mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
400 lines
17 KiB
Plaintext
400 lines
17 KiB
Plaintext
/**
|
|
* @title Library to validate AZTEC zero-knowledge proofs
|
|
* @author Zachary Williamson, AZTEC
|
|
* @dev Don't include this as an internal library. This contract uses a static memory table to cache elliptic curve primitives and hashes.
|
|
* Calling this internally from another function will lead to memory mutation and undefined behaviour.
|
|
* The intended use case is to call this externally via `staticcall`. External calls to OptimizedAZTEC can be treated as pure functions as this contract contains no storage and makes no external calls (other than to precompiles)
|
|
* Copyright Spilbury Holdings Ltd 2018. All rights reserved.
|
|
* We will be releasing AZTEC as an open-source protocol that provides efficient transaction privacy for Ethereum.
|
|
* This will include our bespoke AZTEC decentralized exchange, allowing for cross-asset transfers with full transaction privacy
|
|
* and interopability with public decentralized exchanges.
|
|
* Stay tuned for updates!
|
|
*
|
|
* Permission to use as test case in the Solidity compiler granted by the author:
|
|
* https://github.com/ethereum/solidity/pull/5713#issuecomment-449042830
|
|
**/
|
|
{
|
|
validateJoinSplit()
|
|
// should not get here
|
|
mstore(0x00, 404)
|
|
revert(0x00, 0x20)
|
|
|
|
|
|
function validateJoinSplit() {
|
|
mstore(0x80, 7673901602397024137095011250362199966051872585513276903826533215767972925880) // h_x
|
|
mstore(0xa0, 8489654445897228341090914135473290831551238522473825886865492707826370766375) // h_y
|
|
let notes := add(0x04, calldataload(0x04))
|
|
let m := calldataload(0x24)
|
|
let n := calldataload(notes)
|
|
let gen_order := 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
|
|
let challenge := mod(calldataload(0x44), gen_order)
|
|
|
|
// validate m <= n
|
|
if gt(m, n) { mstore(0x00, 404) revert(0x00, 0x20) }
|
|
|
|
// recover k_{public} and calculate k_{public}
|
|
let kn := calldataload(sub(calldatasize(), 0xc0))
|
|
|
|
// add kn and m to final hash table
|
|
mstore(0x2a0, caller())
|
|
mstore(0x2c0, kn)
|
|
mstore(0x2e0, m)
|
|
kn := mulmod(sub(gen_order, kn), challenge, gen_order) // we actually want c*k_{public}
|
|
hashCommitments(notes, n)
|
|
let b := add(0x300, mul(n, 0x80))
|
|
|
|
// Iterate over every note and calculate the blinding factor B_i = \gamma_i^{kBar}h^{aBar}\sigma_i^{-c}.
|
|
// We use the AZTEC protocol pairing optimization to reduce the number of pairing comparisons to 1, which adds some minor alterations
|
|
for { let i := 0 } lt(i, n) { i := add(i, 0x01) } {
|
|
|
|
// Get the calldata index of this note
|
|
let noteIndex := add(add(notes, 0x20), mul(i, 0xc0))
|
|
|
|
|
|
let k
|
|
let a := calldataload(add(noteIndex, 0x20))
|
|
let c := challenge
|
|
|
|
switch eq(add(i, 0x01), n)
|
|
case 1 {
|
|
k := kn
|
|
|
|
// if all notes are input notes, invert k
|
|
if eq(m, n) {
|
|
k := sub(gen_order, k)
|
|
}
|
|
}
|
|
case 0 { k := calldataload(noteIndex) }
|
|
|
|
// Check this commitment is well formed...
|
|
validateCommitment(noteIndex, k, a)
|
|
|
|
// If i > m then this is an output note.
|
|
// Set k = kx_j, a = ax_j, c = cx_j, where j = i - (m+1)
|
|
switch gt(add(i, 0x01), m)
|
|
case 1 {
|
|
|
|
// before we update k, update kn = \sum_{i=0}^{m-1}k_i - \sum_{i=m}^{n-1}k_i
|
|
kn := addmod(kn, sub(gen_order, k), gen_order)
|
|
let x := mod(mload(0x00), gen_order)
|
|
k := mulmod(k, x, gen_order)
|
|
a := mulmod(a, x, gen_order)
|
|
c := mulmod(challenge, x, gen_order)
|
|
|
|
// calculate x_{j+1}
|
|
mstore(0x00, keccak256(0x00, 0x20))
|
|
}
|
|
case 0 {
|
|
|
|
// nothing to do here except update kn = \sum_{i=0}^{m-1}k_i - \sum_{i=m}^{n-1}k_i
|
|
kn := addmod(kn, k, gen_order)
|
|
}
|
|
|
|
calldatacopy(0xe0, add(noteIndex, 0x80), 0x40)
|
|
calldatacopy(0x20, add(noteIndex, 0x40), 0x40)
|
|
mstore(0x120, sub(gen_order, c))
|
|
mstore(0x60, k)
|
|
mstore(0xc0, a)
|
|
|
|
// Using call instead of staticcall here to make it work on all targets.
|
|
let result := call(gas(), 7, 0, 0xe0, 0x60, 0x1a0, 0x40)
|
|
result := and(result, call(gas(), 7, 0, 0x20, 0x60, 0x120, 0x40))
|
|
result := and(result, call(gas(), 7, 0, 0x80, 0x60, 0x160, 0x40))
|
|
|
|
result := and(result, call(gas(), 6, 0, 0x120, 0x80, 0x160, 0x40))
|
|
|
|
result := and(result, call(gas(), 6, 0, 0x160, 0x80, b, 0x40))
|
|
|
|
if eq(i, m) {
|
|
mstore(0x260, mload(0x20))
|
|
mstore(0x280, mload(0x40))
|
|
mstore(0x1e0, mload(0xe0))
|
|
mstore(0x200, sub(0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47, mload(0x100)))
|
|
}
|
|
|
|
if gt(i, m) {
|
|
mstore(0x60, c)
|
|
result := and(result, call(gas(), 7, 0, 0x20, 0x60, 0x220, 0x40))
|
|
|
|
result := and(result, call(gas(), 6, 0, 0x220, 0x80, 0x260, 0x40))
|
|
result := and(result, call(gas(), 6, 0, 0x1a0, 0x80, 0x1e0, 0x40))
|
|
}
|
|
|
|
if iszero(result) { mstore(0x00, 400) revert(0x00, 0x20) }
|
|
b := add(b, 0x40) // increase B pointer by 2 words
|
|
}
|
|
|
|
if lt(m, n) {
|
|
validatePairing(0x64)
|
|
}
|
|
|
|
let expected := mod(keccak256(0x2a0, sub(b, 0x2a0)), gen_order)
|
|
if iszero(eq(expected, challenge)) {
|
|
|
|
// No! Bad! No soup for you!
|
|
mstore(0x00, 404)
|
|
revert(0x00, 0x20)
|
|
}
|
|
|
|
// Great! All done. This is a valid proof so return ```true```
|
|
mstore(0x00, 0x01)
|
|
return(0x00, 0x20)
|
|
}
|
|
|
|
function validatePairing(t2) {
|
|
let field_order := 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47
|
|
let t2_x_1 := calldataload(t2)
|
|
let t2_x_2 := calldataload(add(t2, 0x20))
|
|
let t2_y_1 := calldataload(add(t2, 0x40))
|
|
let t2_y_2 := calldataload(add(t2, 0x60))
|
|
|
|
// check provided setup pubkey is not zero or g2
|
|
if or(or(or(or(or(or(or(
|
|
iszero(t2_x_1),
|
|
iszero(t2_x_2)),
|
|
iszero(t2_y_1)),
|
|
iszero(t2_y_2)),
|
|
eq(t2_x_1, 0x1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed)),
|
|
eq(t2_x_2, 0x198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c2)),
|
|
eq(t2_y_1, 0x12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa)),
|
|
eq(t2_y_2, 0x90689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b))
|
|
{
|
|
mstore(0x00, 400)
|
|
revert(0x00, 0x20)
|
|
}
|
|
|
|
mstore(0x20, mload(0x1e0)) // sigma accumulator x
|
|
mstore(0x40, mload(0x200)) // sigma accumulator y
|
|
mstore(0x80, 0x1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed)
|
|
mstore(0x60, 0x198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c2)
|
|
mstore(0xc0, 0x12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa)
|
|
mstore(0xa0, 0x90689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b)
|
|
mstore(0xe0, mload(0x260)) // gamma accumulator x
|
|
mstore(0x100, mload(0x280)) // gamma accumulator y
|
|
mstore(0x140, t2_x_1)
|
|
mstore(0x120, t2_x_2)
|
|
mstore(0x180, t2_y_1)
|
|
mstore(0x160, t2_y_2)
|
|
|
|
let success := call(gas(), 8, 0, 0x20, 0x180, 0x20, 0x20)
|
|
|
|
if or(iszero(success), iszero(mload(0x20))) {
|
|
mstore(0x00, 400)
|
|
revert(0x00, 0x20)
|
|
}
|
|
}
|
|
|
|
function validateCommitment(note, k, a) {
|
|
let gen_order := 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
|
|
let field_order := 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47
|
|
let gammaX := calldataload(add(note, 0x40))
|
|
let gammaY := calldataload(add(note, 0x60))
|
|
let sigmaX := calldataload(add(note, 0x80))
|
|
let sigmaY := calldataload(add(note, 0xa0))
|
|
if iszero(
|
|
and(
|
|
and(
|
|
and(
|
|
eq(mod(a, gen_order), a), // a is modulo generator order?
|
|
gt(a, 1) // can't be 0 or 1 either!
|
|
),
|
|
and(
|
|
eq(mod(k, gen_order), k), // k is modulo generator order?
|
|
gt(k, 1) // and not 0 or 1
|
|
)
|
|
),
|
|
and(
|
|
eq( // y^2 ?= x^3 + 3
|
|
addmod(mulmod(mulmod(sigmaX, sigmaX, field_order), sigmaX, field_order), 3, field_order),
|
|
mulmod(sigmaY, sigmaY, field_order)
|
|
),
|
|
eq( // y^2 ?= x^3 + 3
|
|
addmod(mulmod(mulmod(gammaX, gammaX, field_order), gammaX, field_order), 3, field_order),
|
|
mulmod(gammaY, gammaY, field_order)
|
|
)
|
|
)
|
|
)
|
|
) {
|
|
mstore(0x00, 400)
|
|
revert(0x00, 0x20)
|
|
}
|
|
}
|
|
|
|
function hashCommitments(notes, n) {
|
|
for { let i := 0 } lt(i, n) { i := add(i, 0x01) } {
|
|
let index := add(add(notes, mul(i, 0xc0)), 0x60)
|
|
calldatacopy(add(0x300, mul(i, 0x80)), index, 0x80)
|
|
}
|
|
mstore(0x00, keccak256(0x300, mul(n, 0x80)))
|
|
}
|
|
}
|
|
// ----
|
|
// fullSuite
|
|
// {
|
|
// let validateJo := 0x80
|
|
// mstore(validateJo, 7673901602397024137095011250362199966051872585513276903826533215767972925880)
|
|
// mstore(0xa0, 8489654445897228341090914135473290831551238522473825886865492707826370766375)
|
|
// let validateJo_m := calldataload(0x24)
|
|
// let validateJo_n := calldataload(add(0x04, calldataload(0x04)))
|
|
// let validateJo_gen_order := 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
|
|
// let validateJo_challenge := mod(calldataload(0x44), validateJo_gen_order)
|
|
// if gt(validateJo_m, validateJo_n)
|
|
// {
|
|
// mstore(0x00, 404)
|
|
// revert(0x00, 0x20)
|
|
// }
|
|
// let validateJo_kn := calldataload(add(calldatasize(), 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff40))
|
|
// mstore(0x2a0, caller())
|
|
// mstore(0x2c0, validateJo_kn)
|
|
// mstore(0x2e0, validateJo_m)
|
|
// validateJo_kn := mulmod(sub(validateJo_gen_order, validateJo_kn), validateJo_challenge, validateJo_gen_order)
|
|
// hashCommitments(add(0x04, calldataload(0x04)), validateJo_n)
|
|
// let validateJo_b := add(0x300, mul(validateJo_n, validateJo))
|
|
// let validateJo_i := 0
|
|
// let validateJo_i_1 := validateJo_i
|
|
// for {
|
|
// }
|
|
// lt(validateJo_i, validateJo_n)
|
|
// {
|
|
// validateJo_i := add(validateJo_i, 0x01)
|
|
// }
|
|
// {
|
|
// let validateJo_1 := add(calldataload(0x04), mul(validateJo_i, 0xc0))
|
|
// let validateJo_k := validateJo_i_1
|
|
// let validateJo_a := calldataload(add(validateJo_1, 0x44))
|
|
// let validateJo_c := validateJo_challenge
|
|
// switch eq(add(validateJo_i, 0x01), validateJo_n)
|
|
// case 1 {
|
|
// validateJo_k := validateJo_kn
|
|
// if eq(validateJo_m, validateJo_n)
|
|
// {
|
|
// validateJo_k := sub(validateJo_gen_order, validateJo_kn)
|
|
// }
|
|
// }
|
|
// case 0 {
|
|
// validateJo_k := calldataload(add(validateJo_1, 0x24))
|
|
// }
|
|
// validateCommitment(add(validateJo_1, 0x24), validateJo_k, validateJo_a)
|
|
// switch gt(add(validateJo_i, 0x01), validateJo_m)
|
|
// case 1 {
|
|
// validateJo_kn := addmod(validateJo_kn, sub(validateJo_gen_order, validateJo_k), validateJo_gen_order)
|
|
// let validateJo_x := mod(mload(validateJo_i_1), validateJo_gen_order)
|
|
// validateJo_k := mulmod(validateJo_k, validateJo_x, validateJo_gen_order)
|
|
// validateJo_a := mulmod(validateJo_a, validateJo_x, validateJo_gen_order)
|
|
// validateJo_c := mulmod(validateJo_challenge, validateJo_x, validateJo_gen_order)
|
|
// mstore(validateJo_i_1, keccak256(validateJo_i_1, 0x20))
|
|
// }
|
|
// case 0 {
|
|
// validateJo_kn := addmod(validateJo_kn, validateJo_k, validateJo_gen_order)
|
|
// }
|
|
// let validateJo_2 := 0x40
|
|
// calldatacopy(0xe0, add(validateJo_1, 164), validateJo_2)
|
|
// calldatacopy(0x20, add(validateJo_1, 100), validateJo_2)
|
|
// mstore(0x120, sub(validateJo_gen_order, validateJo_c))
|
|
// mstore(0x60, validateJo_k)
|
|
// mstore(0xc0, validateJo_a)
|
|
// let validateJo_result := call(gas(), 7, validateJo_i_1, 0xe0, 0x60, 0x1a0, validateJo_2)
|
|
// let validateJo_result_1 := and(validateJo_result, call(gas(), 7, validateJo_i_1, 0x20, 0x60, 0x120, validateJo_2))
|
|
// let validateJo_result_2 := and(validateJo_result_1, call(gas(), 7, validateJo_i_1, validateJo, 0x60, 0x160, validateJo_2))
|
|
// let validateJo_result_3 := and(validateJo_result_2, call(gas(), 6, validateJo_i_1, 0x120, validateJo, 0x160, validateJo_2))
|
|
// validateJo_result := and(validateJo_result_3, call(gas(), 6, validateJo_i_1, 0x160, validateJo, validateJo_b, validateJo_2))
|
|
// if eq(validateJo_i, validateJo_m)
|
|
// {
|
|
// mstore(0x260, mload(0x20))
|
|
// mstore(0x280, mload(validateJo_2))
|
|
// mstore(0x1e0, mload(0xe0))
|
|
// mstore(0x200, sub(0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47, mload(0x100)))
|
|
// }
|
|
// if gt(validateJo_i, validateJo_m)
|
|
// {
|
|
// mstore(0x60, validateJo_c)
|
|
// let validateJo_result_4 := and(validateJo_result, call(gas(), 7, validateJo_i_1, 0x20, 0x60, 0x220, validateJo_2))
|
|
// let validateJo_result_5 := and(validateJo_result_4, call(gas(), 6, validateJo_i_1, 0x220, validateJo, 0x260, validateJo_2))
|
|
// validateJo_result := and(validateJo_result_5, call(gas(), 6, validateJo_i_1, 0x1a0, validateJo, 0x1e0, validateJo_2))
|
|
// }
|
|
// if iszero(validateJo_result)
|
|
// {
|
|
// mstore(validateJo_i_1, 400)
|
|
// revert(validateJo_i_1, 0x20)
|
|
// }
|
|
// validateJo_b := add(validateJo_b, validateJo_2)
|
|
// }
|
|
// if lt(validateJo_m, validateJo_n)
|
|
// {
|
|
// validatePairing(0x64)
|
|
// }
|
|
// if iszero(eq(mod(keccak256(0x2a0, add(validateJo_b, 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd60)), validateJo_gen_order), validateJo_challenge))
|
|
// {
|
|
// mstore(validateJo_i_1, 404)
|
|
// revert(validateJo_i_1, 0x20)
|
|
// }
|
|
// mstore(validateJo_i_1, 0x01)
|
|
// return(validateJo_i_1, 0x20)
|
|
// mstore(validateJo_i_1, 404)
|
|
// revert(validateJo_i_1, 0x20)
|
|
// function validatePairing(t2)
|
|
// {
|
|
// let t2_x := calldataload(t2)
|
|
// let _1 := 0x20
|
|
// let t2_x_1 := calldataload(add(t2, _1))
|
|
// let t2_y := calldataload(add(t2, 0x40))
|
|
// let t2_y_1 := calldataload(add(t2, 0x60))
|
|
// let _2 := 0x90689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b
|
|
// let _3 := 0x12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa
|
|
// let _4 := 0x198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c2
|
|
// let _5 := 0x1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed
|
|
// if or(or(or(or(or(or(or(iszero(t2_x), iszero(t2_x_1)), iszero(t2_y)), iszero(t2_y_1)), eq(t2_x, _5)), eq(t2_x_1, _4)), eq(t2_y, _3)), eq(t2_y_1, _2))
|
|
// {
|
|
// mstore(0x00, 400)
|
|
// revert(0x00, _1)
|
|
// }
|
|
// mstore(_1, mload(0x1e0))
|
|
// mstore(0x40, mload(0x200))
|
|
// mstore(0x80, _5)
|
|
// mstore(0x60, _4)
|
|
// mstore(0xc0, _3)
|
|
// mstore(0xa0, _2)
|
|
// mstore(0xe0, mload(0x260))
|
|
// mstore(0x100, mload(0x280))
|
|
// mstore(0x140, t2_x)
|
|
// mstore(0x120, t2_x_1)
|
|
// let _6 := 0x180
|
|
// mstore(_6, t2_y)
|
|
// mstore(0x160, t2_y_1)
|
|
// let success := call(gas(), 8, 0, _1, _6, _1, _1)
|
|
// if or(iszero(success), iszero(mload(_1)))
|
|
// {
|
|
// mstore(0, 400)
|
|
// revert(0, _1)
|
|
// }
|
|
// }
|
|
// function validateCommitment(note, k, a)
|
|
// {
|
|
// let gen_order := 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
|
|
// let field_order := 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47
|
|
// let gammaX := calldataload(add(note, 0x40))
|
|
// let gammaY := calldataload(add(note, 0x60))
|
|
// let sigmaX := calldataload(add(note, 0x80))
|
|
// let sigmaY := calldataload(add(note, 0xa0))
|
|
// if iszero(and(and(and(eq(mod(a, gen_order), a), gt(a, 1)), and(eq(mod(k, gen_order), k), gt(k, 1))), and(eq(addmod(mulmod(mulmod(sigmaX, sigmaX, field_order), sigmaX, field_order), 3, field_order), mulmod(sigmaY, sigmaY, field_order)), eq(addmod(mulmod(mulmod(gammaX, gammaX, field_order), gammaX, field_order), 3, field_order), mulmod(gammaY, gammaY, field_order)))))
|
|
// {
|
|
// mstore(0x00, 400)
|
|
// revert(0x00, 0x20)
|
|
// }
|
|
// }
|
|
// function hashCommitments(notes, n)
|
|
// {
|
|
// let i := 0
|
|
// for {
|
|
// }
|
|
// lt(i, n)
|
|
// {
|
|
// i := add(i, 0x01)
|
|
// }
|
|
// {
|
|
// calldatacopy(add(0x300, mul(i, 0x80)), add(add(notes, mul(i, 0xc0)), 0x60), 0x80)
|
|
// }
|
|
// mstore(0, keccak256(0x300, mul(n, 0x80)))
|
|
// }
|
|
// }
|