mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
2357 lines
84 KiB
C++
2357 lines
84 KiB
C++
/*
|
||
This file is part of solidity.
|
||
|
||
solidity is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
solidity is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
/**
|
||
* @author Christian <c@ethdev.com>
|
||
* @date 2015
|
||
* Type analyzer and checker.
|
||
*/
|
||
|
||
#include <libsolidity/analysis/TypeChecker.h>
|
||
#include <memory>
|
||
#include <boost/algorithm/cxx11/all_of.hpp>
|
||
#include <boost/algorithm/string/predicate.hpp>
|
||
#include <boost/algorithm/string/join.hpp>
|
||
#include <boost/range/adaptor/reversed.hpp>
|
||
#include <libsolidity/ast/AST.h>
|
||
#include <libsolidity/inlineasm/AsmAnalysis.h>
|
||
#include <libsolidity/inlineasm/AsmAnalysisInfo.h>
|
||
#include <libsolidity/inlineasm/AsmData.h>
|
||
#include <libsolidity/interface/ErrorReporter.h>
|
||
#include <libdevcore/Algorithms.h>
|
||
|
||
using namespace std;
|
||
using namespace dev;
|
||
using namespace dev::solidity;
|
||
|
||
namespace
|
||
{
|
||
|
||
bool typeSupportedByOldABIEncoder(Type const& _type)
|
||
{
|
||
if (_type.dataStoredIn(DataLocation::Storage))
|
||
return true;
|
||
if (_type.category() == Type::Category::Struct)
|
||
return false;
|
||
if (_type.category() == Type::Category::Array)
|
||
{
|
||
auto const& arrayType = dynamic_cast<ArrayType const&>(_type);
|
||
auto base = arrayType.baseType();
|
||
if (!typeSupportedByOldABIEncoder(*base) || (base->category() == Type::Category::Array && base->isDynamicallySized()))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
}
|
||
|
||
|
||
bool TypeChecker::checkTypeRequirements(ASTNode const& _contract)
|
||
{
|
||
_contract.accept(*this);
|
||
return Error::containsOnlyWarnings(m_errorReporter.errors());
|
||
}
|
||
|
||
TypePointer const& TypeChecker::type(Expression const& _expression) const
|
||
{
|
||
solAssert(!!_expression.annotation().type, "Type requested but not present.");
|
||
return _expression.annotation().type;
|
||
}
|
||
|
||
TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const
|
||
{
|
||
solAssert(!!_variable.annotation().type, "Type requested but not present.");
|
||
return _variable.annotation().type;
|
||
}
|
||
|
||
bool TypeChecker::visit(ContractDefinition const& _contract)
|
||
{
|
||
m_scope = &_contract;
|
||
|
||
// We force our own visiting order here. The structs have to be excluded below.
|
||
set<ASTNode const*> visited;
|
||
for (auto const& s: _contract.definedStructs())
|
||
visited.insert(s);
|
||
ASTNode::listAccept(_contract.definedStructs(), *this);
|
||
ASTNode::listAccept(_contract.baseContracts(), *this);
|
||
|
||
checkContractDuplicateFunctions(_contract);
|
||
checkContractDuplicateEvents(_contract);
|
||
checkContractIllegalOverrides(_contract);
|
||
checkContractAbstractFunctions(_contract);
|
||
checkContractBaseConstructorArguments(_contract);
|
||
|
||
FunctionDefinition const* function = _contract.constructor();
|
||
if (function)
|
||
{
|
||
if (!function->returnParameters().empty())
|
||
m_errorReporter.typeError(function->returnParameterList()->location(), "Non-empty \"returns\" directive for constructor.");
|
||
if (function->stateMutability() != StateMutability::NonPayable && function->stateMutability() != StateMutability::Payable)
|
||
m_errorReporter.typeError(
|
||
function->location(),
|
||
"Constructor must be payable or non-payable, but is \"" +
|
||
stateMutabilityToString(function->stateMutability()) +
|
||
"\"."
|
||
);
|
||
if (function->visibility() != FunctionDefinition::Visibility::Public && function->visibility() != FunctionDefinition::Visibility::Internal)
|
||
m_errorReporter.typeError(function->location(), "Constructor must be public or internal.");
|
||
}
|
||
|
||
for (FunctionDefinition const* function: _contract.definedFunctions())
|
||
if (function->isFallback())
|
||
{
|
||
if (_contract.isLibrary())
|
||
m_errorReporter.typeError(function->location(), "Libraries cannot have fallback functions.");
|
||
if (function->stateMutability() != StateMutability::NonPayable && function->stateMutability() != StateMutability::Payable)
|
||
m_errorReporter.typeError(
|
||
function->location(),
|
||
"Fallback function must be payable or non-payable, but is \"" +
|
||
stateMutabilityToString(function->stateMutability()) +
|
||
"\"."
|
||
);
|
||
if (!function->parameters().empty())
|
||
m_errorReporter.typeError(function->parameterList().location(), "Fallback function cannot take parameters.");
|
||
if (!function->returnParameters().empty())
|
||
m_errorReporter.typeError(function->returnParameterList()->location(), "Fallback function cannot return values.");
|
||
if (function->visibility() != FunctionDefinition::Visibility::External)
|
||
m_errorReporter.typeError(function->location(), "Fallback function must be defined as \"external\".");
|
||
}
|
||
|
||
for (auto const& n: _contract.subNodes())
|
||
if (!visited.count(n.get()))
|
||
n->accept(*this);
|
||
|
||
checkContractExternalTypeClashes(_contract);
|
||
// check for hash collisions in function signatures
|
||
set<FixedHash<4>> hashes;
|
||
for (auto const& it: _contract.interfaceFunctionList())
|
||
{
|
||
FixedHash<4> const& hash = it.first;
|
||
if (hashes.count(hash))
|
||
m_errorReporter.typeError(
|
||
_contract.location(),
|
||
string("Function signature hash collision for ") + it.second->externalSignature()
|
||
);
|
||
hashes.insert(hash);
|
||
}
|
||
|
||
if (_contract.isLibrary())
|
||
checkLibraryRequirements(_contract);
|
||
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::checkContractDuplicateFunctions(ContractDefinition const& _contract)
|
||
{
|
||
/// Checks that two functions with the same name defined in this contract have different
|
||
/// argument types and that there is at most one constructor.
|
||
map<string, vector<FunctionDefinition const*>> functions;
|
||
FunctionDefinition const* constructor = nullptr;
|
||
FunctionDefinition const* fallback = nullptr;
|
||
for (FunctionDefinition const* function: _contract.definedFunctions())
|
||
if (function->isConstructor())
|
||
{
|
||
if (constructor)
|
||
m_errorReporter.declarationError(
|
||
function->location(),
|
||
SecondarySourceLocation().append("Another declaration is here:", constructor->location()),
|
||
"More than one constructor defined."
|
||
);
|
||
constructor = function;
|
||
}
|
||
else if (function->isFallback())
|
||
{
|
||
if (fallback)
|
||
m_errorReporter.declarationError(
|
||
function->location(),
|
||
SecondarySourceLocation().append("Another declaration is here:", fallback->location()),
|
||
"Only one fallback function is allowed."
|
||
);
|
||
fallback = function;
|
||
}
|
||
else
|
||
{
|
||
solAssert(!function->name().empty(), "");
|
||
functions[function->name()].push_back(function);
|
||
}
|
||
|
||
findDuplicateDefinitions(functions, "Function with same name and arguments defined twice.");
|
||
}
|
||
|
||
void TypeChecker::checkContractDuplicateEvents(ContractDefinition const& _contract)
|
||
{
|
||
/// Checks that two events with the same name defined in this contract have different
|
||
/// argument types
|
||
map<string, vector<EventDefinition const*>> events;
|
||
for (EventDefinition const* event: _contract.events())
|
||
events[event->name()].push_back(event);
|
||
|
||
findDuplicateDefinitions(events, "Event with same name and arguments defined twice.");
|
||
}
|
||
|
||
template <class T>
|
||
void TypeChecker::findDuplicateDefinitions(map<string, vector<T>> const& _definitions, string _message)
|
||
{
|
||
for (auto const& it: _definitions)
|
||
{
|
||
vector<T> const& overloads = it.second;
|
||
set<size_t> reported;
|
||
for (size_t i = 0; i < overloads.size() && !reported.count(i); ++i)
|
||
{
|
||
SecondarySourceLocation ssl;
|
||
|
||
for (size_t j = i + 1; j < overloads.size(); ++j)
|
||
if (FunctionType(*overloads[i]).hasEqualArgumentTypes(FunctionType(*overloads[j])))
|
||
{
|
||
ssl.append("Other declaration is here:", overloads[j]->location());
|
||
reported.insert(j);
|
||
}
|
||
|
||
if (ssl.infos.size() > 0)
|
||
{
|
||
ssl.limitSize(_message);
|
||
|
||
m_errorReporter.declarationError(
|
||
overloads[i]->location(),
|
||
ssl,
|
||
_message
|
||
);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void TypeChecker::checkContractAbstractFunctions(ContractDefinition const& _contract)
|
||
{
|
||
// Mapping from name to function definition (exactly one per argument type equality class) and
|
||
// flag to indicate whether it is fully implemented.
|
||
using FunTypeAndFlag = std::pair<FunctionTypePointer, bool>;
|
||
map<string, vector<FunTypeAndFlag>> functions;
|
||
|
||
// Search from base to derived
|
||
for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.annotation().linearizedBaseContracts))
|
||
for (FunctionDefinition const* function: contract->definedFunctions())
|
||
{
|
||
// Take constructors out of overload hierarchy
|
||
if (function->isConstructor())
|
||
continue;
|
||
auto& overloads = functions[function->name()];
|
||
FunctionTypePointer funType = make_shared<FunctionType>(*function);
|
||
auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag)
|
||
{
|
||
return funType->hasEqualArgumentTypes(*_funAndFlag.first);
|
||
});
|
||
if (it == overloads.end())
|
||
overloads.push_back(make_pair(funType, function->isImplemented()));
|
||
else if (it->second)
|
||
{
|
||
if (!function->isImplemented())
|
||
m_errorReporter.typeError(function->location(), "Redeclaring an already implemented function as abstract");
|
||
}
|
||
else if (function->isImplemented())
|
||
it->second = true;
|
||
}
|
||
|
||
// Set to not fully implemented if at least one flag is false.
|
||
for (auto const& it: functions)
|
||
for (auto const& funAndFlag: it.second)
|
||
if (!funAndFlag.second)
|
||
{
|
||
FunctionDefinition const* function = dynamic_cast<FunctionDefinition const*>(&funAndFlag.first->declaration());
|
||
solAssert(function, "");
|
||
_contract.annotation().unimplementedFunctions.push_back(function);
|
||
break;
|
||
}
|
||
}
|
||
|
||
void TypeChecker::checkContractBaseConstructorArguments(ContractDefinition const& _contract)
|
||
{
|
||
bool const v050 = _contract.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050);
|
||
|
||
vector<ContractDefinition const*> const& bases = _contract.annotation().linearizedBaseContracts;
|
||
|
||
// Determine the arguments that are used for the base constructors.
|
||
for (ContractDefinition const* contract: bases)
|
||
{
|
||
if (FunctionDefinition const* constructor = contract->constructor())
|
||
for (auto const& modifier: constructor->modifiers())
|
||
{
|
||
auto baseContract = dynamic_cast<ContractDefinition const*>(&dereference(*modifier->name()));
|
||
if (modifier->arguments())
|
||
{
|
||
if (baseContract && baseContract->constructor())
|
||
annotateBaseConstructorArguments(_contract, baseContract->constructor(), modifier.get());
|
||
}
|
||
else
|
||
{
|
||
if (v050)
|
||
m_errorReporter.declarationError(
|
||
modifier->location(),
|
||
"Modifier-style base constructor call without arguments."
|
||
);
|
||
else
|
||
m_errorReporter.warning(
|
||
modifier->location(),
|
||
"Modifier-style base constructor call without arguments."
|
||
);
|
||
}
|
||
}
|
||
|
||
for (ASTPointer<InheritanceSpecifier> const& base: contract->baseContracts())
|
||
{
|
||
auto baseContract = dynamic_cast<ContractDefinition const*>(&dereference(base->name()));
|
||
solAssert(baseContract, "");
|
||
|
||
if (baseContract->constructor() && base->arguments() && !base->arguments()->empty())
|
||
annotateBaseConstructorArguments(_contract, baseContract->constructor(), base.get());
|
||
}
|
||
}
|
||
|
||
// check that we get arguments for all base constructors that need it.
|
||
// If not mark the contract as abstract (not fully implemented)
|
||
for (ContractDefinition const* contract: bases)
|
||
if (FunctionDefinition const* constructor = contract->constructor())
|
||
if (contract != &_contract && !constructor->parameters().empty())
|
||
if (!_contract.annotation().baseConstructorArguments.count(constructor))
|
||
_contract.annotation().unimplementedFunctions.push_back(constructor);
|
||
}
|
||
|
||
void TypeChecker::annotateBaseConstructorArguments(
|
||
ContractDefinition const& _currentContract,
|
||
FunctionDefinition const* _baseConstructor,
|
||
ASTNode const* _argumentNode
|
||
)
|
||
{
|
||
solAssert(_baseConstructor, "");
|
||
solAssert(_argumentNode, "");
|
||
|
||
auto insertionResult = _currentContract.annotation().baseConstructorArguments.insert(
|
||
std::make_pair(_baseConstructor, _argumentNode)
|
||
);
|
||
if (!insertionResult.second)
|
||
{
|
||
ASTNode const* previousNode = insertionResult.first->second;
|
||
|
||
SourceLocation const* mainLocation = nullptr;
|
||
SecondarySourceLocation ssl;
|
||
|
||
if (
|
||
_currentContract.location().contains(previousNode->location()) ||
|
||
_currentContract.location().contains(_argumentNode->location())
|
||
)
|
||
{
|
||
mainLocation = &previousNode->location();
|
||
ssl.append("Second constructor call is here:", _argumentNode->location());
|
||
}
|
||
else
|
||
{
|
||
mainLocation = &_currentContract.location();
|
||
ssl.append("First constructor call is here: ", _argumentNode->location());
|
||
ssl.append("Second constructor call is here: ", previousNode->location());
|
||
}
|
||
|
||
m_errorReporter.declarationError(
|
||
*mainLocation,
|
||
ssl,
|
||
"Base constructor arguments given twice."
|
||
);
|
||
}
|
||
|
||
}
|
||
|
||
void TypeChecker::checkContractIllegalOverrides(ContractDefinition const& _contract)
|
||
{
|
||
// TODO unify this at a later point. for this we need to put the constness and the access specifier
|
||
// into the types
|
||
map<string, vector<FunctionDefinition const*>> functions;
|
||
map<string, ModifierDefinition const*> modifiers;
|
||
|
||
// We search from derived to base, so the stored item causes the error.
|
||
for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
|
||
{
|
||
for (FunctionDefinition const* function: contract->definedFunctions())
|
||
{
|
||
if (function->isConstructor())
|
||
continue; // constructors can neither be overridden nor override anything
|
||
string const& name = function->name();
|
||
if (modifiers.count(name))
|
||
m_errorReporter.typeError(modifiers[name]->location(), "Override changes function to modifier.");
|
||
|
||
for (FunctionDefinition const* overriding: functions[name])
|
||
checkFunctionOverride(*overriding, *function);
|
||
|
||
functions[name].push_back(function);
|
||
}
|
||
for (ModifierDefinition const* modifier: contract->functionModifiers())
|
||
{
|
||
string const& name = modifier->name();
|
||
ModifierDefinition const*& override = modifiers[name];
|
||
if (!override)
|
||
override = modifier;
|
||
else if (ModifierType(*override) != ModifierType(*modifier))
|
||
m_errorReporter.typeError(override->location(), "Override changes modifier signature.");
|
||
if (!functions[name].empty())
|
||
m_errorReporter.typeError(override->location(), "Override changes modifier to function.");
|
||
}
|
||
}
|
||
}
|
||
|
||
void TypeChecker::checkFunctionOverride(FunctionDefinition const& function, FunctionDefinition const& super)
|
||
{
|
||
FunctionType functionType(function);
|
||
FunctionType superType(super);
|
||
|
||
if (!functionType.hasEqualArgumentTypes(superType))
|
||
return;
|
||
|
||
if (!function.annotation().superFunction)
|
||
function.annotation().superFunction = &super;
|
||
|
||
if (function.visibility() != super.visibility())
|
||
{
|
||
// visibility is enforced to be external in interfaces, but a contract can override that with public
|
||
if (
|
||
super.inContractKind() == ContractDefinition::ContractKind::Interface &&
|
||
function.inContractKind() != ContractDefinition::ContractKind::Interface &&
|
||
function.visibility() == FunctionDefinition::Visibility::Public
|
||
)
|
||
return;
|
||
overrideError(function, super, "Overriding function visibility differs.");
|
||
}
|
||
|
||
else if (function.stateMutability() != super.stateMutability())
|
||
overrideError(
|
||
function,
|
||
super,
|
||
"Overriding function changes state mutability from \"" +
|
||
stateMutabilityToString(super.stateMutability()) +
|
||
"\" to \"" +
|
||
stateMutabilityToString(function.stateMutability()) +
|
||
"\"."
|
||
);
|
||
|
||
else if (functionType != superType)
|
||
overrideError(function, super, "Overriding function return types differ.");
|
||
}
|
||
|
||
void TypeChecker::overrideError(FunctionDefinition const& function, FunctionDefinition const& super, string message)
|
||
{
|
||
m_errorReporter.typeError(
|
||
function.location(),
|
||
SecondarySourceLocation().append("Overridden function is here:", super.location()),
|
||
message
|
||
);
|
||
}
|
||
|
||
void TypeChecker::checkContractExternalTypeClashes(ContractDefinition const& _contract)
|
||
{
|
||
map<string, vector<pair<Declaration const*, FunctionTypePointer>>> externalDeclarations;
|
||
for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
|
||
{
|
||
for (FunctionDefinition const* f: contract->definedFunctions())
|
||
if (f->isPartOfExternalInterface())
|
||
{
|
||
auto functionType = make_shared<FunctionType>(*f);
|
||
// under non error circumstances this should be true
|
||
if (functionType->interfaceFunctionType())
|
||
externalDeclarations[functionType->externalSignature()].push_back(
|
||
make_pair(f, functionType)
|
||
);
|
||
}
|
||
for (VariableDeclaration const* v: contract->stateVariables())
|
||
if (v->isPartOfExternalInterface())
|
||
{
|
||
auto functionType = make_shared<FunctionType>(*v);
|
||
// under non error circumstances this should be true
|
||
if (functionType->interfaceFunctionType())
|
||
externalDeclarations[functionType->externalSignature()].push_back(
|
||
make_pair(v, functionType)
|
||
);
|
||
}
|
||
}
|
||
for (auto const& it: externalDeclarations)
|
||
for (size_t i = 0; i < it.second.size(); ++i)
|
||
for (size_t j = i + 1; j < it.second.size(); ++j)
|
||
if (!it.second[i].second->hasEqualArgumentTypes(*it.second[j].second))
|
||
m_errorReporter.typeError(
|
||
it.second[j].first->location(),
|
||
"Function overload clash during conversion to external types for arguments."
|
||
);
|
||
}
|
||
|
||
void TypeChecker::checkLibraryRequirements(ContractDefinition const& _contract)
|
||
{
|
||
solAssert(_contract.isLibrary(), "");
|
||
if (!_contract.baseContracts().empty())
|
||
m_errorReporter.typeError(_contract.location(), "Library is not allowed to inherit.");
|
||
|
||
for (auto const& var: _contract.stateVariables())
|
||
if (!var->isConstant())
|
||
m_errorReporter.typeError(var->location(), "Library cannot have non-constant state variables");
|
||
}
|
||
|
||
void TypeChecker::checkDoubleStorageAssignment(Assignment const& _assignment)
|
||
{
|
||
TupleType const& lhs = dynamic_cast<TupleType const&>(*type(_assignment.leftHandSide()));
|
||
TupleType const& rhs = dynamic_cast<TupleType const&>(*type(_assignment.rightHandSide()));
|
||
|
||
bool fillRight = !lhs.components().empty() && (!lhs.components().back() || lhs.components().front());
|
||
size_t storageToStorageCopies = 0;
|
||
size_t toStorageCopies = 0;
|
||
for (size_t i = 0; i < lhs.components().size(); ++i)
|
||
{
|
||
ReferenceType const* ref = dynamic_cast<ReferenceType const*>(lhs.components()[i].get());
|
||
if (!ref || !ref->dataStoredIn(DataLocation::Storage) || ref->isPointer())
|
||
continue;
|
||
size_t rhsPos = fillRight ? i : rhs.components().size() - (lhs.components().size() - i);
|
||
solAssert(rhsPos < rhs.components().size(), "");
|
||
toStorageCopies++;
|
||
if (rhs.components()[rhsPos]->dataStoredIn(DataLocation::Storage))
|
||
storageToStorageCopies++;
|
||
}
|
||
if (storageToStorageCopies >= 1 && toStorageCopies >= 2)
|
||
m_errorReporter.warning(
|
||
_assignment.location(),
|
||
"This assignment performs two copies to storage. Since storage copies do not first "
|
||
"copy to a temporary location, one of them might be overwritten before the second "
|
||
"is executed and thus may have unexpected effects. It is safer to perform the copies "
|
||
"separately or assign to storage pointers first."
|
||
);
|
||
}
|
||
|
||
void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance)
|
||
{
|
||
auto base = dynamic_cast<ContractDefinition const*>(&dereference(_inheritance.name()));
|
||
solAssert(base, "Base contract not available.");
|
||
|
||
if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
|
||
m_errorReporter.typeError(_inheritance.location(), "Interfaces cannot inherit.");
|
||
|
||
if (base->isLibrary())
|
||
m_errorReporter.typeError(_inheritance.location(), "Libraries cannot be inherited from.");
|
||
|
||
auto const& arguments = _inheritance.arguments();
|
||
TypePointers parameterTypes;
|
||
if (base->contractKind() != ContractDefinition::ContractKind::Interface)
|
||
// Interfaces do not have constructors, so there are zero parameters.
|
||
parameterTypes = ContractType(*base).newExpressionType()->parameterTypes();
|
||
|
||
if (arguments)
|
||
{
|
||
if (parameterTypes.size() != arguments->size())
|
||
{
|
||
m_errorReporter.typeError(
|
||
_inheritance.location(),
|
||
"Wrong argument count for constructor call: " +
|
||
toString(arguments->size()) +
|
||
" arguments given but expected " +
|
||
toString(parameterTypes.size()) +
|
||
". Remove parentheses if you do not want to provide arguments here."
|
||
);
|
||
}
|
||
for (size_t i = 0; i < std::min(arguments->size(), parameterTypes.size()); ++i)
|
||
if (!type(*(*arguments)[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
|
||
m_errorReporter.typeError(
|
||
(*arguments)[i]->location(),
|
||
"Invalid type for argument in constructor call. "
|
||
"Invalid implicit conversion from " +
|
||
type(*(*arguments)[i])->toString() +
|
||
" to " +
|
||
parameterTypes[i]->toString() +
|
||
" requested."
|
||
);
|
||
}
|
||
}
|
||
|
||
void TypeChecker::endVisit(UsingForDirective const& _usingFor)
|
||
{
|
||
ContractDefinition const* library = dynamic_cast<ContractDefinition const*>(
|
||
_usingFor.libraryName().annotation().referencedDeclaration
|
||
);
|
||
if (!library || !library->isLibrary())
|
||
m_errorReporter.fatalTypeError(_usingFor.libraryName().location(), "Library name expected.");
|
||
}
|
||
|
||
bool TypeChecker::visit(StructDefinition const& _struct)
|
||
{
|
||
if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
|
||
m_errorReporter.typeError(_struct.location(), "Structs cannot be defined in interfaces.");
|
||
|
||
for (ASTPointer<VariableDeclaration> const& member: _struct.members())
|
||
if (!type(*member)->canBeStored())
|
||
m_errorReporter.typeError(member->location(), "Type cannot be used in struct.");
|
||
|
||
// Check recursion, fatal error if detected.
|
||
auto visitor = [&](StructDefinition const& _struct, CycleDetector<StructDefinition>& _cycleDetector)
|
||
{
|
||
for (ASTPointer<VariableDeclaration> const& member: _struct.members())
|
||
{
|
||
Type const* memberType = type(*member).get();
|
||
while (auto arrayType = dynamic_cast<ArrayType const*>(memberType))
|
||
{
|
||
if (arrayType->isDynamicallySized())
|
||
break;
|
||
memberType = arrayType->baseType().get();
|
||
}
|
||
if (auto structType = dynamic_cast<StructType const*>(memberType))
|
||
if (_cycleDetector.run(structType->structDefinition()))
|
||
return;
|
||
}
|
||
};
|
||
if (CycleDetector<StructDefinition>(visitor).run(_struct) != nullptr)
|
||
m_errorReporter.fatalTypeError(_struct.location(), "Recursive struct definition.");
|
||
|
||
ASTNode::listAccept(_struct.members(), *this);
|
||
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(FunctionDefinition const& _function)
|
||
{
|
||
bool isLibraryFunction =
|
||
dynamic_cast<ContractDefinition const*>(_function.scope()) &&
|
||
dynamic_cast<ContractDefinition const*>(_function.scope())->isLibrary();
|
||
if (_function.isPayable())
|
||
{
|
||
if (isLibraryFunction)
|
||
m_errorReporter.typeError(_function.location(), "Library functions cannot be payable.");
|
||
if (!_function.isConstructor() && !_function.isFallback() && !_function.isPartOfExternalInterface())
|
||
m_errorReporter.typeError(_function.location(), "Internal functions cannot be payable.");
|
||
}
|
||
for (ASTPointer<VariableDeclaration> const& var: _function.parameters() + _function.returnParameters())
|
||
{
|
||
if (!type(*var)->canLiveOutsideStorage())
|
||
m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
|
||
if (_function.visibility() >= FunctionDefinition::Visibility::Public && !(type(*var)->interfaceType(isLibraryFunction)))
|
||
m_errorReporter.fatalTypeError(var->location(), "Internal or recursive type is not allowed for public or external functions.");
|
||
if (
|
||
_function.visibility() > FunctionDefinition::Visibility::Internal &&
|
||
!_function.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
|
||
!typeSupportedByOldABIEncoder(*type(*var))
|
||
)
|
||
m_errorReporter.typeError(
|
||
var->location(),
|
||
"This type is only supported in the new experimental ABI encoder. "
|
||
"Use \"pragma experimental ABIEncoderV2;\" to enable the feature."
|
||
);
|
||
|
||
var->accept(*this);
|
||
}
|
||
set<Declaration const*> modifiers;
|
||
for (ASTPointer<ModifierInvocation> const& modifier: _function.modifiers())
|
||
{
|
||
visitManually(
|
||
*modifier,
|
||
_function.isConstructor() ?
|
||
dynamic_cast<ContractDefinition const&>(*_function.scope()).annotation().linearizedBaseContracts :
|
||
vector<ContractDefinition const*>()
|
||
);
|
||
Declaration const* decl = &dereference(*modifier->name());
|
||
if (modifiers.count(decl))
|
||
{
|
||
if (dynamic_cast<ContractDefinition const*>(decl))
|
||
m_errorReporter.declarationError(modifier->location(), "Base constructor already provided.");
|
||
}
|
||
else
|
||
modifiers.insert(decl);
|
||
}
|
||
if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
|
||
{
|
||
if (_function.isImplemented())
|
||
m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot have an implementation.");
|
||
|
||
if (_function.visibility() != FunctionDefinition::Visibility::External)
|
||
m_errorReporter.typeError(_function.location(), "Functions in interfaces must be declared external.");
|
||
|
||
if (_function.isConstructor())
|
||
m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in interfaces.");
|
||
}
|
||
else if (m_scope->contractKind() == ContractDefinition::ContractKind::Library)
|
||
if (_function.isConstructor())
|
||
m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in libraries.");
|
||
if (_function.isImplemented())
|
||
_function.body().accept(*this);
|
||
else if (_function.isConstructor())
|
||
m_errorReporter.typeError(_function.location(), "Constructor must be implemented if declared.");
|
||
else if (isLibraryFunction && _function.visibility() <= FunctionDefinition::Visibility::Internal)
|
||
m_errorReporter.typeError(_function.location(), "Internal library function must be implemented if declared.");
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(VariableDeclaration const& _variable)
|
||
{
|
||
// Forbid any variable declarations inside interfaces unless they are part of
|
||
// a function's input/output parameters.
|
||
if (
|
||
m_scope->contractKind() == ContractDefinition::ContractKind::Interface
|
||
&& !_variable.isCallableParameter()
|
||
)
|
||
m_errorReporter.typeError(_variable.location(), "Variables cannot be declared in interfaces.");
|
||
|
||
// Variables can be declared without type (with "var"), in which case the first assignment
|
||
// sets the type.
|
||
// Note that assignments before the first declaration are legal because of the special scoping
|
||
// rules inherited from JavaScript.
|
||
|
||
// type is filled either by ReferencesResolver directly from the type name or by
|
||
// TypeChecker at the VariableDeclarationStatement level.
|
||
TypePointer varType = _variable.annotation().type;
|
||
solAssert(!!varType, "Failed to infer variable type.");
|
||
|
||
if (_variable.value())
|
||
expectType(*_variable.value(), *varType);
|
||
if (_variable.isConstant())
|
||
{
|
||
if (!_variable.isStateVariable())
|
||
m_errorReporter.typeError(_variable.location(), "Illegal use of \"constant\" specifier.");
|
||
if (!_variable.type()->isValueType())
|
||
{
|
||
bool allowed = false;
|
||
if (auto arrayType = dynamic_cast<ArrayType const*>(_variable.type().get()))
|
||
allowed = arrayType->isByteArray();
|
||
if (!allowed)
|
||
m_errorReporter.typeError(_variable.location(), "Constants of non-value type not yet implemented.");
|
||
}
|
||
|
||
if (!_variable.value())
|
||
m_errorReporter.typeError(_variable.location(), "Uninitialized \"constant\" variable.");
|
||
else if (!_variable.value()->annotation().isPure)
|
||
m_errorReporter.typeError(
|
||
_variable.value()->location(),
|
||
"Initial value for constant variable has to be compile-time constant."
|
||
);
|
||
}
|
||
if (!_variable.isStateVariable())
|
||
{
|
||
if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData))
|
||
if (!varType->canLiveOutsideStorage())
|
||
m_errorReporter.typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage.");
|
||
}
|
||
else if (
|
||
_variable.visibility() >= VariableDeclaration::Visibility::Public &&
|
||
!FunctionType(_variable).interfaceFunctionType()
|
||
)
|
||
m_errorReporter.typeError(_variable.location(), "Internal or recursive type is not allowed for public state variables.");
|
||
|
||
if (varType->category() == Type::Category::Array)
|
||
if (auto arrayType = dynamic_cast<ArrayType const*>(varType.get()))
|
||
if (
|
||
((arrayType->location() == DataLocation::Memory) ||
|
||
(arrayType->location() == DataLocation::CallData)) &&
|
||
!arrayType->validForCalldata()
|
||
)
|
||
m_errorReporter.typeError(_variable.location(), "Array is too large to be encoded.");
|
||
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(EnumDefinition const& _enum)
|
||
{
|
||
if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
|
||
m_errorReporter.typeError(_enum.location(), "Enumerable cannot be declared in interfaces.");
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::visitManually(
|
||
ModifierInvocation const& _modifier,
|
||
vector<ContractDefinition const*> const& _bases
|
||
)
|
||
{
|
||
std::vector<ASTPointer<Expression>> const& arguments =
|
||
_modifier.arguments() ? *_modifier.arguments() : std::vector<ASTPointer<Expression>>();
|
||
for (ASTPointer<Expression> const& argument: arguments)
|
||
argument->accept(*this);
|
||
_modifier.name()->accept(*this);
|
||
|
||
auto const* declaration = &dereference(*_modifier.name());
|
||
vector<ASTPointer<VariableDeclaration>> emptyParameterList;
|
||
vector<ASTPointer<VariableDeclaration>> const* parameters = nullptr;
|
||
if (auto modifierDecl = dynamic_cast<ModifierDefinition const*>(declaration))
|
||
parameters = &modifierDecl->parameters();
|
||
else
|
||
// check parameters for Base constructors
|
||
for (ContractDefinition const* base: _bases)
|
||
if (declaration == base)
|
||
{
|
||
if (auto referencedConstructor = base->constructor())
|
||
parameters = &referencedConstructor->parameters();
|
||
else
|
||
parameters = &emptyParameterList;
|
||
break;
|
||
}
|
||
if (!parameters)
|
||
{
|
||
m_errorReporter.typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class.");
|
||
return;
|
||
}
|
||
if (parameters->size() != arguments.size())
|
||
{
|
||
m_errorReporter.typeError(
|
||
_modifier.location(),
|
||
"Wrong argument count for modifier invocation: " +
|
||
toString(arguments.size()) +
|
||
" arguments given but expected " +
|
||
toString(parameters->size()) +
|
||
"."
|
||
);
|
||
return;
|
||
}
|
||
for (size_t i = 0; i < arguments.size(); ++i)
|
||
if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i])))
|
||
m_errorReporter.typeError(
|
||
arguments[i]->location(),
|
||
"Invalid type for argument in modifier invocation. "
|
||
"Invalid implicit conversion from " +
|
||
type(*arguments[i])->toString() +
|
||
" to " +
|
||
type(*(*parameters)[i])->toString() +
|
||
" requested."
|
||
);
|
||
}
|
||
|
||
bool TypeChecker::visit(EventDefinition const& _eventDef)
|
||
{
|
||
unsigned numIndexed = 0;
|
||
for (ASTPointer<VariableDeclaration> const& var: _eventDef.parameters())
|
||
{
|
||
if (var->isIndexed())
|
||
numIndexed++;
|
||
if (!type(*var)->canLiveOutsideStorage())
|
||
m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
|
||
if (!type(*var)->interfaceType(false))
|
||
m_errorReporter.typeError(var->location(), "Internal or recursive type is not allowed as event parameter type.");
|
||
}
|
||
if (_eventDef.isAnonymous() && numIndexed > 4)
|
||
m_errorReporter.typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event.");
|
||
else if (!_eventDef.isAnonymous() && numIndexed > 3)
|
||
m_errorReporter.typeError(_eventDef.location(), "More than 3 indexed arguments for event.");
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(FunctionTypeName const& _funType)
|
||
{
|
||
FunctionType const& fun = dynamic_cast<FunctionType const&>(*_funType.annotation().type);
|
||
if (fun.kind() == FunctionType::Kind::External)
|
||
if (!fun.canBeUsedExternally(false))
|
||
m_errorReporter.typeError(_funType.location(), "External function type uses internal types.");
|
||
}
|
||
|
||
bool TypeChecker::visit(InlineAssembly const& _inlineAssembly)
|
||
{
|
||
// External references have already been resolved in a prior stage and stored in the annotation.
|
||
// We run the resolve step again regardless.
|
||
julia::ExternalIdentifierAccess::Resolver identifierAccess = [&](
|
||
assembly::Identifier const& _identifier,
|
||
julia::IdentifierContext _context,
|
||
bool
|
||
)
|
||
{
|
||
auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier);
|
||
if (ref == _inlineAssembly.annotation().externalReferences.end())
|
||
return size_t(-1);
|
||
Declaration const* declaration = ref->second.declaration;
|
||
solAssert(!!declaration, "");
|
||
if (auto var = dynamic_cast<VariableDeclaration const*>(declaration))
|
||
{
|
||
if (var->isConstant())
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Constant variables not supported by inline assembly.");
|
||
return size_t(-1);
|
||
}
|
||
else if (ref->second.isSlot || ref->second.isOffset)
|
||
{
|
||
if (!var->isStateVariable() && !var->type()->dataStoredIn(DataLocation::Storage))
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
|
||
return size_t(-1);
|
||
}
|
||
else if (_context != julia::IdentifierContext::RValue)
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Storage variables cannot be assigned to.");
|
||
return size_t(-1);
|
||
}
|
||
}
|
||
else if (!var->isLocalVariable())
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Only local variables are supported. To access storage variables, use the _slot and _offset suffixes.");
|
||
return size_t(-1);
|
||
}
|
||
else if (var->type()->dataStoredIn(DataLocation::Storage))
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "You have to use the _slot or _offset suffix to access storage reference variables.");
|
||
return size_t(-1);
|
||
}
|
||
else if (var->type()->sizeOnStack() != 1)
|
||
{
|
||
if (var->type()->dataStoredIn(DataLocation::CallData))
|
||
m_errorReporter.typeError(_identifier.location, "Call data elements cannot be accessed directly. Copy to a local variable first or use \"calldataload\" or \"calldatacopy\" with manually determined offsets and sizes.");
|
||
else
|
||
m_errorReporter.typeError(_identifier.location, "Only types that use one stack slot are supported.");
|
||
return size_t(-1);
|
||
}
|
||
}
|
||
else if (_context == julia::IdentifierContext::LValue)
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Only local variables can be assigned to in inline assembly.");
|
||
return size_t(-1);
|
||
}
|
||
|
||
if (_context == julia::IdentifierContext::RValue)
|
||
{
|
||
solAssert(!!declaration->type(), "Type of declaration required but not yet determined.");
|
||
if (dynamic_cast<FunctionDefinition const*>(declaration))
|
||
{
|
||
}
|
||
else if (dynamic_cast<VariableDeclaration const*>(declaration))
|
||
{
|
||
}
|
||
else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
|
||
{
|
||
if (!contract->isLibrary())
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Expected a library.");
|
||
return size_t(-1);
|
||
}
|
||
}
|
||
else
|
||
return size_t(-1);
|
||
}
|
||
ref->second.valueSize = 1;
|
||
return size_t(1);
|
||
};
|
||
solAssert(!_inlineAssembly.annotation().analysisInfo, "");
|
||
_inlineAssembly.annotation().analysisInfo = make_shared<assembly::AsmAnalysisInfo>();
|
||
boost::optional<Error::Type> errorTypeForLoose =
|
||
m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050) ?
|
||
Error::Type::SyntaxError :
|
||
Error::Type::Warning;
|
||
assembly::AsmAnalyzer analyzer(
|
||
*_inlineAssembly.annotation().analysisInfo,
|
||
m_errorReporter,
|
||
m_evmVersion,
|
||
errorTypeForLoose,
|
||
assembly::AsmFlavour::Loose,
|
||
identifierAccess
|
||
);
|
||
if (!analyzer.analyze(_inlineAssembly.operations()))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
bool TypeChecker::visit(IfStatement const& _ifStatement)
|
||
{
|
||
expectType(_ifStatement.condition(), BoolType());
|
||
_ifStatement.trueStatement().accept(*this);
|
||
if (_ifStatement.falseStatement())
|
||
_ifStatement.falseStatement()->accept(*this);
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(WhileStatement const& _whileStatement)
|
||
{
|
||
expectType(_whileStatement.condition(), BoolType());
|
||
_whileStatement.body().accept(*this);
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(ForStatement const& _forStatement)
|
||
{
|
||
if (_forStatement.initializationExpression())
|
||
_forStatement.initializationExpression()->accept(*this);
|
||
if (_forStatement.condition())
|
||
expectType(*_forStatement.condition(), BoolType());
|
||
if (_forStatement.loopExpression())
|
||
_forStatement.loopExpression()->accept(*this);
|
||
_forStatement.body().accept(*this);
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(Return const& _return)
|
||
{
|
||
if (!_return.expression())
|
||
return;
|
||
ParameterList const* params = _return.annotation().functionReturnParameters;
|
||
if (!params)
|
||
{
|
||
m_errorReporter.typeError(_return.location(), "Return arguments not allowed.");
|
||
return;
|
||
}
|
||
TypePointers returnTypes;
|
||
for (auto const& var: params->parameters())
|
||
returnTypes.push_back(type(*var));
|
||
if (auto tupleType = dynamic_cast<TupleType const*>(type(*_return.expression()).get()))
|
||
{
|
||
if (tupleType->components().size() != params->parameters().size())
|
||
m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
|
||
else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes)))
|
||
m_errorReporter.typeError(
|
||
_return.expression()->location(),
|
||
"Return argument type " +
|
||
type(*_return.expression())->toString() +
|
||
" is not implicitly convertible to expected type " +
|
||
TupleType(returnTypes).toString(false) +
|
||
"."
|
||
);
|
||
}
|
||
else if (params->parameters().size() != 1)
|
||
m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
|
||
else
|
||
{
|
||
TypePointer const& expected = type(*params->parameters().front());
|
||
if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected))
|
||
m_errorReporter.typeError(
|
||
_return.expression()->location(),
|
||
"Return argument type " +
|
||
type(*_return.expression())->toString() +
|
||
" is not implicitly convertible to expected type (type of first return variable) " +
|
||
expected->toString() +
|
||
"."
|
||
);
|
||
}
|
||
}
|
||
|
||
void TypeChecker::endVisit(EmitStatement const& _emit)
|
||
{
|
||
if (
|
||
_emit.eventCall().annotation().kind != FunctionCallKind::FunctionCall ||
|
||
type(_emit.eventCall().expression())->category() != Type::Category::Function ||
|
||
dynamic_cast<FunctionType const&>(*type(_emit.eventCall().expression())).kind() != FunctionType::Kind::Event
|
||
)
|
||
m_errorReporter.typeError(_emit.eventCall().expression().location(), "Expression has to be an event invocation.");
|
||
m_insideEmitStatement = false;
|
||
}
|
||
|
||
namespace
|
||
{
|
||
/**
|
||
* @returns a suggested left-hand-side of a multi-variable declaration contairing
|
||
* the variable declarations given in @a _decls.
|
||
*/
|
||
string createTupleDecl(vector<ASTPointer<VariableDeclaration>> const& _decls)
|
||
{
|
||
vector<string> components;
|
||
for (ASTPointer<VariableDeclaration> const& decl: _decls)
|
||
if (decl)
|
||
components.emplace_back(decl->annotation().type->toString(false) + " " + decl->name());
|
||
else
|
||
components.emplace_back();
|
||
|
||
if (_decls.size() == 1)
|
||
return components.front();
|
||
else
|
||
return "(" + boost::algorithm::join(components, ", ") + ")";
|
||
}
|
||
|
||
bool typeCanBeExpressed(vector<ASTPointer<VariableDeclaration>> const& decls)
|
||
{
|
||
for (ASTPointer<VariableDeclaration> const& decl: decls)
|
||
{
|
||
// skip empty tuples (they can be expressed of course)
|
||
if (!decl)
|
||
continue;
|
||
|
||
if (auto functionType = dynamic_cast<FunctionType const*>(decl->annotation().type.get()))
|
||
if (
|
||
functionType->kind() != FunctionType::Kind::Internal &&
|
||
functionType->kind() != FunctionType::Kind::External
|
||
)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
}
|
||
|
||
bool TypeChecker::visit(VariableDeclarationStatement const& _statement)
|
||
{
|
||
if (!_statement.initialValue())
|
||
{
|
||
// No initial value is only permitted for single variables with specified type.
|
||
if (_statement.declarations().size() != 1 || !_statement.declarations().front())
|
||
{
|
||
if (boost::algorithm::all_of_equal(_statement.declarations(), nullptr))
|
||
{
|
||
// The syntax checker has already generated an error for this case (empty LHS tuple).
|
||
solAssert(m_errorReporter.hasErrors(), "");
|
||
|
||
// It is okay to return here, as there are no named components on the
|
||
// left-hand-side that could cause any damage later.
|
||
return false;
|
||
}
|
||
else
|
||
// Bailing out *fatal* here, as those (untyped) vars may be used later, and diagnostics wouldn't be helpful then.
|
||
m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");
|
||
}
|
||
|
||
VariableDeclaration const& varDecl = *_statement.declarations().front();
|
||
if (!varDecl.annotation().type)
|
||
m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");
|
||
|
||
if (auto ref = dynamic_cast<ReferenceType const*>(type(varDecl).get()))
|
||
{
|
||
if (ref->dataStoredIn(DataLocation::Storage))
|
||
{
|
||
string errorText{"Uninitialized storage pointer."};
|
||
if (varDecl.referenceLocation() == VariableDeclaration::Location::Default)
|
||
errorText += " Did you mean '<type> memory " + varDecl.name() + "'?";
|
||
solAssert(m_scope, "");
|
||
m_errorReporter.declarationError(varDecl.location(), errorText);
|
||
}
|
||
}
|
||
else if (dynamic_cast<MappingType const*>(type(varDecl).get()))
|
||
m_errorReporter.typeError(
|
||
varDecl.location(),
|
||
"Uninitialized mapping. Mappings cannot be created dynamically, you have to assign them from a state variable."
|
||
);
|
||
varDecl.accept(*this);
|
||
return false;
|
||
}
|
||
|
||
// Here we have an initial value and might have to derive some types before we can visit
|
||
// the variable declaration(s).
|
||
|
||
_statement.initialValue()->accept(*this);
|
||
TypePointers valueTypes;
|
||
if (auto tupleType = dynamic_cast<TupleType const*>(type(*_statement.initialValue()).get()))
|
||
valueTypes = tupleType->components();
|
||
else
|
||
valueTypes = TypePointers{type(*_statement.initialValue())};
|
||
|
||
vector<ASTPointer<VariableDeclaration>> const& variables = _statement.declarations();
|
||
if (variables.empty())
|
||
// We already have an error for this in the SyntaxChecker.
|
||
solAssert(m_errorReporter.hasErrors(), "");
|
||
else if (valueTypes.size() != variables.size())
|
||
m_errorReporter.typeError(
|
||
_statement.location(),
|
||
"Different number of components on the left hand side (" +
|
||
toString(variables.size()) +
|
||
") than on the right hand side (" +
|
||
toString(valueTypes.size()) +
|
||
")."
|
||
);
|
||
|
||
bool autoTypeDeductionNeeded = false;
|
||
|
||
for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i)
|
||
{
|
||
if (!variables[i])
|
||
continue;
|
||
VariableDeclaration const& var = *variables[i];
|
||
solAssert(!var.value(), "Value has to be tied to statement.");
|
||
TypePointer const& valueComponentType = valueTypes[i];
|
||
solAssert(!!valueComponentType, "");
|
||
if (!var.annotation().type)
|
||
{
|
||
autoTypeDeductionNeeded = true;
|
||
|
||
// Infer type from value.
|
||
solAssert(!var.typeName(), "");
|
||
var.annotation().type = valueComponentType->mobileType();
|
||
if (!var.annotation().type)
|
||
{
|
||
if (valueComponentType->category() == Type::Category::RationalNumber)
|
||
m_errorReporter.fatalTypeError(
|
||
_statement.initialValue()->location(),
|
||
"Invalid rational " +
|
||
valueComponentType->toString() +
|
||
" (absolute value too large or division by zero)."
|
||
);
|
||
else
|
||
solAssert(false, "");
|
||
}
|
||
else if (*var.annotation().type == TupleType())
|
||
m_errorReporter.typeError(
|
||
var.location(),
|
||
"Cannot declare variable with void (empty tuple) type."
|
||
);
|
||
else if (valueComponentType->category() == Type::Category::RationalNumber)
|
||
{
|
||
string typeName = var.annotation().type->toString(true);
|
||
string extension;
|
||
if (auto type = dynamic_cast<IntegerType const*>(var.annotation().type.get()))
|
||
{
|
||
unsigned numBits = type->numBits();
|
||
bool isSigned = type->isSigned();
|
||
solAssert(numBits > 0, "");
|
||
string minValue;
|
||
string maxValue;
|
||
if (isSigned)
|
||
{
|
||
numBits--;
|
||
minValue = "-" + bigint(bigint(1) << numBits).str();
|
||
}
|
||
else
|
||
minValue = "0";
|
||
maxValue = bigint((bigint(1) << numBits) - 1).str();
|
||
extension = ", which can hold values between " + minValue + " and " + maxValue;
|
||
}
|
||
else
|
||
solAssert(dynamic_cast<FixedPointType const*>(var.annotation().type.get()), "Unknown type.");
|
||
}
|
||
|
||
var.accept(*this);
|
||
}
|
||
else
|
||
{
|
||
var.accept(*this);
|
||
if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type))
|
||
{
|
||
if (
|
||
valueComponentType->category() == Type::Category::RationalNumber &&
|
||
dynamic_cast<RationalNumberType const&>(*valueComponentType).isFractional() &&
|
||
valueComponentType->mobileType()
|
||
)
|
||
m_errorReporter.typeError(
|
||
_statement.location(),
|
||
"Type " +
|
||
valueComponentType->toString() +
|
||
" is not implicitly convertible to expected type " +
|
||
var.annotation().type->toString() +
|
||
". Try converting to type " +
|
||
valueComponentType->mobileType()->toString() +
|
||
" or use an explicit conversion."
|
||
);
|
||
else
|
||
m_errorReporter.typeError(
|
||
_statement.location(),
|
||
"Type " +
|
||
valueComponentType->toString() +
|
||
" is not implicitly convertible to expected type " +
|
||
var.annotation().type->toString() +
|
||
"."
|
||
);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (autoTypeDeductionNeeded)
|
||
{
|
||
if (!typeCanBeExpressed(variables))
|
||
m_errorReporter.syntaxError(
|
||
_statement.location(),
|
||
"Use of the \"var\" keyword is disallowed. "
|
||
"Type cannot be expressed in syntax."
|
||
);
|
||
else
|
||
m_errorReporter.syntaxError(
|
||
_statement.location(),
|
||
"Use of the \"var\" keyword is disallowed. "
|
||
"Use explicit declaration `" + createTupleDecl(variables) + " = ...´ instead."
|
||
);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(ExpressionStatement const& _statement)
|
||
{
|
||
if (type(_statement.expression())->category() == Type::Category::RationalNumber)
|
||
if (!dynamic_cast<RationalNumberType const&>(*type(_statement.expression())).mobileType())
|
||
m_errorReporter.typeError(_statement.expression().location(), "Invalid rational number.");
|
||
|
||
if (auto call = dynamic_cast<FunctionCall const*>(&_statement.expression()))
|
||
{
|
||
if (auto callType = dynamic_cast<FunctionType const*>(type(call->expression()).get()))
|
||
{
|
||
auto kind = callType->kind();
|
||
if (
|
||
kind == FunctionType::Kind::BareCall ||
|
||
kind == FunctionType::Kind::BareCallCode ||
|
||
kind == FunctionType::Kind::BareDelegateCall
|
||
)
|
||
m_errorReporter.warning(_statement.location(), "Return value of low-level calls not used.");
|
||
else if (kind == FunctionType::Kind::Send)
|
||
m_errorReporter.warning(_statement.location(), "Failure condition of 'send' ignored. Consider using 'transfer' instead.");
|
||
}
|
||
}
|
||
}
|
||
|
||
bool TypeChecker::visit(Conditional const& _conditional)
|
||
{
|
||
expectType(_conditional.condition(), BoolType());
|
||
|
||
_conditional.trueExpression().accept(*this);
|
||
_conditional.falseExpression().accept(*this);
|
||
|
||
TypePointer trueType = type(_conditional.trueExpression())->mobileType();
|
||
TypePointer falseType = type(_conditional.falseExpression())->mobileType();
|
||
if (!trueType)
|
||
m_errorReporter.fatalTypeError(_conditional.trueExpression().location(), "Invalid mobile type.");
|
||
if (!falseType)
|
||
m_errorReporter.fatalTypeError(_conditional.falseExpression().location(), "Invalid mobile type.");
|
||
|
||
TypePointer commonType = Type::commonType(trueType, falseType);
|
||
if (!commonType)
|
||
{
|
||
m_errorReporter.typeError(
|
||
_conditional.location(),
|
||
"True expression's type " +
|
||
trueType->toString() +
|
||
" doesn't match false expression's type " +
|
||
falseType->toString() +
|
||
"."
|
||
);
|
||
// even we can't find a common type, we have to set a type here,
|
||
// otherwise the upper statement will not be able to check the type.
|
||
commonType = trueType;
|
||
}
|
||
|
||
_conditional.annotation().type = commonType;
|
||
_conditional.annotation().isPure =
|
||
_conditional.condition().annotation().isPure &&
|
||
_conditional.trueExpression().annotation().isPure &&
|
||
_conditional.falseExpression().annotation().isPure;
|
||
|
||
if (_conditional.annotation().lValueRequested)
|
||
m_errorReporter.typeError(
|
||
_conditional.location(),
|
||
"Conditional expression as left value is not supported yet."
|
||
);
|
||
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(Assignment const& _assignment)
|
||
{
|
||
requireLValue(_assignment.leftHandSide());
|
||
TypePointer t = type(_assignment.leftHandSide());
|
||
_assignment.annotation().type = t;
|
||
if (TupleType const* tupleType = dynamic_cast<TupleType const*>(t.get()))
|
||
{
|
||
if (_assignment.assignmentOperator() != Token::Assign)
|
||
m_errorReporter.typeError(
|
||
_assignment.location(),
|
||
"Compound assignment is not allowed for tuple types."
|
||
);
|
||
// Sequenced assignments of tuples is not valid, make the result a "void" type.
|
||
_assignment.annotation().type = make_shared<TupleType>();
|
||
|
||
expectType(_assignment.rightHandSide(), *tupleType);
|
||
|
||
// expectType does not cause fatal errors, so we have to check again here.
|
||
if (dynamic_cast<TupleType const*>(type(_assignment.rightHandSide()).get()))
|
||
checkDoubleStorageAssignment(_assignment);
|
||
}
|
||
else if (t->category() == Type::Category::Mapping)
|
||
{
|
||
m_errorReporter.typeError(_assignment.location(), "Mappings cannot be assigned to.");
|
||
_assignment.rightHandSide().accept(*this);
|
||
}
|
||
else if (_assignment.assignmentOperator() == Token::Assign)
|
||
expectType(_assignment.rightHandSide(), *t);
|
||
else
|
||
{
|
||
// compound assignment
|
||
_assignment.rightHandSide().accept(*this);
|
||
TypePointer resultType = t->binaryOperatorResult(
|
||
Token::AssignmentToBinaryOp(_assignment.assignmentOperator()),
|
||
type(_assignment.rightHandSide())
|
||
);
|
||
if (!resultType || *resultType != *t)
|
||
m_errorReporter.typeError(
|
||
_assignment.location(),
|
||
"Operator " +
|
||
string(Token::toString(_assignment.assignmentOperator())) +
|
||
" not compatible with types " +
|
||
t->toString() +
|
||
" and " +
|
||
type(_assignment.rightHandSide())->toString()
|
||
);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(TupleExpression const& _tuple)
|
||
{
|
||
vector<ASTPointer<Expression>> const& components = _tuple.components();
|
||
TypePointers types;
|
||
|
||
if (_tuple.annotation().lValueRequested)
|
||
{
|
||
if (_tuple.isInlineArray())
|
||
m_errorReporter.fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue.");
|
||
for (auto const& component: components)
|
||
if (component)
|
||
{
|
||
requireLValue(*component);
|
||
types.push_back(type(*component));
|
||
}
|
||
else
|
||
types.push_back(TypePointer());
|
||
if (components.size() == 1)
|
||
_tuple.annotation().type = type(*components[0]);
|
||
else
|
||
_tuple.annotation().type = make_shared<TupleType>(types);
|
||
// If some of the components are not LValues, the error is reported above.
|
||
_tuple.annotation().isLValue = true;
|
||
}
|
||
else
|
||
{
|
||
bool isPure = true;
|
||
TypePointer inlineArrayType;
|
||
|
||
for (size_t i = 0; i < components.size(); ++i)
|
||
{
|
||
if (!components[i])
|
||
m_errorReporter.fatalTypeError(_tuple.location(), "Tuple component cannot be empty.");
|
||
else if (components[i])
|
||
{
|
||
components[i]->accept(*this);
|
||
types.push_back(type(*components[i]));
|
||
|
||
if (types[i]->category() == Type::Category::Tuple)
|
||
if (dynamic_cast<TupleType const&>(*types[i]).components().empty())
|
||
{
|
||
if (_tuple.isInlineArray())
|
||
m_errorReporter.fatalTypeError(components[i]->location(), "Array component cannot be empty.");
|
||
m_errorReporter.typeError(components[i]->location(), "Tuple component cannot be empty.");
|
||
}
|
||
|
||
// Note: code generation will visit each of the expression even if they are not assigned from.
|
||
if (types[i]->category() == Type::Category::RationalNumber && components.size() > 1)
|
||
if (!dynamic_cast<RationalNumberType const&>(*types[i]).mobileType())
|
||
m_errorReporter.fatalTypeError(components[i]->location(), "Invalid rational number.");
|
||
|
||
if (_tuple.isInlineArray())
|
||
solAssert(!!types[i], "Inline array cannot have empty components");
|
||
if (_tuple.isInlineArray())
|
||
{
|
||
if ((i == 0 || inlineArrayType) && !types[i]->mobileType())
|
||
m_errorReporter.fatalTypeError(components[i]->location(), "Invalid mobile type.");
|
||
|
||
if (i == 0)
|
||
inlineArrayType = types[i]->mobileType();
|
||
else if (inlineArrayType)
|
||
inlineArrayType = Type::commonType(inlineArrayType, types[i]);
|
||
}
|
||
if (!components[i]->annotation().isPure)
|
||
isPure = false;
|
||
}
|
||
else
|
||
types.push_back(TypePointer());
|
||
}
|
||
_tuple.annotation().isPure = isPure;
|
||
if (_tuple.isInlineArray())
|
||
{
|
||
if (!inlineArrayType)
|
||
m_errorReporter.fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements.");
|
||
_tuple.annotation().type = make_shared<ArrayType>(DataLocation::Memory, inlineArrayType, types.size());
|
||
}
|
||
else
|
||
{
|
||
if (components.size() == 1)
|
||
_tuple.annotation().type = type(*components[0]);
|
||
else
|
||
_tuple.annotation().type = make_shared<TupleType>(types);
|
||
}
|
||
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(UnaryOperation const& _operation)
|
||
{
|
||
// Inc, Dec, Add, Sub, Not, BitNot, Delete
|
||
Token::Value op = _operation.getOperator();
|
||
bool const modifying = (op == Token::Value::Inc || op == Token::Value::Dec || op == Token::Value::Delete);
|
||
if (modifying)
|
||
requireLValue(_operation.subExpression());
|
||
else
|
||
_operation.subExpression().accept(*this);
|
||
TypePointer const& subExprType = type(_operation.subExpression());
|
||
TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op);
|
||
if (!t)
|
||
{
|
||
m_errorReporter.typeError(
|
||
_operation.location(),
|
||
"Unary operator " +
|
||
string(Token::toString(op)) +
|
||
" cannot be applied to type " +
|
||
subExprType->toString()
|
||
);
|
||
t = subExprType;
|
||
}
|
||
_operation.annotation().type = t;
|
||
_operation.annotation().isPure = !modifying && _operation.subExpression().annotation().isPure;
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(BinaryOperation const& _operation)
|
||
{
|
||
TypePointer const& leftType = type(_operation.leftExpression());
|
||
TypePointer const& rightType = type(_operation.rightExpression());
|
||
TypePointer commonType = leftType->binaryOperatorResult(_operation.getOperator(), rightType);
|
||
if (!commonType)
|
||
{
|
||
m_errorReporter.typeError(
|
||
_operation.location(),
|
||
"Operator " +
|
||
string(Token::toString(_operation.getOperator())) +
|
||
" not compatible with types " +
|
||
leftType->toString() +
|
||
" and " +
|
||
rightType->toString()
|
||
);
|
||
commonType = leftType;
|
||
}
|
||
_operation.annotation().commonType = commonType;
|
||
_operation.annotation().type =
|
||
Token::isCompareOp(_operation.getOperator()) ?
|
||
make_shared<BoolType>() :
|
||
commonType;
|
||
_operation.annotation().isPure =
|
||
_operation.leftExpression().annotation().isPure &&
|
||
_operation.rightExpression().annotation().isPure;
|
||
|
||
if (_operation.getOperator() == Token::Exp || _operation.getOperator() == Token::SHL)
|
||
{
|
||
string operation = _operation.getOperator() == Token::Exp ? "exponentiation" : "shift";
|
||
if (
|
||
leftType->category() == Type::Category::RationalNumber &&
|
||
rightType->category() != Type::Category::RationalNumber
|
||
)
|
||
if ((
|
||
commonType->category() == Type::Category::Integer &&
|
||
dynamic_cast<IntegerType const&>(*commonType).numBits() != 256
|
||
) || (
|
||
commonType->category() == Type::Category::FixedPoint &&
|
||
dynamic_cast<FixedPointType const&>(*commonType).numBits() != 256
|
||
))
|
||
m_errorReporter.warning(
|
||
_operation.location(),
|
||
"Result of " + operation + " has type " + commonType->toString() + " and thus "
|
||
"might overflow. Silence this warning by converting the literal to the "
|
||
"expected type."
|
||
);
|
||
}
|
||
}
|
||
|
||
bool TypeChecker::visit(FunctionCall const& _functionCall)
|
||
{
|
||
bool isPositionalCall = _functionCall.names().empty();
|
||
vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
|
||
vector<ASTPointer<ASTString>> const& argumentNames = _functionCall.names();
|
||
|
||
bool isPure = true;
|
||
|
||
// We need to check arguments' type first as they will be needed for overload resolution.
|
||
shared_ptr<TypePointers> argumentTypes;
|
||
if (isPositionalCall)
|
||
argumentTypes = make_shared<TypePointers>();
|
||
for (ASTPointer<Expression const> const& argument: arguments)
|
||
{
|
||
argument->accept(*this);
|
||
if (!argument->annotation().isPure)
|
||
isPure = false;
|
||
// only store them for positional calls
|
||
if (isPositionalCall)
|
||
argumentTypes->push_back(type(*argument));
|
||
}
|
||
if (isPositionalCall)
|
||
_functionCall.expression().annotation().argumentTypes = move(argumentTypes);
|
||
|
||
_functionCall.expression().accept(*this);
|
||
TypePointer expressionType = type(_functionCall.expression());
|
||
|
||
if (auto const* typeType = dynamic_cast<TypeType const*>(expressionType.get()))
|
||
{
|
||
if (typeType->actualType()->category() == Type::Category::Struct)
|
||
_functionCall.annotation().kind = FunctionCallKind::StructConstructorCall;
|
||
else
|
||
_functionCall.annotation().kind = FunctionCallKind::TypeConversion;
|
||
|
||
}
|
||
else
|
||
_functionCall.annotation().kind = FunctionCallKind::FunctionCall;
|
||
solAssert(_functionCall.annotation().kind != FunctionCallKind::Unset, "");
|
||
|
||
if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
|
||
{
|
||
TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
|
||
TypePointer resultType = t.actualType();
|
||
if (arguments.size() != 1)
|
||
m_errorReporter.typeError(_functionCall.location(), "Exactly one argument expected for explicit type conversion.");
|
||
else if (!isPositionalCall)
|
||
m_errorReporter.typeError(_functionCall.location(), "Type conversion cannot allow named arguments.");
|
||
else
|
||
{
|
||
TypePointer const& argType = type(*arguments.front());
|
||
if (auto argRefType = dynamic_cast<ReferenceType const*>(argType.get()))
|
||
// do not change the data location when converting
|
||
// (data location cannot yet be specified for type conversions)
|
||
resultType = ReferenceType::copyForLocationIfReference(argRefType->location(), resultType);
|
||
if (!argType->isExplicitlyConvertibleTo(*resultType))
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Explicit type conversion not allowed from \"" +
|
||
argType->toString() +
|
||
"\" to \"" +
|
||
resultType->toString() +
|
||
"\"."
|
||
);
|
||
}
|
||
_functionCall.annotation().type = resultType;
|
||
_functionCall.annotation().isPure = isPure;
|
||
|
||
return false;
|
||
}
|
||
|
||
// Actual function call or struct constructor call.
|
||
|
||
FunctionTypePointer functionType;
|
||
|
||
/// For error message: Struct members that were removed during conversion to memory.
|
||
set<string> membersRemovedForStructConstructor;
|
||
if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall)
|
||
{
|
||
TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
|
||
auto const& structType = dynamic_cast<StructType const&>(*t.actualType());
|
||
functionType = structType.constructorType();
|
||
membersRemovedForStructConstructor = structType.membersMissingInMemory();
|
||
_functionCall.annotation().isPure = isPure;
|
||
}
|
||
else if ((functionType = dynamic_pointer_cast<FunctionType const>(expressionType)))
|
||
_functionCall.annotation().isPure =
|
||
isPure &&
|
||
_functionCall.expression().annotation().isPure &&
|
||
functionType->isPure();
|
||
|
||
bool allowDynamicTypes = m_evmVersion.supportsReturndata();
|
||
if (!functionType)
|
||
{
|
||
m_errorReporter.typeError(_functionCall.location(), "Type is not callable");
|
||
_functionCall.annotation().type = make_shared<TupleType>();
|
||
return false;
|
||
}
|
||
|
||
auto returnTypes =
|
||
allowDynamicTypes ?
|
||
functionType->returnParameterTypes() :
|
||
functionType->returnParameterTypesWithoutDynamicTypes();
|
||
if (returnTypes.size() == 1)
|
||
_functionCall.annotation().type = returnTypes.front();
|
||
else
|
||
_functionCall.annotation().type = make_shared<TupleType>(returnTypes);
|
||
|
||
if (auto functionName = dynamic_cast<Identifier const*>(&_functionCall.expression()))
|
||
{
|
||
if (functionName->name() == "sha3" && functionType->kind() == FunctionType::Kind::SHA3)
|
||
m_errorReporter.typeError(_functionCall.location(), "\"sha3\" has been deprecated in favour of \"keccak256\"");
|
||
else if (functionName->name() == "suicide" && functionType->kind() == FunctionType::Kind::Selfdestruct)
|
||
m_errorReporter.typeError(_functionCall.location(), "\"suicide\" has been deprecated in favour of \"selfdestruct\"");
|
||
}
|
||
if (!m_insideEmitStatement && functionType->kind() == FunctionType::Kind::Event)
|
||
m_errorReporter.typeError(_functionCall.location(), "Event invocations have to be prefixed by \"emit\".");
|
||
|
||
TypePointers parameterTypes = functionType->parameterTypes();
|
||
|
||
if (!functionType->padArguments())
|
||
{
|
||
for (size_t i = 0; i < arguments.size(); ++i)
|
||
{
|
||
auto const& argType = type(*arguments[i]);
|
||
if (auto literal = dynamic_cast<RationalNumberType const*>(argType.get()))
|
||
{
|
||
if (literal->mobileType())
|
||
m_errorReporter.typeError(
|
||
arguments[i]->location(),
|
||
"Cannot perform packed encoding for a literal. Please convert it to an explicit type first."
|
||
);
|
||
else
|
||
{
|
||
/* If no mobile type is available an error will be raised elsewhere. */
|
||
solAssert(m_errorReporter.hasErrors(), "");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (functionType->takesArbitraryParameters() && arguments.size() < parameterTypes.size())
|
||
{
|
||
solAssert(_functionCall.annotation().kind == FunctionCallKind::FunctionCall, "");
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Need at least " +
|
||
toString(parameterTypes.size()) +
|
||
" arguments for function call, but provided only " +
|
||
toString(arguments.size()) +
|
||
"."
|
||
);
|
||
}
|
||
else if (!functionType->takesArbitraryParameters() && parameterTypes.size() != arguments.size())
|
||
{
|
||
bool isStructConstructorCall = _functionCall.annotation().kind == FunctionCallKind::StructConstructorCall;
|
||
|
||
string msg =
|
||
"Wrong argument count for " +
|
||
string(isStructConstructorCall ? "struct constructor" : "function call") +
|
||
": " +
|
||
toString(arguments.size()) +
|
||
" arguments given but expected " +
|
||
toString(parameterTypes.size()) +
|
||
".";
|
||
// Extend error message in case we try to construct a struct with mapping member.
|
||
if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall && !membersRemovedForStructConstructor.empty())
|
||
{
|
||
msg += " Members that have to be skipped in memory:";
|
||
for (auto const& member: membersRemovedForStructConstructor)
|
||
msg += " " + member;
|
||
}
|
||
else if (
|
||
functionType->kind() == FunctionType::Kind::BareCall ||
|
||
functionType->kind() == FunctionType::Kind::BareCallCode ||
|
||
functionType->kind() == FunctionType::Kind::BareDelegateCall
|
||
)
|
||
{
|
||
if (arguments.empty())
|
||
msg += " This function requires a single bytes argument. Use \"\" as argument to provide empty calldata.";
|
||
else
|
||
msg += " This function requires a single bytes argument. If all your arguments are value types, you can use abi.encode(...) to properly generate it.";
|
||
}
|
||
else if (
|
||
functionType->kind() == FunctionType::Kind::SHA3 ||
|
||
functionType->kind() == FunctionType::Kind::SHA256 ||
|
||
functionType->kind() == FunctionType::Kind::RIPEMD160
|
||
)
|
||
msg +=
|
||
" This function requires a single bytes argument."
|
||
" Use abi.encodePacked(...) to obtain the pre-0.5.0 behaviour"
|
||
" or abi.encode(...) to use ABI encoding.";
|
||
m_errorReporter.typeError(_functionCall.location(), msg);
|
||
}
|
||
else if (isPositionalCall)
|
||
{
|
||
bool const abiEncodeV2 = m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2);
|
||
|
||
for (size_t i = 0; i < arguments.size(); ++i)
|
||
{
|
||
auto const& argType = type(*arguments[i]);
|
||
if (functionType->takesArbitraryParameters() && i >= parameterTypes.size())
|
||
{
|
||
bool errored = false;
|
||
if (auto t = dynamic_cast<RationalNumberType const*>(argType.get()))
|
||
if (!t->mobileType())
|
||
{
|
||
m_errorReporter.typeError(arguments[i]->location(), "Invalid rational number (too large or division by zero).");
|
||
errored = true;
|
||
}
|
||
if (!errored)
|
||
{
|
||
TypePointer encodingType;
|
||
if (
|
||
argType->mobileType() &&
|
||
argType->mobileType()->interfaceType(false) &&
|
||
argType->mobileType()->interfaceType(false)->encodingType()
|
||
)
|
||
encodingType = argType->mobileType()->interfaceType(false)->encodingType();
|
||
// Structs are fine as long as ABIV2 is activated and we do not do packed encoding.
|
||
if (!encodingType || (
|
||
dynamic_cast<StructType const*>(encodingType.get()) &&
|
||
!(abiEncodeV2 && functionType->padArguments())
|
||
))
|
||
m_errorReporter.typeError(arguments[i]->location(), "This type cannot be encoded.");
|
||
}
|
||
}
|
||
else if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
|
||
{
|
||
string msg =
|
||
"Invalid type for argument in function call. "
|
||
"Invalid implicit conversion from " +
|
||
type(*arguments[i])->toString() +
|
||
" to " +
|
||
parameterTypes[i]->toString() +
|
||
" requested.";
|
||
if (
|
||
functionType->kind() == FunctionType::Kind::BareCall ||
|
||
functionType->kind() == FunctionType::Kind::BareCallCode ||
|
||
functionType->kind() == FunctionType::Kind::BareDelegateCall
|
||
)
|
||
msg += " This function requires a single bytes argument. If all your arguments are value types, you can use abi.encode(...) to properly generate it.";
|
||
else if (
|
||
functionType->kind() == FunctionType::Kind::SHA3 ||
|
||
functionType->kind() == FunctionType::Kind::SHA256 ||
|
||
functionType->kind() == FunctionType::Kind::RIPEMD160
|
||
)
|
||
msg +=
|
||
" This function requires a single bytes argument."
|
||
" Use abi.encodePacked(...) to obtain the pre-0.5.0 behaviour"
|
||
" or abi.encode(...) to use ABI encoding.";
|
||
m_errorReporter.typeError(arguments[i]->location(), msg);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// call by named arguments
|
||
auto const& parameterNames = functionType->parameterNames();
|
||
if (functionType->takesArbitraryParameters())
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Named arguments cannot be used for functions that take arbitrary parameters."
|
||
);
|
||
else if (parameterNames.size() > argumentNames.size())
|
||
m_errorReporter.typeError(_functionCall.location(), "Some argument names are missing.");
|
||
else if (parameterNames.size() < argumentNames.size())
|
||
m_errorReporter.typeError(_functionCall.location(), "Too many arguments.");
|
||
else
|
||
{
|
||
// check duplicate names
|
||
bool duplication = false;
|
||
for (size_t i = 0; i < argumentNames.size(); i++)
|
||
for (size_t j = i + 1; j < argumentNames.size(); j++)
|
||
if (*argumentNames[i] == *argumentNames[j])
|
||
{
|
||
duplication = true;
|
||
m_errorReporter.typeError(arguments[i]->location(), "Duplicate named argument.");
|
||
}
|
||
|
||
// check actual types
|
||
if (!duplication)
|
||
for (size_t i = 0; i < argumentNames.size(); i++)
|
||
{
|
||
bool found = false;
|
||
for (size_t j = 0; j < parameterNames.size(); j++)
|
||
if (parameterNames[j] == *argumentNames[i])
|
||
{
|
||
found = true;
|
||
// check type convertible
|
||
if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[j]))
|
||
m_errorReporter.typeError(
|
||
arguments[i]->location(),
|
||
"Invalid type for argument in function call. "
|
||
"Invalid implicit conversion from " +
|
||
type(*arguments[i])->toString() +
|
||
" to " +
|
||
parameterTypes[i]->toString() +
|
||
" requested."
|
||
);
|
||
break;
|
||
}
|
||
|
||
if (!found)
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Named argument \"" + *argumentNames[i] + "\" does not match function declaration."
|
||
);
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(NewExpression const& _newExpression)
|
||
{
|
||
TypePointer type = _newExpression.typeName().annotation().type;
|
||
solAssert(!!type, "Type name not resolved.");
|
||
|
||
if (auto contractName = dynamic_cast<UserDefinedTypeName const*>(&_newExpression.typeName()))
|
||
{
|
||
auto contract = dynamic_cast<ContractDefinition const*>(&dereference(*contractName));
|
||
|
||
if (!contract)
|
||
m_errorReporter.fatalTypeError(_newExpression.location(), "Identifier is not a contract.");
|
||
if (contract->contractKind() == ContractDefinition::ContractKind::Interface)
|
||
m_errorReporter.fatalTypeError(_newExpression.location(), "Cannot instantiate an interface.");
|
||
if (!contract->annotation().unimplementedFunctions.empty())
|
||
{
|
||
SecondarySourceLocation ssl;
|
||
for (auto function: contract->annotation().unimplementedFunctions)
|
||
ssl.append("Missing implementation:", function->location());
|
||
string msg = "Trying to create an instance of an abstract contract.";
|
||
ssl.limitSize(msg);
|
||
m_errorReporter.typeError(
|
||
_newExpression.location(),
|
||
ssl,
|
||
msg
|
||
);
|
||
}
|
||
if (!contract->constructorIsPublic())
|
||
m_errorReporter.typeError(_newExpression.location(), "Contract with internal constructor cannot be created directly.");
|
||
|
||
solAssert(!!m_scope, "");
|
||
m_scope->annotation().contractDependencies.insert(contract);
|
||
solAssert(
|
||
!contract->annotation().linearizedBaseContracts.empty(),
|
||
"Linearized base contracts not yet available."
|
||
);
|
||
if (contractDependenciesAreCyclic(*m_scope))
|
||
m_errorReporter.typeError(
|
||
_newExpression.location(),
|
||
"Circular reference for contract creation (cannot create instance of derived or same contract)."
|
||
);
|
||
|
||
_newExpression.annotation().type = FunctionType::newExpressionType(*contract);
|
||
}
|
||
else if (type->category() == Type::Category::Array)
|
||
{
|
||
if (!type->canLiveOutsideStorage())
|
||
m_errorReporter.fatalTypeError(
|
||
_newExpression.typeName().location(),
|
||
"Type cannot live outside storage."
|
||
);
|
||
if (!type->isDynamicallySized())
|
||
m_errorReporter.typeError(
|
||
_newExpression.typeName().location(),
|
||
"Length has to be placed in parentheses after the array type for new expression."
|
||
);
|
||
type = ReferenceType::copyForLocationIfReference(DataLocation::Memory, type);
|
||
_newExpression.annotation().type = make_shared<FunctionType>(
|
||
TypePointers{make_shared<IntegerType>(256)},
|
||
TypePointers{type},
|
||
strings(),
|
||
strings(),
|
||
FunctionType::Kind::ObjectCreation,
|
||
false,
|
||
StateMutability::Pure
|
||
);
|
||
_newExpression.annotation().isPure = true;
|
||
}
|
||
else
|
||
m_errorReporter.fatalTypeError(_newExpression.location(), "Contract or array type expected.");
|
||
}
|
||
|
||
bool TypeChecker::visit(MemberAccess const& _memberAccess)
|
||
{
|
||
_memberAccess.expression().accept(*this);
|
||
TypePointer exprType = type(_memberAccess.expression());
|
||
ASTString const& memberName = _memberAccess.memberName();
|
||
|
||
// Retrieve the types of the arguments if this is used to call a function.
|
||
auto const& argumentTypes = _memberAccess.annotation().argumentTypes;
|
||
MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName);
|
||
size_t const initialMemberCount = possibleMembers.size();
|
||
if (initialMemberCount > 1 && argumentTypes)
|
||
{
|
||
// do overload resolution
|
||
for (auto it = possibleMembers.begin(); it != possibleMembers.end();)
|
||
if (
|
||
it->type->category() == Type::Category::Function &&
|
||
!dynamic_cast<FunctionType const&>(*it->type).canTakeArguments(*argumentTypes, exprType)
|
||
)
|
||
it = possibleMembers.erase(it);
|
||
else
|
||
++it;
|
||
}
|
||
|
||
auto& annotation = _memberAccess.annotation();
|
||
|
||
if (possibleMembers.size() == 0)
|
||
{
|
||
if (initialMemberCount == 0)
|
||
{
|
||
// Try to see if the member was removed because it is only available for storage types.
|
||
auto storageType = ReferenceType::copyForLocationIfReference(
|
||
DataLocation::Storage,
|
||
exprType
|
||
);
|
||
if (!storageType->members(m_scope).membersByName(memberName).empty())
|
||
m_errorReporter.fatalTypeError(
|
||
_memberAccess.location(),
|
||
"Member \"" + memberName + "\" is not available in " +
|
||
exprType->toString() +
|
||
" outside of storage."
|
||
);
|
||
}
|
||
string errorMsg = "Member \"" + memberName + "\" not found or not visible "
|
||
"after argument-dependent lookup in " + exprType->toString() +
|
||
(memberName == "value" ? " - did you forget the \"payable\" modifier?" : ".");
|
||
if (exprType->category() == Type::Category::Contract)
|
||
for (auto const& addressMember: IntegerType(160, IntegerType::Modifier::Address).nativeMembers(nullptr))
|
||
if (addressMember.name == memberName)
|
||
{
|
||
Identifier const* var = dynamic_cast<Identifier const*>(&_memberAccess.expression());
|
||
string varName = var ? var->name() : "...";
|
||
errorMsg += " Use \"address(" + varName + ")." + memberName + "\" to access this address member.";
|
||
break;
|
||
}
|
||
m_errorReporter.fatalTypeError(
|
||
_memberAccess.location(),
|
||
errorMsg
|
||
);
|
||
}
|
||
else if (possibleMembers.size() > 1)
|
||
m_errorReporter.fatalTypeError(
|
||
_memberAccess.location(),
|
||
"Member \"" + memberName + "\" not unique "
|
||
"after argument-dependent lookup in " + exprType->toString() +
|
||
(memberName == "value" ? " - did you forget the \"payable\" modifier?" : ".")
|
||
);
|
||
|
||
annotation.referencedDeclaration = possibleMembers.front().declaration;
|
||
annotation.type = possibleMembers.front().type;
|
||
|
||
if (auto funType = dynamic_cast<FunctionType const*>(annotation.type.get()))
|
||
if (funType->bound() && !exprType->isImplicitlyConvertibleTo(*funType->selfType()))
|
||
m_errorReporter.typeError(
|
||
_memberAccess.location(),
|
||
"Function \"" + memberName + "\" cannot be called on an object of type " +
|
||
exprType->toString() + " (expected " + funType->selfType()->toString() + ")."
|
||
);
|
||
|
||
if (exprType->category() == Type::Category::Struct)
|
||
annotation.isLValue = true;
|
||
else if (exprType->category() == Type::Category::Array)
|
||
{
|
||
auto const& arrayType(dynamic_cast<ArrayType const&>(*exprType));
|
||
annotation.isLValue = (
|
||
memberName == "length" &&
|
||
arrayType.location() == DataLocation::Storage &&
|
||
arrayType.isDynamicallySized()
|
||
);
|
||
}
|
||
else if (exprType->category() == Type::Category::FixedBytes)
|
||
annotation.isLValue = false;
|
||
else if (TypeType const* typeType = dynamic_cast<decltype(typeType)>(exprType.get()))
|
||
{
|
||
if (ContractType const* contractType = dynamic_cast<decltype(contractType)>(typeType->actualType().get()))
|
||
annotation.isLValue = annotation.referencedDeclaration->isLValue();
|
||
}
|
||
|
||
if (exprType->category() == Type::Category::Contract)
|
||
{
|
||
// Warn about using send or transfer with a non-payable fallback function.
|
||
if (auto callType = dynamic_cast<FunctionType const*>(type(_memberAccess).get()))
|
||
{
|
||
auto kind = callType->kind();
|
||
auto contractType = dynamic_cast<ContractType const*>(exprType.get());
|
||
solAssert(!!contractType, "Should be contract type.");
|
||
|
||
if (
|
||
(kind == FunctionType::Kind::Send || kind == FunctionType::Kind::Transfer) &&
|
||
!contractType->isPayable()
|
||
)
|
||
m_errorReporter.typeError(
|
||
_memberAccess.location(),
|
||
"Value transfer to a contract without a payable fallback function."
|
||
);
|
||
}
|
||
}
|
||
|
||
// TODO some members might be pure, but for example `address(0x123).balance` is not pure
|
||
// although every subexpression is, so leaving this limited for now.
|
||
if (auto tt = dynamic_cast<TypeType const*>(exprType.get()))
|
||
if (tt->actualType()->category() == Type::Category::Enum)
|
||
annotation.isPure = true;
|
||
if (auto magicType = dynamic_cast<MagicType const*>(exprType.get()))
|
||
if (magicType->kind() == MagicType::Kind::ABI)
|
||
annotation.isPure = true;
|
||
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(IndexAccess const& _access)
|
||
{
|
||
_access.baseExpression().accept(*this);
|
||
TypePointer baseType = type(_access.baseExpression());
|
||
TypePointer resultType;
|
||
bool isLValue = false;
|
||
bool isPure = _access.baseExpression().annotation().isPure;
|
||
Expression const* index = _access.indexExpression();
|
||
switch (baseType->category())
|
||
{
|
||
case Type::Category::Array:
|
||
{
|
||
ArrayType const& actualType = dynamic_cast<ArrayType const&>(*baseType);
|
||
if (!index)
|
||
m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
|
||
else if (actualType.isString())
|
||
{
|
||
m_errorReporter.typeError(_access.location(), "Index access for string is not possible.");
|
||
index->accept(*this);
|
||
}
|
||
else
|
||
{
|
||
expectType(*index, IntegerType(256));
|
||
if (auto numberType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
|
||
{
|
||
if (!numberType->isFractional()) // error is reported above
|
||
if (!actualType.isDynamicallySized() && actualType.length() <= numberType->literalValue(nullptr))
|
||
m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
|
||
}
|
||
}
|
||
resultType = actualType.baseType();
|
||
isLValue = actualType.location() != DataLocation::CallData;
|
||
break;
|
||
}
|
||
case Type::Category::Mapping:
|
||
{
|
||
MappingType const& actualType = dynamic_cast<MappingType const&>(*baseType);
|
||
if (!index)
|
||
m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
|
||
else
|
||
expectType(*index, *actualType.keyType());
|
||
resultType = actualType.valueType();
|
||
isLValue = true;
|
||
break;
|
||
}
|
||
case Type::Category::TypeType:
|
||
{
|
||
TypeType const& typeType = dynamic_cast<TypeType const&>(*baseType);
|
||
if (!index)
|
||
resultType = make_shared<TypeType>(make_shared<ArrayType>(DataLocation::Memory, typeType.actualType()));
|
||
else
|
||
{
|
||
expectType(*index, IntegerType(256));
|
||
if (auto length = dynamic_cast<RationalNumberType const*>(type(*index).get()))
|
||
resultType = make_shared<TypeType>(make_shared<ArrayType>(
|
||
DataLocation::Memory,
|
||
typeType.actualType(),
|
||
length->literalValue(nullptr)
|
||
));
|
||
else
|
||
m_errorReporter.fatalTypeError(index->location(), "Integer constant expected.");
|
||
}
|
||
break;
|
||
}
|
||
case Type::Category::FixedBytes:
|
||
{
|
||
FixedBytesType const& bytesType = dynamic_cast<FixedBytesType const&>(*baseType);
|
||
if (!index)
|
||
m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
|
||
else
|
||
{
|
||
expectType(*index, IntegerType(256));
|
||
if (auto integerType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
|
||
if (bytesType.numBytes() <= integerType->literalValue(nullptr))
|
||
m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
|
||
}
|
||
resultType = make_shared<FixedBytesType>(1);
|
||
isLValue = false; // @todo this heavily depends on how it is embedded
|
||
break;
|
||
}
|
||
default:
|
||
m_errorReporter.fatalTypeError(
|
||
_access.baseExpression().location(),
|
||
"Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")"
|
||
);
|
||
}
|
||
_access.annotation().type = move(resultType);
|
||
_access.annotation().isLValue = isLValue;
|
||
if (index && !index->annotation().isPure)
|
||
isPure = false;
|
||
_access.annotation().isPure = isPure;
|
||
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(Identifier const& _identifier)
|
||
{
|
||
IdentifierAnnotation& annotation = _identifier.annotation();
|
||
if (!annotation.referencedDeclaration)
|
||
{
|
||
if (!annotation.argumentTypes)
|
||
{
|
||
// The identifier should be a public state variable shadowing other functions
|
||
vector<Declaration const*> candidates;
|
||
|
||
for (Declaration const* declaration: annotation.overloadedDeclarations)
|
||
{
|
||
if (VariableDeclaration const* variableDeclaration = dynamic_cast<decltype(variableDeclaration)>(declaration))
|
||
candidates.push_back(declaration);
|
||
}
|
||
if (candidates.empty())
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup.");
|
||
else if (candidates.size() == 1)
|
||
annotation.referencedDeclaration = candidates.front();
|
||
else
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup.");
|
||
}
|
||
else if (annotation.overloadedDeclarations.empty())
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No candidates for overload resolution found.");
|
||
else if (annotation.overloadedDeclarations.size() == 1)
|
||
annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();
|
||
else
|
||
{
|
||
vector<Declaration const*> candidates;
|
||
|
||
for (Declaration const* declaration: annotation.overloadedDeclarations)
|
||
{
|
||
FunctionTypePointer functionType = declaration->functionType(true);
|
||
solAssert(!!functionType, "Requested type not present.");
|
||
if (functionType->canTakeArguments(*annotation.argumentTypes))
|
||
candidates.push_back(declaration);
|
||
}
|
||
if (candidates.empty())
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup.");
|
||
else if (candidates.size() == 1)
|
||
annotation.referencedDeclaration = candidates.front();
|
||
else
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup.");
|
||
}
|
||
}
|
||
solAssert(
|
||
!!annotation.referencedDeclaration,
|
||
"Referenced declaration is null after overload resolution."
|
||
);
|
||
annotation.isLValue = annotation.referencedDeclaration->isLValue();
|
||
annotation.type = annotation.referencedDeclaration->type();
|
||
if (!annotation.type)
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined.");
|
||
if (auto variableDeclaration = dynamic_cast<VariableDeclaration const*>(annotation.referencedDeclaration))
|
||
annotation.isPure = annotation.isConstant = variableDeclaration->isConstant();
|
||
else if (dynamic_cast<MagicVariableDeclaration const*>(annotation.referencedDeclaration))
|
||
if (dynamic_cast<FunctionType const*>(annotation.type.get()))
|
||
annotation.isPure = true;
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr)
|
||
{
|
||
_expr.annotation().type = make_shared<TypeType>(Type::fromElementaryTypeName(_expr.typeName()));
|
||
_expr.annotation().isPure = true;
|
||
}
|
||
|
||
void TypeChecker::endVisit(Literal const& _literal)
|
||
{
|
||
if (_literal.looksLikeAddress())
|
||
{
|
||
// Assign type here if it even looks like an address. This prevents double errors for invalid addresses
|
||
_literal.annotation().type = make_shared<IntegerType>(160, IntegerType::Modifier::Address);
|
||
|
||
string msg;
|
||
if (_literal.value().length() != 42) // "0x" + 40 hex digits
|
||
// looksLikeAddress enforces that it is a hex literal starting with "0x"
|
||
msg =
|
||
"This looks like an address but is not exactly 40 hex digits. It is " +
|
||
to_string(_literal.value().length() - 2) +
|
||
" hex digits.";
|
||
else if (!_literal.passesAddressChecksum())
|
||
{
|
||
msg = "This looks like an address but has an invalid checksum.";
|
||
if (!_literal.getChecksummedAddress().empty())
|
||
msg += " Correct checksummed address: \"" + _literal.getChecksummedAddress() + "\".";
|
||
}
|
||
|
||
if (!msg.empty())
|
||
m_errorReporter.syntaxError(
|
||
_literal.location(),
|
||
msg +
|
||
" If this is not used as an address, please prepend '00'. " +
|
||
"For more information please see https://solidity.readthedocs.io/en/develop/types.html#address-literals"
|
||
);
|
||
}
|
||
|
||
if (_literal.isHexNumber() && _literal.subDenomination() != Literal::SubDenomination::None)
|
||
m_errorReporter.fatalTypeError(
|
||
_literal.location(),
|
||
"Hexadecimal numbers cannot be used with unit denominations. "
|
||
"You can use an expression of the form \"0x1234 * 1 day\" instead."
|
||
);
|
||
|
||
if (_literal.subDenomination() == Literal::SubDenomination::Year)
|
||
m_errorReporter.typeError(
|
||
_literal.location(),
|
||
"Using \"years\" as a unit denomination is deprecated."
|
||
);
|
||
|
||
if (!_literal.annotation().type)
|
||
_literal.annotation().type = Type::forLiteral(_literal);
|
||
|
||
if (!_literal.annotation().type)
|
||
m_errorReporter.fatalTypeError(_literal.location(), "Invalid literal value.");
|
||
|
||
_literal.annotation().isPure = true;
|
||
}
|
||
|
||
bool TypeChecker::contractDependenciesAreCyclic(
|
||
ContractDefinition const& _contract,
|
||
std::set<ContractDefinition const*> const& _seenContracts
|
||
) const
|
||
{
|
||
// Naive depth-first search that remembers nodes already seen.
|
||
if (_seenContracts.count(&_contract))
|
||
return true;
|
||
set<ContractDefinition const*> seen(_seenContracts);
|
||
seen.insert(&_contract);
|
||
for (auto const* c: _contract.annotation().contractDependencies)
|
||
if (contractDependenciesAreCyclic(*c, seen))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
Declaration const& TypeChecker::dereference(Identifier const& _identifier) const
|
||
{
|
||
solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored.");
|
||
return *_identifier.annotation().referencedDeclaration;
|
||
}
|
||
|
||
Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const
|
||
{
|
||
solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored.");
|
||
return *_typeName.annotation().referencedDeclaration;
|
||
}
|
||
|
||
void TypeChecker::expectType(Expression const& _expression, Type const& _expectedType)
|
||
{
|
||
_expression.accept(*this);
|
||
if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType))
|
||
{
|
||
if (
|
||
type(_expression)->category() == Type::Category::RationalNumber &&
|
||
dynamic_pointer_cast<RationalNumberType const>(type(_expression))->isFractional() &&
|
||
type(_expression)->mobileType()
|
||
)
|
||
m_errorReporter.typeError(
|
||
_expression.location(),
|
||
"Type " +
|
||
type(_expression)->toString() +
|
||
" is not implicitly convertible to expected type " +
|
||
_expectedType.toString() +
|
||
". Try converting to type " +
|
||
type(_expression)->mobileType()->toString() +
|
||
" or use an explicit conversion."
|
||
);
|
||
else
|
||
m_errorReporter.typeError(
|
||
_expression.location(),
|
||
"Type " +
|
||
type(_expression)->toString() +
|
||
" is not implicitly convertible to expected type " +
|
||
_expectedType.toString() +
|
||
"."
|
||
);
|
||
}
|
||
|
||
if (
|
||
type(_expression)->category() == Type::Category::RationalNumber &&
|
||
_expectedType.category() == Type::Category::FixedBytes
|
||
)
|
||
{
|
||
auto literal = dynamic_cast<Literal const*>(&_expression);
|
||
|
||
if (literal && !literal->isHexNumber())
|
||
m_errorReporter.warning(
|
||
_expression.location(),
|
||
"Decimal literal assigned to bytesXX variable will be left-aligned. "
|
||
"Use an explicit conversion to silence this warning."
|
||
);
|
||
}
|
||
|
||
}
|
||
|
||
void TypeChecker::requireLValue(Expression const& _expression)
|
||
{
|
||
_expression.annotation().lValueRequested = true;
|
||
_expression.accept(*this);
|
||
|
||
if (_expression.annotation().isConstant)
|
||
m_errorReporter.typeError(_expression.location(), "Cannot assign to a constant variable.");
|
||
else if (!_expression.annotation().isLValue)
|
||
m_errorReporter.typeError(_expression.location(), "Expression has to be an lvalue.");
|
||
}
|