceCode = R"(
contract D {
bytes a = hex"1237651237125387136581271652831736512837126583171583712358126123765123712538713658127165283173651283712658317158371235812612376512371253871365812716528317365128371265831715837123581261237651237125387136581271652831736512837126583171583712358126";
bytes b = hex"1237651237125327136581271252831736512837126583171383712358126123765125712538713658127165253173651283712658357158371235812612376512371a5387136581271652a317365128371265a317158371235812612a765123712538a13658127165a83173651283712a58317158371235a126";
constructor(uint) public {}
}
contract Double {
function f() public {
new D(2);
}
function g() public {
new D(3);
}
}
contract Single {
function f() public {
new D(2);
}
}
)";
compileAndRun(sourceCode);
BOOST_CHECK_LE(
double(m_compiler.object("Double").bytecode.size()),
1.2 * double(m_compiler.object("Single").bytecode.size())
);
}
BOOST_AUTO_TEST_CASE(revert_with_cause)
{
char const* sourceCode = R"(
contract D {
string constant msg1 = "test1234567890123456789012345678901234567890";
string msg2 = "test1234567890123456789012345678901234567890";
function f() public {
revert("test123");
}
function g() public {
revert("test1234567890123456789012345678901234567890");
}
function h() public {
revert(msg1);
}
function i() public {
revert(msg2);
}
function j() public {
string memory msg3 = "test1234567890123456789012345678901234567890";
revert(msg3);
}
}
contract C {
D d = new D();
function forward(address target, bytes memory data) internal returns (bool success, bytes memory retval) {
uint retsize;
assembly {
success := call(not(0), target, 0, add(data, 0x20), mload(data), 0, 0)
retsize := returndatasize()
}
retval = new bytes(retsize);
assembly {
returndatacopy(add(retval, 0x20), 0, returndatasize())
}
}
function f() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
function g() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
function h() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
function i() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
function j() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
}
)";
if (solidity::test::CommonOptions::get().evmVersion().supportsReturndata())
{
compileAndRun(sourceCode, 0, "C");
bytes const errorSignature = bytes{0x08, 0xc3, 0x79, 0xa0};
ABI_CHECK(callContractFunction("f()"), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 7, "test123") + bytes(28, 0));
ABI_CHECK(callContractFunction("g()"), encodeArgs(0, 0x40, 0x84) + errorSignature + encodeArgs(0x20, 44, "test1234567890123456789012345678901234567890") + bytes(28, 0));
ABI_CHECK(callContractFunction("h()"), encodeArgs(0, 0x40, 0x84) + errorSignature + encodeArgs(0x20, 44, "test1234567890123456789012345678901234567890") + bytes(28, 0));
ABI_CHECK(callContractFunction("i()"), encodeArgs(0, 0x40, 0x84) + errorSignature + encodeArgs(0x20, 44, "test1234567890123456789012345678901234567890") + bytes(28, 0));
ABI_CHECK(callContractFunction("j()"), encodeArgs(0, 0x40, 0x84) + errorSignature + encodeArgs(0x20, 44, "test1234567890123456789012345678901234567890") + bytes(28, 0));
}
}
BOOST_AUTO_TEST_CASE(require_with_message)
{
char const* sourceCode = R"(
contract D {
bool flag = false;
string storageError = "abc";
string constant constantError = "abc";
function f(uint x) public {
require(x > 7, "failed");
}
function g() public {
// As a side-effect of internalFun, the flag will be set to true
// (even if the condition is true),
// but it will only throw in the next evaluation.
bool flagCopy = flag;
require(flagCopy == false, internalFun());
}
function internalFun() public returns (string memory) {
flag = true;
return "only on second run";
}
function h() public {
require(false, storageError);
}
function i() public {
require(false, constantError);
}
function j() public {
string memory errMsg = "msg";
require(false, errMsg);
}
}
contract C {
D d = new D();
function forward(address target, bytes memory data) internal returns (bool success, bytes memory retval) {
uint retsize;
assembly {
success := call(not(0), target, 0, add(data, 0x20), mload(data), 0, 0)
retsize := returndatasize()
}
retval = new bytes(retsize);
assembly {
returndatacopy(add(retval, 0x20), 0, returndatasize())
}
}
function f(uint x) public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
function g() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
function h() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
function i() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
function j() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
}
)";
if (solidity::test::CommonOptions::get().evmVersion().supportsReturndata())
{
compileAndRun(sourceCode, 0, "C");
bytes const errorSignature = bytes{0x08, 0xc3, 0x79, 0xa0};
ABI_CHECK(callContractFunction("f(uint256)", 8), encodeArgs(1, 0x40, 0));
ABI_CHECK(callContractFunction("f(uint256)", 5), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 6, "failed") + bytes(28, 0));
ABI_CHECK(callContractFunction("g()"), encodeArgs(1, 0x40, 0));
ABI_CHECK(callContractFunction("g()"), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 18, "only on second run") + bytes(28, 0));
ABI_CHECK(callContractFunction("h()"), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 3, "abc") + bytes(28, 0));
ABI_CHECK(callContractFunction("i()"), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 3, "abc") + bytes(28, 0));
ABI_CHECK(callContractFunction("j()"), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 3, "msg") + bytes(28, 0));
}
}
BOOST_AUTO_TEST_CASE(bubble_up_error_messages)
{
char const* sourceCode = R"(
contract D {
function f() public {
revert("message");
}
function g() public {
this.f();
}
}
contract C {
D d = new D();
function forward(address target, bytes memory data) internal returns (bool success, bytes memory retval) {
uint retsize;
assembly {
success := call(not(0), target, 0, add(data, 0x20), mload(data), 0, 0)
retsize := returndatasize()
}
retval = new bytes(retsize);
assembly {
returndatacopy(add(retval, 0x20), 0, returndatasize())
}
}
function f() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
function g() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
}
)";
if (solidity::test::CommonOptions::get().evmVersion().supportsReturndata())
{
compileAndRun(sourceCode, 0, "C");
bytes const errorSignature = bytes{0x08, 0xc3, 0x79, 0xa0};
ABI_CHECK(callContractFunction("f()"), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 7, "message") + bytes(28, 0));
ABI_CHECK(callContractFunction("g()"), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 7, "message") + bytes(28, 0));
}
}
BOOST_AUTO_TEST_CASE(bubble_up_error_messages_through_transfer)
{
char const* sourceCode = R"(
contract D {
receive() external payable {
revert("message");
}
function f() public {
address(this).transfer(0);
}
}
contract C {
D d = new D();
function forward(address target, bytes memory data) internal returns (bool success, bytes memory retval) {
uint retsize;
assembly {
success := call(not(0), target, 0, add(data, 0x20), mload(data), 0, 0)
retsize := returndatasize()
}
retval = new bytes(retsize);
assembly {
returndatacopy(add(retval, 0x20), 0, returndatasize())
}
}
function f() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
}
)";
if (solidity::test::CommonOptions::get().evmVersion().supportsReturndata())
{
compileAndRun(sourceCode, 0, "C");
bytes const errorSignature = bytes{0x08, 0xc3, 0x79, 0xa0};
ABI_CHECK(callContractFunction("f()"), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 7, "message") + bytes(28, 0));
}
}
BOOST_AUTO_TEST_CASE(bubble_up_error_messages_through_create)
{
char const* sourceCode = R"(
contract E {
constructor() public {
revert("message");
}
}
contract D {
function f() public {
E x = new E();
}
}
contract C {
D d = new D();
function forward(address target, bytes memory data) internal returns (bool success, bytes memory retval) {
uint retsize;
assembly {
success := call(not(0), target, 0, add(data, 0x20), mload(data), 0, 0)
retsize := returndatasize()
}
retval = new bytes(retsize);
assembly {
returndatacopy(add(retval, 0x20), 0, returndatasize())
}
}
function f() public returns (bool, bytes memory) {
return forward(address(d), msg.data);
}
}
)";
if (solidity::test::CommonOptions::get().evmVersion().supportsReturndata())
{
compileAndRun(sourceCode, 0, "C");
bytes const errorSignature = bytes{0x08, 0xc3, 0x79, 0xa0};
ABI_CHECK(callContractFunction("f()"), encodeArgs(0, 0x40, 0x64) + errorSignature + encodeArgs(0x20, 7, "message") + bytes(28, 0));
}
}
BOOST_AUTO_TEST_CASE(interface_contract)
{
char const* sourceCode = R"(
interface I {
event A();
function f() external returns (bool);
fallback() external payable;
}
contract A is I {
function f() public override returns (bool) {
return g();
}
function g() public returns (bool) {
return true;
}
fallback() override external payable {
}
}
contract C {
function f(address payable _interfaceAddress) public returns (bool) {
I i = I(_interfaceAddress);
return i.f();
}
}
)";
compileAndRun(sourceCode, 0, "A");
u160 const recipient = m_contractAddress;
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(address)", recipient), encodeArgs(true));
}
BOOST_AUTO_TEST_CASE(bare_call_invalid_address)
{
char const* sourceCode = R"YY(
contract C {
/// Calling into non-existent account is successful (creates the account)
function f() external returns (bool) {
(bool success,) = address(0x4242).call("");
return success;
}
function h() external returns (bool) {
(bool success,) = address(0x4242).delegatecall("");
return success;
}
}
)YY";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(1)));
ABI_CHECK(callContractFunction("h()"), encodeArgs(u256(1)));
if (solidity::test::CommonOptions::get().evmVersion().hasStaticCall())
{
char const* sourceCode = R"YY(
contract C {
function f() external returns (bool, bytes memory) {
return address(0x4242).staticcall("");
}
}
)YY";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f()"), encodeArgs(u256(1), 0x40, 0x00));
}
}
BOOST_AUTO_TEST_CASE(bare_call_return_data)
{
if (solidity::test::CommonOptions::get().evmVersion().supportsReturndata())
{
vector<string> calltypes = {"call", "delegatecall"};
if (solidity::test::CommonOptions::get().evmVersion().hasStaticCall())
calltypes.emplace_back("staticcall");
for (string const& calltype: calltypes)
{
string sourceCode = R"DELIMITER(
contract A {
constructor() public {
}
function return_bool() public pure returns(bool) {
return true;
}
function return_int32() public pure returns(int32) {
return -32;
}
function return_uint32() public pure returns(uint32) {
return 0x3232;
}
function return_int256() public pure returns(int256) {
return -256;
}
function return_uint256() public pure returns(uint256) {
return 0x256256;
}
function return_bytes4() public pure returns(bytes4) {
return 0xabcd0012;
}
function return_multi() public pure returns(bool, uint32, bytes4) {
return (false, 0x3232, 0xabcd0012);
}
function return_bytes() public pure returns(bytes memory b) {
b = new bytes(2);
b[0] = 0x42;
b[1] = 0x21;
}
}
contract C {
A addr;
constructor() public {
addr = new A();
}
function f(string memory signature) public returns (bool, bytes memory) {
return address(addr).)DELIMITER" + calltype + R"DELIMITER((abi.encodeWithSignature(signature));
}
function check_bool() external returns (bool) {
(bool success, bytes memory data) = f("return_bool()");
assert(success);
bool a = abi.decode(data, (bool));
assert(a);
return true;
}
function check_int32() external returns (bool) {
(bool success, bytes memory data) = f("return_int32()");
assert(success);
int32 a = abi.decode(data, (int32));
assert(a == -32);
return true;
}
function check_uint32() external returns (bool) {
(bool success, bytes memory data) = f("return_uint32()");
assert(success);
uint32 a = abi.decode(data, (uint32));
assert(a == 0x3232);
return true;
}
function check_int256() external returns (bool) {
(bool success, bytes memory data) = f("return_int256()");
assert(success);
int256 a = abi.decode(data, (int256));
assert(a == -256);
return true;
}
function check_uint256() external returns (bool) {
(bool success, bytes memory data) = f("return_uint256()");
assert(success);
uint256 a = abi.decode(data, (uint256));
assert(a == 0x256256);
return true;
}
function check_bytes4() external returns (bool) {
(bool success, bytes memory data) = f("return_bytes4()");
assert(success);
bytes4 a = abi.decode(data, (bytes4));
assert(a == 0xabcd0012);
return true;
}
function check_multi() external returns (bool) {
(bool success, bytes memory data) = f("return_multi()");
assert(success);
(bool a, uint32 b, bytes4 c) = abi.decode(data, (bool, uint32, bytes4));
assert(a == false && b == 0x3232 && c == 0xabcd0012);
return true;
}
function check_bytes() external returns (bool) {
(bool success, bytes memory data) = f("return_bytes()");
assert(success);
(bytes memory d) = abi.decode(data, (bytes));
assert(d.length == 2 && d[0] == 0x42 && d[1] == 0x21);
return true;
}
}
)DELIMITER";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(string)", encodeDyn(string("return_bool()"))), encodeArgs(true, 0x40, 0x20, true));
ABI_CHECK(callContractFunction("f(string)", encodeDyn(string("return_int32()"))), encodeArgs(true, 0x40, 0x20, u256(-32)));
ABI_CHECK(callContractFunction("f(string)", encodeDyn(string("return_uint32()"))), encodeArgs(true, 0x40, 0x20, u256(0x3232)));
ABI_CHECK(callContractFunction("f(string)", encodeDyn(string("return_int256()"))), encodeArgs(true, 0x40, 0x20, u256(-256)));
ABI_CHECK(callContractFunction("f(string)", encodeDyn(string("return_uint256()"))), encodeArgs(true, 0x40, 0x20, u256(0x256256)));
ABI_CHECK(callContractFunction("f(string)", encodeDyn(string("return_bytes4()"))), encodeArgs(true, 0x40, 0x20, u256(0xabcd0012) << (28*8)));
ABI_CHECK(callContractFunction("f(string)", encodeDyn(string("return_multi()"))), encodeArgs(true, 0x40, 0x60, false, u256(0x3232), u256(0xabcd0012) << (28*8)));
ABI_CHECK(callContractFunction("f(string)", encodeDyn(string("return_bytes()"))), encodeArgs(true, 0x40, 0x60, 0x20, 0x02, encode(bytes{0x42,0x21}, false)));
ABI_CHECK(callContractFunction("check_bool()"), encodeArgs(true));
ABI_CHECK(callContractFunction("check_int32()"), encodeArgs(true));
ABI_CHECK(callContractFunction("check_uint32()"), encodeArgs(true));
ABI_CHECK(callContractFunction("check_int256()"), encodeArgs(true));
ABI_CHECK(callContractFunction("check_uint256()"), encodeArgs(true));
ABI_CHECK(callContractFunction("check_bytes4()"), encodeArgs(true));
ABI_CHECK(callContractFunction("check_multi()"), encodeArgs(true));
ABI_CHECK(callContractFunction("check_bytes()"), encodeArgs(true));
}
}
}
BOOST_AUTO_TEST_CASE(abi_encodePacked)
{
char const* sourceCode = R"(
contract C {
function f0() public pure returns (bytes memory) {
return abi.encodePacked();
}
function f1() public pure returns (bytes memory) {
return abi.encodePacked(uint8(1), uint8(2));
}
function f2() public pure returns (bytes memory) {
string memory x = "abc";
return abi.encodePacked(uint8(1), x, uint8(2));
}
function f3() public pure returns (bytes memory r) {
// test that memory is properly allocated
string memory x = "abc";
r = abi.encodePacked(uint8(1), x, uint8(2));
bytes memory y = "def";
require(y[0] == "d");
y[0] = "e";
require(y[0] == "e");
}
function f4() public pure returns (bytes memory) {
string memory x = "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz";
return abi.encodePacked(uint16(0x0701), x, uint16(0x1201));
}
function f_literal() public pure returns (bytes memory) {
return abi.encodePacked(uint8(0x01), "abc", uint8(0x02));
}
function f_calldata() public pure returns (bytes memory) {
return abi.encodePacked(uint8(0x01), msg.data, uint8(0x02));
}
}
)";
for (auto v2: {false, true})
{
compileAndRun(string(v2 ? "pragma experimental ABIEncoderV2;\n" : "") + sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f0()"), encodeArgs(0x20, 0));
ABI_CHECK(callContractFunction("f1()"), encodeArgs(0x20, 2, "\x01\x02"));
ABI_CHECK(callContractFunction("f2()"), encodeArgs(0x20, 5, "\x01" "abc" "\x02"));
ABI_CHECK(callContractFunction("f3()"), encodeArgs(0x20, 5, "\x01" "abc" "\x02"));
ABI_CHECK(callContractFunction("f4()"), encodeArgs(0x20, 2 + 26 + 26 + 2, "\x07\x01" "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz" "\x12\x01"));
ABI_CHECK(callContractFunction("f_literal()"), encodeArgs(0x20, 5, "\x01" "abc" "\x02"));
ABI_CHECK(callContractFunction("f_calldata()"), encodeArgs(0x20, 6, "\x01" "\xa5\xbf\xa1\xee" "\x02"));
}
}
BOOST_AUTO_TEST_CASE(abi_encodePacked_from_storage)
{
char const* sourceCode = R"(
contract C {
uint24[9] small_fixed;
int24[9] small_fixed_signed;
uint24[] small_dyn;
uint248[5] large_fixed;
uint248[] large_dyn;
bytes bytes_storage;
function sf() public returns (bytes memory) {
small_fixed[0] = 0xfffff1;
small_fixed[2] = 0xfffff2;
small_fixed[5] = 0xfffff3;
small_fixed[8] = 0xfffff4;
return abi.encodePacked(uint8(0x01), small_fixed, uint8(0x02));
}
function sd() public returns (bytes memory) {
small_dyn.push(0xfffff1);
small_dyn.push(0x00);
small_dyn.push(0xfffff2);
small_dyn.push(0x00);
small_dyn.push(0x00);
small_dyn.push(0xfffff3);
small_dyn.push(0x00);
small_dyn.push(0x00);
small_dyn.push(0xfffff4);
return abi.encodePacked(uint8(0x01), small_dyn, uint8(0x02));
}
function sfs() public returns (bytes memory) {
small_fixed_signed[0] = -2;
small_fixed_signed[2] = 0xffff2;
small_fixed_signed[5] = -200;
small_fixed_signed[8] = 0xffff4;
return abi.encodePacked(uint8(0x01), small_fixed_signed, uint8(0x02));
}
function lf() public returns (bytes memory) {
large_fixed[0] = 2**248-1;
large_fixed[1] = 0xfffff2;
large_fixed[2] = 2**248-2;
large_fixed[4] = 0xfffff4;
return abi.encodePacked(uint8(0x01), large_fixed, uint8(0x02));
}
function ld() public returns (bytes memory) {
large_dyn.push(2**248-1);
large_dyn.push(0xfffff2);
large_dyn.push(2**248-2);
large_dyn.push(0);
large_dyn.push(0xfffff4);
return abi.encodePacked(uint8(0x01), large_dyn, uint8(0x02));
}
function bytes_short() public returns (bytes memory) {
bytes_storage = "abcd";
return abi.encodePacked(uint8(0x01), bytes_storage, uint8(0x02));
}
function bytes_long() public returns (bytes memory) {
bytes_storage = "0123456789012345678901234567890123456789";
return abi.encodePacked(uint8(0x01), bytes_storage, uint8(0x02));
}
}
)";
for (auto v2: {false, true})
{
compileAndRun(string(v2 ? "pragma experimental ABIEncoderV2;\n" : "") + sourceCode, 0, "C");
bytes payload = encodeArgs(0xfffff1, 0, 0xfffff2, 0, 0, 0xfffff3, 0, 0, 0xfffff4);
bytes encoded = encodeArgs(0x20, 0x122, "\x01" + asString(payload) + "\x02");
ABI_CHECK(callContractFunction("sf()"), encoded);
ABI_CHECK(callContractFunction("sd()"), encoded);
ABI_CHECK(callContractFunction("sfs()"), encodeArgs(0x20, 0x122, "\x01" + asString(encodeArgs(
u256(-2), 0, 0xffff2, 0, 0, u256(-200), 0, 0, 0xffff4
)) + "\x02"));
payload = encodeArgs(
u256("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"),
0xfffff2,
u256("0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe"),
0,
0xfffff4
);
ABI_CHECK(callContractFunction("lf()"), encodeArgs(0x20, 5 * 32 + 2, "\x01" + asString(encodeArgs(payload)) + "\x02"));
ABI_CHECK(callContractFunction("ld()"), encodeArgs(0x20, 5 * 32 + 2, "\x01" + asString(encodeArgs(payload)) + "\x02"));
ABI_CHECK(callContractFunction("bytes_short()"), encodeArgs(0x20, 6, "\x01" "abcd\x02"));
ABI_CHECK(callContractFunction("bytes_long()"), encodeArgs(0x20, 42, "\x01" "0123456789012345678901234567890123456789\x02"));
}
}
BOOST_AUTO_TEST_CASE(abi_encodePacked_from_memory)
{
char const* sourceCode = R"(
contract C {
function sf() public pure returns (bytes memory) {
uint24[9] memory small_fixed;
small_fixed[0] = 0xfffff1;
small_fixed[2] = 0xfffff2;
small_fixed[5] = 0xfffff3;
small_fixed[8] = 0xfffff4;
return abi.encodePacked(uint8(0x01), small_fixed, uint8(0x02));
}
function sd() public pure returns (bytes memory) {
uint24[] memory small_dyn = new uint24[](9);
small_dyn[0] = 0xfffff1;
small_dyn[2] = 0xfffff2;
small_dyn[5] = 0xfffff3;
small_dyn[8] = 0xfffff4;
return abi.encodePacked(uint8(0x01), small_dyn, uint8(0x02));
}
function sfs() public pure returns (bytes memory) {
int24[9] memory small_fixed_signed;
small_fixed_signed[0] = -2;
small_fixed_signed[2] = 0xffff2;
small_fixed_signed[5] = -200;
small_fixed_signed[8] = 0xffff4;
return abi.encodePacked(uint8(0x01), small_fixed_signed, uint8(0x02));
}
function lf() public pure returns (bytes memory) {
uint248[5] memory large_fixed;
large_fixed[0] = 2**248-1;
large_fixed[1] = 0xfffff2;
large_fixed[2] = 2**248-2;
large_fixed[4] = 0xfffff4;
return abi.encodePacked(uint8(0x01), large_fixed, uint8(0x02));
}
function ld() public pure returns (bytes memory) {
uint248[] memory large_dyn = new uint248[](5);
large_dyn[0] = 2**248-1;
large_dyn[1] = 0xfffff2;
large_dyn[2] = 2**248-2;
large_dyn[4] = 0xfffff4;
return abi.encodePacked(uint8(0x01), large_dyn, uint8(0x02));
}
}
)";
for (auto v2: {false, true})
{
compileAndRun(string(v2 ? "pragma experimental ABIEncoderV2;\n" : "") + sourceCode, 0, "C");
bytes payload = encodeArgs(0xfffff1, 0, 0xfffff2, 0, 0, 0xfffff3, 0, 0, 0xfffff4);
bytes encoded = encodeArgs(0x20, 0x122, "\x01" + asString(payload) + "\x02");
ABI_CHECK(callContractFunction("sf()"), encoded);
ABI_CHECK(callContractFunction("sd()"), encoded);
ABI_CHECK(callContractFunction("sfs()"), encodeArgs(0x20, 0x122, "\x01" + asString(encodeArgs(
u256(-2), 0, 0xffff2, 0, 0, u256(-200), 0, 0, 0xffff4
)) + "\x02"));
payload = encodeArgs(
u256("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"),
0xfffff2,
u256("0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe"),
0,
0xfffff4
);
ABI_CHECK(callContractFunction("lf()"), encodeArgs(0x20, 5 * 32 + 2, "\x01" + asString(encodeArgs(payload)) + "\x02"));
ABI_CHECK(callContractFunction("ld()"), encodeArgs(0x20, 5 * 32 + 2, "\x01" + asString(encodeArgs(payload)) + "\x02"));
}
}
BOOST_AUTO_TEST_CASE(abi_encodePacked_functionPtr)
{
char const* sourceCode = R"(
contract C {
C other = C(0x1112131400000000000011121314000000000087);
function testDirect() public view returns (bytes memory) {
return abi.encodePacked(uint8(8), other.f, uint8(2));
}
function testFixedArray() public view returns (bytes memory) {
function () external pure returns (bytes memory)[1] memory x;
x[0] = other.f;
return abi.encodePacked(uint8(8), x, uint8(2));
}
function testDynamicArray() public view returns (bytes memory) {
function () external pure returns (bytes memory)[] memory x = new function() external pure returns (bytes memory)[](1);
x[0] = other.f;
return abi.encodePacked(uint8(8), x, uint8(2));
}
function f() public pure returns (bytes memory) {}
}
)";
for (auto v2: {false, true})
{
compileAndRun(string(v2 ? "pragma experimental ABIEncoderV2;\n" : "") + sourceCode, 0, "C");
string directEncoding = asString(fromHex("08" "1112131400000000000011121314000000000087" "26121ff0" "02"));
ABI_CHECK(callContractFunction("testDirect()"), encodeArgs(0x20, directEncoding.size(), directEncoding));
string arrayEncoding = asString(fromHex("08" "1112131400000000000011121314000000000087" "26121ff0" "0000000000000000" "02"));
ABI_CHECK(callContractFunction("testFixedArray()"), encodeArgs(0x20, arrayEncoding.size(), arrayEncoding));
ABI_CHECK(callContractFunction("testDynamicArray()"), encodeArgs(0x20, arrayEncoding.size(), arrayEncoding));
}
}
BOOST_AUTO_TEST_CASE(abi_encodePackedV2_structs)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S {
uint8 a;
int16 b;
uint8[2] c;
int16[] d;
}
S s;
event E(S indexed);
constructor() public {
s.a = 0x12;
s.b = -7;
s.c[0] = 2;
s.c[1] = 3;
s.d.push(-7);
s.d.push(-8);
}
function testStorage() public {
emit E(s);
}
function testMemory() public {
S memory m = s;
emit E(m);
}
}
)";
compileAndRun(sourceCode, 0, "C");
bytes structEnc = encodeArgs(int(0x12), u256(-7), int(2), int(3), u256(-7), u256(-8));
ABI_CHECK(callContractFunction("testStorage()"), encodeArgs());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 2);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E((uint8,int16,uint8[2],int16[]))")));
BOOST_CHECK_EQUAL(logTopic(0, 1), util::keccak256(asString(structEnc)));
ABI_CHECK(callContractFunction("testMemory()"), encodeArgs());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 2);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E((uint8,int16,uint8[2],int16[]))")));
BOOST_CHECK_EQUAL(logTopic(0, 1), util::keccak256(asString(structEnc)));
}
BOOST_AUTO_TEST_CASE(abi_encodePackedV2_nestedArray)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S {
uint8 a;
int16 b;
}
event E(S[2][][3] indexed);
function testNestedArrays() public {
S[2][][3] memory x;
x[1] = new S[2][](2);
x[1][0][0].a = 1;
x[1][0][0].b = 2;
x[1][0][1].a = 3;
x[1][1][1].b = 4;
emit E(x);
}
}
)";
compileAndRun(sourceCode, 0, "C");
bytes structEnc = encodeArgs(1, 2, 3, 0, 0, 0, 0, 4);
ABI_CHECK(callContractFunction("testNestedArrays()"), encodeArgs());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 2);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E((uint8,int16)[2][][3])")));
BOOST_CHECK_EQUAL(logTopic(0, 1), util::keccak256(asString(structEnc)));
}
BOOST_AUTO_TEST_CASE(abi_encodePackedV2_arrayOfStrings)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
string[] x;
event E(string[] indexed);
constructor() public {
x.push("abc");
x.push("0123456789012345678901234567890123456789");
}
function testStorage() public {
emit E(x);
}
function testMemory() public {
string[] memory y = x;
emit E(y);
}
}
)";
compileAndRun(sourceCode, 0, "C");
bytes arrayEncoding = encodeArgs("abc", "0123456789012345678901234567890123456789");
ABI_CHECK(callContractFunction("testStorage()"), encodeArgs());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 2);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E(string[])")));
BOOST_CHECK_EQUAL(logTopic(0, 1), util::keccak256(asString(arrayEncoding)));
ABI_CHECK(callContractFunction("testMemory()"), encodeArgs());
BOOST_REQUIRE_EQUAL(numLogTopics(0), 2);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E(string[])")));
BOOST_CHECK_EQUAL(logTopic(0, 1), util::keccak256(asString(arrayEncoding)));
}
BOOST_AUTO_TEST_CASE(event_signature_in_library)
{
// This tests a bug that was present where the "internal signature"
// for structs was also used for events.
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
library L {
struct S {
uint8 a;
int16 b;
}
event E(S indexed, S);
function f() internal {
S memory s;
emit E(s, s);
}
}
contract C {
constructor() public {
L.f();
}
}
)";
compileAndRun(sourceCode, 0, "C");
BOOST_REQUIRE_EQUAL(numLogTopics(0), 2);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("E((uint8,int16),(uint8,int16))")));
}
BOOST_AUTO_TEST_CASE(abi_encode_with_selector)
{
char const* sourceCode = R"(
contract C {
function f0() public pure returns (bytes memory) {
return abi.encodeWithSelector(0x12345678);
}
function f1() public pure returns (bytes memory) {
return abi.encodeWithSelector(0x12345678, "abc");
}
function f2() public pure returns (bytes memory) {
bytes4 x = 0x12345678;
return abi.encodeWithSelector(x, "abc");
}
function f3() public pure returns (bytes memory) {
bytes4 x = 0x12345678;
return abi.encodeWithSelector(x, uint(-1));
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f0()"), encodeArgs(0x20, 4, "\x12\x34\x56\x78"));
bytes expectation;
expectation = encodeArgs(0x20, 4 + 0x60) + bytes{0x12, 0x34, 0x56, 0x78} + encodeArgs(0x20, 3, "abc") + bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f1()"), expectation);
expectation = encodeArgs(0x20, 4 + 0x60) + bytes{0x12, 0x34, 0x56, 0x78} + encodeArgs(0x20, 3, "abc") + bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f2()"), expectation);
expectation = encodeArgs(0x20, 4 + 0x20) + bytes{0x12, 0x34, 0x56, 0x78} + encodeArgs(u256(-1)) + bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f3()"), expectation);
}
BOOST_AUTO_TEST_CASE(abi_encode_with_selectorv2)
{
char const* sourceCode = R"(
pragma experimental ABIEncoderV2;
contract C {
function f0() public pure returns (bytes memory) {
return abi.encodeWithSelector(0x12345678);
}
function f1() public pure returns (bytes memory) {
return abi.encodeWithSelector(0x12345678, "abc");
}
function f2() public pure returns (bytes memory) {
bytes4 x = 0x12345678;
return abi.encodeWithSelector(x, "abc");
}
function f3() public pure returns (bytes memory) {
bytes4 x = 0x12345678;
return abi.encodeWithSelector(x, uint(-1));
}
struct S { uint a; string b; uint16 c; }
function f4() public pure returns (bytes memory) {
bytes4 x = 0x12345678;
S memory s;
s.a = 0x1234567;
s.b = "Lorem ipsum dolor sit ethereum........";
s.c = 0x1234;
return abi.encodeWithSelector(x, uint(-1), s, uint(3));
}
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f0()"), encodeArgs(0x20, 4, "\x12\x34\x56\x78"));
bytes expectation;
expectation = encodeArgs(0x20, 4 + 0x60) + bytes{0x12, 0x34, 0x56, 0x78} + encodeArgs(0x20, 3, "abc") + bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f1()"), expectation);
expectation = encodeArgs(0x20, 4 + 0x60) + bytes{0x12, 0x34, 0x56, 0x78} + encodeArgs(0x20, 3, "abc") + bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f2()"), expectation);
expectation = encodeArgs(0x20, 4 + 0x20) + bytes{0x12, 0x34, 0x56, 0x78} + encodeArgs(u256(-1)) + bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f3()"), expectation);
expectation =
encodeArgs(0x20, 4 + 0x120) +
bytes{0x12, 0x34, 0x56, 0x78} +
encodeArgs(u256(-1), 0x60, u256(3), 0x1234567, 0x60, 0x1234, 38, "Lorem ipsum dolor sit ethereum........") +
bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f4()"), expectation);
}
BOOST_AUTO_TEST_CASE(abi_encode_with_signature)
{
char const* sourceCode = R"T(
contract C {
function f0() public pure returns (bytes memory) {
return abi.encodeWithSignature("f(uint256)");
}
function f1() public pure returns (bytes memory) {
string memory x = "f(uint256)";
return abi.encodeWithSignature(x, "abc");
}
string xstor;
function f1s() public returns (bytes memory) {
xstor = "f(uint256)";
return abi.encodeWithSignature(xstor, "abc");
}
function f2() public pure returns (bytes memory r, uint[] memory ar) {
string memory x = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.";
uint[] memory y = new uint[](4);
y[0] = uint(-1);
y[1] = uint(-2);
y[2] = uint(-3);
y[3] = uint(-4);
r = abi.encodeWithSignature(x, y);
// The hash uses temporary memory. This allocation re-uses the memory
// and should initialize it properly.
ar = new uint[](2);
}
}
)T";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f0()"), encodeArgs(0x20, 4, "\xb3\xde\x64\x8b"));
bytes expectation;
expectation = encodeArgs(0x20, 4 + 0x60) + bytes{0xb3, 0xde, 0x64, 0x8b} + encodeArgs(0x20, 3, "abc") + bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f1()"), expectation);
ABI_CHECK(callContractFunction("f1s()"), expectation);
expectation =
encodeArgs(0x40, 0x140, 4 + 0xc0) +
(bytes{0xe9, 0xc9, 0x21, 0xcd} + encodeArgs(0x20, 4, u256(-1), u256(-2), u256(-3), u256(-4)) + bytes(0x20 - 4)) +
encodeArgs(2, 0, 0);
ABI_CHECK(callContractFunction("f2()"), expectation);
}
BOOST_AUTO_TEST_CASE(abi_encode_with_signaturev2)
{
char const* sourceCode = R"T(
pragma experimental ABIEncoderV2;
contract C {
function f0() public pure returns (bytes memory) {
return abi.encodeWithSignature("f(uint256)");
}
function f1() public pure returns (bytes memory) {
string memory x = "f(uint256)";
return abi.encodeWithSignature(x, "abc");
}
string xstor;
function f1s() public returns (bytes memory) {
xstor = "f(uint256)";
return abi.encodeWithSignature(xstor, "abc");
}
function f2() public pure returns (bytes memory r, uint[] memory ar) {
string memory x = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.";
uint[] memory y = new uint[](4);
y[0] = uint(-1);
y[1] = uint(-2);
y[2] = uint(-3);
y[3] = uint(-4);
r = abi.encodeWithSignature(x, y);
// The hash uses temporary memory. This allocation re-uses the memory
// and should initialize it properly.
ar = new uint[](2);
}
struct S { uint a; string b; uint16 c; }
function f4() public pure returns (bytes memory) {
bytes4 x = 0x12345678;
S memory s;
s.a = 0x1234567;
s.b = "Lorem ipsum dolor sit ethereum........";
s.c = 0x1234;
return abi.encodeWithSignature(s.b, uint(-1), s, uint(3));
}
}
)T";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f0()"), encodeArgs(0x20, 4, "\xb3\xde\x64\x8b"));
bytes expectation;
expectation = encodeArgs(0x20, 4 + 0x60) + bytes{0xb3, 0xde, 0x64, 0x8b} + encodeArgs(0x20, 3, "abc") + bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f1()"), expectation);
ABI_CHECK(callContractFunction("f1s()"), expectation);
expectation =
encodeArgs(0x40, 0x140, 4 + 0xc0) +
(bytes{0xe9, 0xc9, 0x21, 0xcd} + encodeArgs(0x20, 4, u256(-1), u256(-2), u256(-3), u256(-4)) + bytes(0x20 - 4)) +
encodeArgs(2, 0, 0);
ABI_CHECK(callContractFunction("f2()"), expectation);
expectation =
encodeArgs(0x20, 4 + 0x120) +
bytes{0x7c, 0x79, 0x30, 0x02} +
encodeArgs(u256(-1), 0x60, u256(3), 0x1234567, 0x60, 0x1234, 38, "Lorem ipsum dolor sit ethereum........") +
bytes(0x20 - 4);
ABI_CHECK(callContractFunction("f4()"), expectation);
}
BOOST_AUTO_TEST_CASE(code_access)
{
char const* sourceCode = R"(
contract C {
function lengths() public pure returns (bool) {
uint crLen = type(D).creationCode.length;
uint runLen = type(D).runtimeCode.length;
require(runLen < crLen);
require(crLen >= 0x20);
require(runLen >= 0x20);
return true;
}
function creation() public pure returns (bytes memory) {
return type(D).creationCode;
}
function runtime() public pure returns (bytes memory) {
return type(D).runtimeCode;
}
function runtimeAllocCheck() public pure returns (bytes memory) {
uint[] memory a = new uint[](2);
bytes memory c = type(D).runtimeCode;
uint[] memory b = new uint[](2);
a[0] = 0x1111;
a[1] = 0x2222;
b[0] = 0x3333;
b[1] = 0x4444;
return c;
}
}
contract D {
function f() public pure returns (uint) { return 7; }
}
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("lengths()"), encodeArgs(true));
bytes codeCreation = callContractFunction("creation()");
bytes codeRuntime1 = callContractFunction("runtime()");
bytes codeRuntime2 = callContractFunction("runtimeAllocCheck()");
ABI_CHECK(codeRuntime1, codeRuntime2);
}
BOOST_AUTO_TEST_CASE(contract_name)
{
char const* sourceCode = R"(
contract C {
string public nameAccessor = type(C).name;
string public constant constantNameAccessor = type(C).name;
function name() public virtual pure returns (string memory) {
return type(C).name;
}
}
contract D is C {
function name() public override pure returns (string memory) {
return type(D).name;
}
function name2() public pure returns (string memory) {
return type(C).name;
}
}
contract ThisIsAVeryLongContractNameExceeding256bits {
string public nameAccessor = type(ThisIsAVeryLongContractNameExceeding256bits).name;
string public constant constantNameAccessor = type(ThisIsAVeryLongContractNameExceeding256bits).name;
function name() public pure returns (string memory) {
return type(ThisIsAVeryLongContractNameExceeding256bits).name;
}
}
)";
compileAndRun(sourceCode, 0, "C");
bytes argsC = encodeArgs(u256(0x20), u256(1), "C");
ABI_CHECK(callContractFunction("name()"), argsC);
ABI_CHECK(callContractFunction("nameAccessor()"), argsC);
ABI_CHECK(callContractFunction("constantNameAccessor()"), argsC);
compileAndRun(sourceCode, 0, "D");
bytes argsD = encodeArgs(u256(0x20), u256(1), "D");
ABI_CHECK(callContractFunction("name()"), argsD);
ABI_CHECK(callContractFunction("name2()"), argsC);
string longName = "ThisIsAVeryLongContractNameExceeding256bits";
compileAndRun(sourceCode, 0, longName);
bytes argsLong = encodeArgs(u256(0x20), u256(longName.length()), longName);
ABI_CHECK(callContractFunction("name()"), argsLong);
ABI_CHECK(callContractFunction("nameAccessor()"), argsLong);
ABI_CHECK(callContractFunction("constantNameAccessor()"), argsLong);
}
BOOST_AUTO_TEST_CASE(event_wrong_abi_name)
{
char const* sourceCode = R"(
library ClientReceipt {
event Deposit(Test indexed _from, bytes32 indexed _id, uint _value);
function deposit(bytes32 _id) public {
Test a;
emit Deposit(a, _id, msg.value);
}
}
contract Test {
function f() public {
ClientReceipt.deposit("123");
}
}
)";
compileAndRun(sourceCode, 0, "ClientReceipt", bytes());
compileAndRun(sourceCode, 0, "Test", bytes(), map<string, Address>{{"ClientReceipt", m_contractAddress}});
callContractFunction("f()");
BOOST_REQUIRE_EQUAL(numLogs(), 1);
BOOST_CHECK_EQUAL(logAddress(0), m_contractAddress);
BOOST_REQUIRE_EQUAL(numLogTopics(0), 3);
BOOST_CHECK_EQUAL(logTopic(0, 0), util::keccak256(string("Deposit(address,bytes32,uint256)")));
}
BOOST_AUTO_TEST_CASE(uninitialized_internal_storage_function)
{
char const* sourceCode = R"(
contract Test {
function() internal x;
function f() public returns (uint r) {
function() internal t = x;
assembly { r := t }
}
}
)";
compileAndRun(sourceCode, 0, "Test");
bytes result = callContractFunction("f()");
BOOST_CHECK(!result.empty());
BOOST_CHECK(result != encodeArgs(0));
}
BOOST_AUTO_TEST_CASE(dirty_scratch_space_prior_to_constant_optimiser)
{
char const* sourceCode = R"(
contract C {
event X(uint);
constructor() public {
assembly {
// make scratch space dirty
mstore(0, 0x4242424242424242424242424242424242424242424242424242424242424242)
}
uint x = 0x0000000000001234123412431234123412412342112341234124312341234124;
// This is just to create many instances of x
emit X(x + f() * g(tx.origin) ^ h(block.number));
assembly {
// make scratch space dirty
mstore(0, 0x4242424242424242424242424242424242424242424242424242424242424242)
}
emit X(x);
}
function f() internal pure returns (uint) {
return 0x0000000000001234123412431234123412412342112341234124312341234124;
}
function g(address a) internal pure returns (uint) {
return uint(a) * 0x0000000000001234123412431234123412412342112341234124312341234124;
}
function h(uint a) internal pure returns (uint) {
return a * 0x0000000000001234123412431234123412412342112341234124312341234124;
}
}
)";
compileAndRun(sourceCode, 0, "C");
BOOST_REQUIRE_EQUAL(numLogs(), 2);
BOOST_CHECK_EQUAL(logAddress(1), m_contractAddress);
ABI_CHECK(
logData(1),
encodeArgs(u256("0x0000000000001234123412431234123412412342112341234124312341234124"))
);
}
BOOST_AUTO_TEST_CASE(try_catch_library_call)
{
char const* sourceCode = R"(
library L {
struct S { uint x; }
function integer(uint t, bool b) public view returns (uint) {
if (b) {
return t;
} else {
revert("failure");
}
}
function stru(S storage t, bool b) public view returns (uint) {
if (b) {
return t.x;
} else {
revert("failure");
}
}
}
contract C {
using L for L.S;
L.S t;
function f(bool b) public returns (uint, string memory) {
uint x = 8;
try L.integer(x, b) returns (uint _x) {
return (_x, "");
} catch Error(string memory message) {
return (18, message);
}
}
function g(bool b) public returns (uint, string memory) {
t.x = 9;
try t.stru(b) returns (uint x) {
return (x, "");
} catch Error(string memory message) {
return (19, message);
}
}
}
)";
if (solidity::test::CommonOptions::get().evmVersion().supportsReturndata())
{
compileAndRun(sourceCode, 0, "L", bytes());
compileAndRun(sourceCode, 0, "C", bytes(), map<string, Address>{{"L", m_contractAddress}});
ABI_CHECK(callContractFunction("f(bool)", true), encodeArgs(8, 0x40, 0));
ABI_CHECK(callContractFunction("f(bool)", false), encodeArgs(18, 0x40, 7, "failure"));
ABI_CHECK(callContractFunction("g(bool)", true), encodeArgs(9, 0x40, 0));
ABI_CHECK(callContractFunction("g(bool)", false), encodeArgs(19, 0x40, 7, "failure"));
}
}
BOOST_AUTO_TEST_CASE(strip_reason_strings)
{
char const* sourceCode = R"(
contract C {
function f(bool _x) public pure returns (uint) {
require(_x, "some reason");
return 7;
}
function g(bool _x) public pure returns (uint) {
string memory x = "some indirect reason";
require(_x, x);
return 8;
}
function f1(bool _x) public pure returns (uint) {
if (!_x) revert( /* */ "some reason" /* */ );
return 9;
}
function g1(bool _x) public pure returns (uint) {
string memory x = "some indirect reason";
if (!_x) revert(x);
return 10;
}
}
)";
m_revertStrings = RevertStrings::Default;
compileAndRun(sourceCode, 0, "C");
if (
m_optimiserSettings == OptimiserSettings::minimal() ||
m_optimiserSettings == OptimiserSettings::none()
)
// check that the reason string IS part of the binary.
BOOST_CHECK(toHex(m_output).find("736f6d6520726561736f6e") != std::string::npos);
m_revertStrings = RevertStrings::Strip;
compileAndRun(sourceCode, 0, "C");
// check that the reason string is NOT part of the binary.
BOOST_CHECK(toHex(m_output).find("736f6d6520726561736f6e") == std::string::npos);
ABI_CHECK(callContractFunction("f(bool)", true), encodeArgs(7));
ABI_CHECK(callContractFunction("f(bool)", false), encodeArgs());
ABI_CHECK(callContractFunction("g(bool)", true), encodeArgs(8));
ABI_CHECK(callContractFunction("g(bool)", false), encodeArgs());
ABI_CHECK(callContractFunction("f1(bool)", true), encodeArgs(9));
ABI_CHECK(callContractFunction("f1(bool)", false), encodeArgs());
ABI_CHECK(callContractFunction("g1(bool)", true), encodeArgs(10));
ABI_CHECK(callContractFunction("g1(bool)", false), encodeArgs());
}
BOOST_AUTO_TEST_SUITE_END()
} // end namespaces