solidity/libsolidity/interface/CompilerStack.cpp
2019-12-19 11:36:08 +00:00

1517 lines
48 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @author Gav Wood <g@ethdev.com>
* @date 2014
* Full-stack compiler that converts a source code string to bytecode.
*/
#include <libsolidity/interface/CompilerStack.h>
#include <libsolidity/analysis/ControlFlowAnalyzer.h>
#include <libsolidity/analysis/ControlFlowGraph.h>
#include <libsolidity/analysis/ContractLevelChecker.h>
#include <libsolidity/analysis/DocStringAnalyser.h>
#include <libsolidity/analysis/GlobalContext.h>
#include <libsolidity/analysis/NameAndTypeResolver.h>
#include <libsolidity/analysis/PostTypeChecker.h>
#include <libsolidity/analysis/StaticAnalyzer.h>
#include <libsolidity/analysis/SyntaxChecker.h>
#include <libsolidity/analysis/TypeChecker.h>
#include <libsolidity/analysis/ViewPureChecker.h>
#include <libsolidity/ast/AST.h>
#include <libsolidity/ast/TypeProvider.h>
#include <libsolidity/codegen/Compiler.h>
#include <libsolidity/formal/ModelChecker.h>
#include <libsolidity/interface/ABI.h>
#include <libsolidity/interface/Natspec.h>
#include <libsolidity/interface/GasEstimator.h>
#include <libsolidity/interface/StorageLayout.h>
#include <libsolidity/interface/Version.h>
#include <libsolidity/parsing/Parser.h>
#include <libsolidity/codegen/ir/IRGenerator.h>
#include <libyul/YulString.h>
#include <libyul/AsmPrinter.h>
#include <libyul/AssemblyStack.h>
#include <liblangutil/Scanner.h>
#include <liblangutil/SemVerHandler.h>
#include <libevmasm/Exceptions.h>
#include <libdevcore/SwarmHash.h>
#include <libdevcore/IpfsHash.h>
#include <libdevcore/JSON.h>
#include <json/json.h>
#include <boost/algorithm/string.hpp>
using namespace std;
using namespace dev;
using namespace langutil;
using namespace dev::solidity;
static int g_compilerStackCounts = 0;
CompilerStack::CompilerStack(ReadCallback::Callback const& _readFile):
m_readFile{_readFile},
m_enabledSMTSolvers{smt::SMTSolverChoice::All()},
m_generateIR{false},
m_generateEwasm{false},
m_errorList{},
m_errorReporter{m_errorList}
{
// Because TypeProvider is currently a singleton API, we must ensure that
// no more than one entity is actually using it at a time.
solAssert(g_compilerStackCounts == 0, "You shall not have another CompilerStack aside me.");
++g_compilerStackCounts;
}
CompilerStack::~CompilerStack()
{
--g_compilerStackCounts;
TypeProvider::reset();
}
std::optional<CompilerStack::Remapping> CompilerStack::parseRemapping(string const& _remapping)
{
auto eq = find(_remapping.begin(), _remapping.end(), '=');
if (eq == _remapping.end())
return {};
auto colon = find(_remapping.begin(), eq, ':');
Remapping r;
r.context = colon == eq ? string() : string(_remapping.begin(), colon);
r.prefix = colon == eq ? string(_remapping.begin(), eq) : string(colon + 1, eq);
r.target = string(eq + 1, _remapping.end());
if (r.prefix.empty())
return {};
return r;
}
void CompilerStack::setRemappings(vector<Remapping> const& _remappings)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set remappings before parsing."));
for (auto const& remapping: _remappings)
solAssert(!remapping.prefix.empty(), "");
m_remappings = _remappings;
}
void CompilerStack::setEVMVersion(langutil::EVMVersion _version)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set EVM version before parsing."));
m_evmVersion = _version;
}
void CompilerStack::setSMTSolverChoice(smt::SMTSolverChoice _enabledSMTSolvers)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set enabled SMT solvers before parsing."));
m_enabledSMTSolvers = _enabledSMTSolvers;
}
void CompilerStack::setLibraries(std::map<std::string, h160> const& _libraries)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set libraries before parsing."));
m_libraries = _libraries;
}
void CompilerStack::setOptimiserSettings(bool _optimize, unsigned _runs)
{
OptimiserSettings settings = _optimize ? OptimiserSettings::standard() : OptimiserSettings::minimal();
settings.expectedExecutionsPerDeployment = _runs;
setOptimiserSettings(std::move(settings));
}
void CompilerStack::setOptimiserSettings(OptimiserSettings _settings)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set optimiser settings before parsing."));
m_optimiserSettings = std::move(_settings);
}
void CompilerStack::setRevertStringBehaviour(RevertStrings _revertStrings)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set revert string settings before parsing."));
solUnimplementedAssert(_revertStrings == RevertStrings::Default || _revertStrings == RevertStrings::Strip, "");
m_revertStrings = _revertStrings;
}
void CompilerStack::useMetadataLiteralSources(bool _metadataLiteralSources)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set use literal sources before parsing."));
m_metadataLiteralSources = _metadataLiteralSources;
}
void CompilerStack::setMetadataHash(MetadataHash _metadataHash)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set metadata hash before parsing."));
m_metadataHash = _metadataHash;
}
void CompilerStack::addSMTLib2Response(h256 const& _hash, string const& _response)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must add SMTLib2 responses before parsing."));
m_smtlib2Responses[_hash] = _response;
}
void CompilerStack::reset(bool _keepSettings)
{
m_stackState = Empty;
m_hasError = false;
m_sources.clear();
m_smtlib2Responses.clear();
m_unhandledSMTLib2Queries.clear();
if (!_keepSettings)
{
m_remappings.clear();
m_libraries.clear();
m_evmVersion = langutil::EVMVersion();
m_enabledSMTSolvers = smt::SMTSolverChoice::All();
m_generateIR = false;
m_generateEwasm = false;
m_revertStrings = RevertStrings::Default;
m_optimiserSettings = OptimiserSettings::minimal();
m_metadataLiteralSources = false;
m_metadataHash = MetadataHash::IPFS;
}
m_globalContext.reset();
m_scopes.clear();
m_sourceOrder.clear();
m_contracts.clear();
m_errorReporter.clear();
TypeProvider::reset();
}
void CompilerStack::setSources(StringMap _sources)
{
if (m_stackState == SourcesSet)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Cannot change sources once set."));
if (m_stackState != Empty)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set sources before parsing."));
for (auto source: _sources)
m_sources[source.first].scanner = make_shared<Scanner>(CharStream(/*content*/std::move(source.second), /*name*/source.first));
m_stackState = SourcesSet;
}
bool CompilerStack::parse()
{
if (m_stackState != SourcesSet)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must call parse only after the SourcesSet state."));
m_errorReporter.clear();
ASTNode::resetID();
if (SemVerVersion{string(VersionString)}.isPrerelease())
m_errorReporter.warning("This is a pre-release compiler version, please do not use it in production.");
vector<string> sourcesToParse;
for (auto const& s: m_sources)
sourcesToParse.push_back(s.first);
for (size_t i = 0; i < sourcesToParse.size(); ++i)
{
string const& path = sourcesToParse[i];
Source& source = m_sources[path];
source.scanner->reset();
source.ast = Parser(m_errorReporter, m_evmVersion, m_parserErrorRecovery).parse(source.scanner);
if (!source.ast)
solAssert(!Error::containsOnlyWarnings(m_errorReporter.errors()), "Parser returned null but did not report error.");
else
{
source.ast->annotation().path = path;
for (auto const& newSource: loadMissingSources(*source.ast, path))
{
string const& newPath = newSource.first;
string const& newContents = newSource.second;
m_sources[newPath].scanner = make_shared<Scanner>(CharStream(newContents, newPath));
sourcesToParse.push_back(newPath);
}
}
}
m_stackState = ParsingPerformed;
if (!Error::containsOnlyWarnings(m_errorReporter.errors()))
m_hasError = true;
return !m_hasError;
}
bool CompilerStack::analyze()
{
if (m_stackState != ParsingPerformed || m_stackState >= AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must call analyze only after parsing was performed."));
resolveImports();
bool noErrors = true;
try
{
SyntaxChecker syntaxChecker(m_errorReporter, m_optimiserSettings.runYulOptimiser);
for (Source const* source: m_sourceOrder)
if (source->ast && !syntaxChecker.checkSyntax(*source->ast))
noErrors = false;
DocStringAnalyser docStringAnalyser(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !docStringAnalyser.analyseDocStrings(*source->ast))
noErrors = false;
m_globalContext = make_shared<GlobalContext>();
NameAndTypeResolver resolver(*m_globalContext, m_evmVersion, m_scopes, m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !resolver.registerDeclarations(*source->ast))
return false;
map<string, SourceUnit const*> sourceUnitsByName;
for (auto& source: m_sources)
sourceUnitsByName[source.first] = source.second.ast.get();
for (Source const* source: m_sourceOrder)
if (source->ast && !resolver.performImports(*source->ast, sourceUnitsByName))
return false;
// This is the main name and type resolution loop. Needs to be run for every contract, because
// the special variables "this" and "super" must be set appropriately.
for (Source const* source: m_sourceOrder)
if (source->ast)
for (ASTPointer<ASTNode> const& node: source->ast->nodes())
{
if (!resolver.resolveNamesAndTypes(*node))
return false;
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
// Note that we now reference contracts by their fully qualified names, and
// thus contracts can only conflict if declared in the same source file. This
// already causes a double-declaration error elsewhere, so we do not report
// an error here and instead silently drop any additional contracts we find.
if (m_contracts.find(contract->fullyQualifiedName()) == m_contracts.end())
m_contracts[contract->fullyQualifiedName()].contract = contract;
}
// Next, we check inheritance, overrides, function collisions and other things at
// contract or function level.
// This also calculates whether a contract is abstract, which is needed by the
// type checker.
ContractLevelChecker contractLevelChecker(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast)
for (ASTPointer<ASTNode> const& node: source->ast->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
if (!contractLevelChecker.check(*contract))
noErrors = false;
// New we run full type checks that go down to the expression level. This
// cannot be done earlier, because we need cross-contract types and information
// about whether a contract is abstract for the `new` expression.
// This populates the `type` annotation for all expressions.
//
// Note: this does not resolve overloaded functions. In order to do that, types of arguments are needed,
// which is only done one step later.
TypeChecker typeChecker(m_evmVersion, m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast)
for (ASTPointer<ASTNode> const& node: source->ast->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
if (!typeChecker.checkTypeRequirements(*contract))
noErrors = false;
if (noErrors)
{
// Checks that can only be done when all types of all AST nodes are known.
PostTypeChecker postTypeChecker(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !postTypeChecker.check(*source->ast))
noErrors = false;
}
if (noErrors)
{
// Control flow graph generator and analyzer. It can check for issues such as
// variable is used before it is assigned to.
CFG cfg(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !cfg.constructFlow(*source->ast))
noErrors = false;
if (noErrors)
{
ControlFlowAnalyzer controlFlowAnalyzer(cfg, m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !controlFlowAnalyzer.analyze(*source->ast))
noErrors = false;
}
}
if (noErrors)
{
// Checks for common mistakes. Only generates warnings.
StaticAnalyzer staticAnalyzer(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !staticAnalyzer.analyze(*source->ast))
noErrors = false;
}
if (noErrors)
{
// Check for state mutability in every function.
vector<ASTPointer<ASTNode>> ast;
for (Source const* source: m_sourceOrder)
if (source->ast)
ast.push_back(source->ast);
if (!ViewPureChecker(ast, m_errorReporter).check())
noErrors = false;
}
if (noErrors)
{
ModelChecker modelChecker(m_errorReporter, m_smtlib2Responses, m_readFile, m_enabledSMTSolvers);
for (Source const* source: m_sourceOrder)
if (source->ast)
modelChecker.analyze(*source->ast);
m_unhandledSMTLib2Queries += modelChecker.unhandledQueries();
}
}
catch (FatalError const&)
{
if (m_errorReporter.errors().empty())
throw; // Something is weird here, rather throw again.
noErrors = false;
}
m_stackState = AnalysisPerformed;
if (!noErrors)
m_hasError = true;
return !m_hasError;
}
bool CompilerStack::parseAndAnalyze()
{
bool success = parse();
if (success || m_parserErrorRecovery)
success = analyze();
return success;
}
bool CompilerStack::isRequestedSource(string const& _sourceName) const
{
return
m_requestedContractNames.empty() ||
m_requestedContractNames.count("") ||
m_requestedContractNames.count(_sourceName);
}
bool CompilerStack::isRequestedContract(ContractDefinition const& _contract) const
{
/// In case nothing was specified in outputSelection.
if (m_requestedContractNames.empty())
return true;
for (auto const& key: vector<string>{"", _contract.sourceUnitName()})
{
auto const& it = m_requestedContractNames.find(key);
if (it != m_requestedContractNames.end())
if (it->second.count(_contract.name()) || it->second.count(""))
return true;
}
return false;
}
bool CompilerStack::compile()
{
if (m_stackState < AnalysisPerformed)
if (!parseAndAnalyze())
return false;
if (m_hasError)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Called compile with errors."));
// Only compile contracts individually which have been requested.
map<ContractDefinition const*, shared_ptr<Compiler const>> otherCompilers;
for (Source const* source: m_sourceOrder)
for (ASTPointer<ASTNode> const& node: source->ast->nodes())
if (auto contract = dynamic_cast<ContractDefinition const*>(node.get()))
if (isRequestedContract(*contract))
{
compileContract(*contract, otherCompilers);
if (m_generateIR || m_generateEwasm)
generateIR(*contract);
if (m_generateEwasm)
generateEwasm(*contract);
}
m_stackState = CompilationSuccessful;
this->link();
return true;
}
void CompilerStack::link()
{
solAssert(m_stackState >= CompilationSuccessful, "");
for (auto& contract: m_contracts)
{
contract.second.object.link(m_libraries);
contract.second.runtimeObject.link(m_libraries);
}
}
vector<string> CompilerStack::contractNames() const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
vector<string> contractNames;
for (auto const& contract: m_contracts)
contractNames.push_back(contract.first);
return contractNames;
}
string const CompilerStack::lastContractName() const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
// try to find some user-supplied contract
string contractName;
for (auto const& it: m_sources)
for (ASTPointer<ASTNode> const& node: it.second.ast->nodes())
if (auto contract = dynamic_cast<ContractDefinition const*>(node.get()))
contractName = contract->fullyQualifiedName();
return contractName;
}
eth::AssemblyItems const* CompilerStack::assemblyItems(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& currentContract = contract(_contractName);
return currentContract.compiler ? &contract(_contractName).compiler->assemblyItems() : nullptr;
}
eth::AssemblyItems const* CompilerStack::runtimeAssemblyItems(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& currentContract = contract(_contractName);
return currentContract.compiler ? &contract(_contractName).compiler->runtimeAssemblyItems() : nullptr;
}
string const* CompilerStack::sourceMapping(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& c = contract(_contractName);
if (!c.sourceMapping)
{
if (auto items = assemblyItems(_contractName))
c.sourceMapping = make_unique<string>(computeSourceMapping(*items));
}
return c.sourceMapping.get();
}
string const* CompilerStack::runtimeSourceMapping(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& c = contract(_contractName);
if (!c.runtimeSourceMapping)
{
if (auto items = runtimeAssemblyItems(_contractName))
c.runtimeSourceMapping = make_unique<string>(computeSourceMapping(*items));
}
return c.runtimeSourceMapping.get();
}
std::string const CompilerStack::filesystemFriendlyName(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("No compiled contracts found."));
// Look up the contract (by its fully-qualified name)
Contract const& matchContract = m_contracts.at(_contractName);
// Check to see if it could collide on name
for (auto const& contract: m_contracts)
{
if (contract.second.contract->name() == matchContract.contract->name() &&
contract.second.contract != matchContract.contract)
{
// If it does, then return its fully-qualified name, made fs-friendly
std::string friendlyName = boost::algorithm::replace_all_copy(_contractName, "/", "_");
boost::algorithm::replace_all(friendlyName, ":", "_");
boost::algorithm::replace_all(friendlyName, ".", "_");
return friendlyName;
}
}
// If no collision, return the contract's name
return matchContract.contract->name();
}
string const& CompilerStack::yulIR(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).yulIR;
}
string const& CompilerStack::yulIROptimized(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).yulIROptimized;
}
string const& CompilerStack::ewasm(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).ewasm;
}
eth::LinkerObject const& CompilerStack::ewasmObject(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).ewasmObject;
}
eth::LinkerObject const& CompilerStack::object(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).object;
}
eth::LinkerObject const& CompilerStack::runtimeObject(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).runtimeObject;
}
/// TODO: cache this string
string CompilerStack::assemblyString(string const& _contractName, StringMap _sourceCodes) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& currentContract = contract(_contractName);
if (currentContract.compiler)
return currentContract.compiler->assemblyString(_sourceCodes);
else
return string();
}
/// TODO: cache the JSON
Json::Value CompilerStack::assemblyJSON(string const& _contractName, StringMap const& _sourceCodes) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& currentContract = contract(_contractName);
if (currentContract.compiler)
return currentContract.compiler->assemblyJSON(_sourceCodes);
else
return Json::Value();
}
vector<string> CompilerStack::sourceNames() const
{
vector<string> names;
for (auto const& s: m_sources)
names.push_back(s.first);
return names;
}
map<string, unsigned> CompilerStack::sourceIndices() const
{
map<string, unsigned> indices;
unsigned index = 0;
for (auto const& s: m_sources)
indices[s.first] = index++;
return indices;
}
Json::Value const& CompilerStack::contractABI(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return contractABI(contract(_contractName));
}
Json::Value const& CompilerStack::contractABI(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// caches the result
if (!_contract.abi)
_contract.abi = make_unique<Json::Value>(ABI::generate(*_contract.contract));
return *_contract.abi;
}
Json::Value const& CompilerStack::storageLayout(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return storageLayout(contract(_contractName));
}
Json::Value const& CompilerStack::storageLayout(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// caches the result
if (!_contract.storageLayout)
_contract.storageLayout = make_unique<Json::Value>(StorageLayout().generate(*_contract.contract));
return *_contract.storageLayout;
}
Json::Value const& CompilerStack::natspecUser(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return natspecUser(contract(_contractName));
}
Json::Value const& CompilerStack::natspecUser(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// caches the result
if (!_contract.userDocumentation)
_contract.userDocumentation = make_unique<Json::Value>(Natspec::userDocumentation(*_contract.contract));
return *_contract.userDocumentation;
}
Json::Value const& CompilerStack::natspecDev(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return natspecDev(contract(_contractName));
}
Json::Value const& CompilerStack::natspecDev(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// caches the result
if (!_contract.devDocumentation)
_contract.devDocumentation = make_unique<Json::Value>(Natspec::devDocumentation(*_contract.contract));
return *_contract.devDocumentation;
}
Json::Value CompilerStack::methodIdentifiers(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
Json::Value methodIdentifiers(Json::objectValue);
for (auto const& it: contractDefinition(_contractName).interfaceFunctions())
methodIdentifiers[it.second->externalSignature()] = it.first.hex();
return methodIdentifiers;
}
string const& CompilerStack::metadata(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return metadata(contract(_contractName));
}
string const& CompilerStack::metadata(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// cache the result
if (!_contract.metadata)
_contract.metadata = make_unique<string>(createMetadata(_contract));
return *_contract.metadata;
}
Scanner const& CompilerStack::scanner(string const& _sourceName) const
{
if (m_stackState < SourcesSet)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("No sources set."));
return *source(_sourceName).scanner;
}
SourceUnit const& CompilerStack::ast(string const& _sourceName) const
{
if (m_stackState < ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing not yet performed."));
if (!source(_sourceName).ast && !m_parserErrorRecovery)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
return *source(_sourceName).ast;
}
ContractDefinition const& CompilerStack::contractDefinition(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return *contract(_contractName).contract;
}
size_t CompilerStack::functionEntryPoint(
std::string const& _contractName,
FunctionDefinition const& _function
) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
shared_ptr<Compiler> const& compiler = contract(_contractName).compiler;
if (!compiler)
return 0;
eth::AssemblyItem tag = compiler->functionEntryLabel(_function);
if (tag.type() == eth::UndefinedItem)
return 0;
eth::AssemblyItems const& items = compiler->runtimeAssemblyItems();
for (size_t i = 0; i < items.size(); ++i)
if (items.at(i).type() == eth::Tag && items.at(i).data() == tag.data())
return i;
return 0;
}
tuple<int, int, int, int> CompilerStack::positionFromSourceLocation(SourceLocation const& _sourceLocation) const
{
int startLine;
int startColumn;
int endLine;
int endColumn;
tie(startLine, startColumn) = scanner(_sourceLocation.source->name()).translatePositionToLineColumn(_sourceLocation.start);
tie(endLine, endColumn) = scanner(_sourceLocation.source->name()).translatePositionToLineColumn(_sourceLocation.end);
return make_tuple(++startLine, ++startColumn, ++endLine, ++endColumn);
}
h256 const& CompilerStack::Source::keccak256() const
{
if (keccak256HashCached == h256{})
keccak256HashCached = dev::keccak256(scanner->source());
return keccak256HashCached;
}
h256 const& CompilerStack::Source::swarmHash() const
{
if (swarmHashCached == h256{})
swarmHashCached = dev::bzzr1Hash(scanner->source());
return swarmHashCached;
}
string const& CompilerStack::Source::ipfsUrl() const
{
if (ipfsUrlCached.empty())
if (scanner->source().size() < 1024 * 256)
ipfsUrlCached = "dweb:/ipfs/" + dev::ipfsHashBase58(scanner->source());
return ipfsUrlCached;
}
StringMap CompilerStack::loadMissingSources(SourceUnit const& _ast, std::string const& _sourcePath)
{
solAssert(m_stackState < ParsingPerformed, "");
StringMap newSources;
for (auto const& node: _ast.nodes())
if (ImportDirective const* import = dynamic_cast<ImportDirective*>(node.get()))
{
solAssert(!import->path().empty(), "Import path cannot be empty.");
string importPath = dev::absolutePath(import->path(), _sourcePath);
// The current value of `path` is the absolute path as seen from this source file.
// We first have to apply remappings before we can store the actual absolute path
// as seen globally.
importPath = applyRemapping(importPath, _sourcePath);
import->annotation().absolutePath = importPath;
if (m_sources.count(importPath) || newSources.count(importPath))
continue;
ReadCallback::Result result{false, string("File not supplied initially.")};
if (m_readFile)
result = m_readFile(ReadCallback::kindString(ReadCallback::Kind::ReadFile), importPath);
if (result.success)
newSources[importPath] = result.responseOrErrorMessage;
else
{
m_errorReporter.parserError(
import->location(),
string("Source \"" + importPath + "\" not found: " + result.responseOrErrorMessage)
);
continue;
}
}
return newSources;
}
string CompilerStack::applyRemapping(string const& _path, string const& _context)
{
solAssert(m_stackState < ParsingPerformed, "");
// Try to find the longest prefix match in all remappings that are active in the current context.
auto isPrefixOf = [](string const& _a, string const& _b)
{
if (_a.length() > _b.length())
return false;
return std::equal(_a.begin(), _a.end(), _b.begin());
};
size_t longestPrefix = 0;
size_t longestContext = 0;
string bestMatchTarget;
for (auto const& redir: m_remappings)
{
string context = dev::sanitizePath(redir.context);
string prefix = dev::sanitizePath(redir.prefix);
// Skip if current context is closer
if (context.length() < longestContext)
continue;
// Skip if redir.context is not a prefix of _context
if (!isPrefixOf(context, _context))
continue;
// Skip if we already have a closer prefix match.
if (prefix.length() < longestPrefix && context.length() == longestContext)
continue;
// Skip if the prefix does not match.
if (!isPrefixOf(prefix, _path))
continue;
longestContext = context.length();
longestPrefix = prefix.length();
bestMatchTarget = dev::sanitizePath(redir.target);
}
string path = bestMatchTarget;
path.append(_path.begin() + longestPrefix, _path.end());
return path;
}
void CompilerStack::resolveImports()
{
solAssert(m_stackState == ParsingPerformed, "");
// topological sorting (depth first search) of the import graph, cutting potential cycles
vector<Source const*> sourceOrder;
set<Source const*> sourcesSeen;
function<void(Source const*)> toposort = [&](Source const* _source)
{
if (sourcesSeen.count(_source))
return;
sourcesSeen.insert(_source);
if (_source->ast)
for (ASTPointer<ASTNode> const& node: _source->ast->nodes())
if (ImportDirective const* import = dynamic_cast<ImportDirective*>(node.get()))
{
string const& path = import->annotation().absolutePath;
solAssert(!path.empty(), "");
solAssert(m_sources.count(path), "");
import->annotation().sourceUnit = m_sources[path].ast.get();
toposort(&m_sources[path]);
}
sourceOrder.push_back(_source);
};
for (auto const& sourcePair: m_sources)
if (isRequestedSource(sourcePair.first))
toposort(&sourcePair.second);
swap(m_sourceOrder, sourceOrder);
}
namespace
{
bool onlySafeExperimentalFeaturesActivated(set<ExperimentalFeature> const& features)
{
for (auto const feature: features)
if (!ExperimentalFeatureWithoutWarning.count(feature))
return false;
return true;
}
}
void CompilerStack::compileContract(
ContractDefinition const& _contract,
map<ContractDefinition const*, shared_ptr<Compiler const>>& _otherCompilers
)
{
solAssert(m_stackState >= AnalysisPerformed, "");
if (m_hasError)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Called compile with errors."));
if (_otherCompilers.count(&_contract) || !_contract.canBeDeployed())
return;
for (auto const* dependency: _contract.annotation().contractDependencies)
compileContract(*dependency, _otherCompilers);
Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName());
shared_ptr<Compiler> compiler = make_shared<Compiler>(m_evmVersion, m_revertStrings, m_optimiserSettings);
compiledContract.compiler = compiler;
bytes cborEncodedMetadata = createCBORMetadata(
metadata(compiledContract),
!onlySafeExperimentalFeaturesActivated(_contract.sourceUnit().annotation().experimentalFeatures)
);
try
{
// Run optimiser and compile the contract.
compiler->compileContract(_contract, _otherCompilers, cborEncodedMetadata);
}
catch(eth::OptimizerException const&)
{
solAssert(false, "Optimizer exception during compilation");
}
try
{
// Assemble deployment (incl. runtime) object.
compiledContract.object = compiler->assembledObject();
}
catch(eth::AssemblyException const&)
{
solAssert(false, "Assembly exception for bytecode");
}
try
{
// Assemble runtime object.
compiledContract.runtimeObject = compiler->runtimeObject();
}
catch(eth::AssemblyException const&)
{
solAssert(false, "Assembly exception for deployed bytecode");
}
_otherCompilers[compiledContract.contract] = compiler;
}
void CompilerStack::generateIR(ContractDefinition const& _contract)
{
solAssert(m_stackState >= AnalysisPerformed, "");
if (m_hasError)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Called generateIR with errors."));
if (!_contract.canBeDeployed())
return;
Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName());
if (!compiledContract.yulIR.empty())
return;
for (auto const* dependency: _contract.annotation().contractDependencies)
generateIR(*dependency);
IRGenerator generator(m_evmVersion, m_optimiserSettings);
tie(compiledContract.yulIR, compiledContract.yulIROptimized) = generator.run(_contract);
}
void CompilerStack::generateEwasm(ContractDefinition const& _contract)
{
solAssert(m_stackState >= AnalysisPerformed, "");
if (m_hasError)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Called generateEwasm with errors."));
Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName());
solAssert(!compiledContract.yulIROptimized.empty(), "");
if (!compiledContract.ewasm.empty())
return;
// Re-parse the Yul IR in EVM dialect
yul::AssemblyStack stack(m_evmVersion, yul::AssemblyStack::Language::StrictAssembly, m_optimiserSettings);
stack.parseAndAnalyze("", compiledContract.yulIROptimized);
stack.optimize();
stack.translate(yul::AssemblyStack::Language::Ewasm);
stack.optimize();
//cout << yul::AsmPrinter{}(*stack.parserResult()->code) << endl;
// Turn into Ewasm text representation.
auto result = stack.assemble(yul::AssemblyStack::Machine::Ewasm);
compiledContract.ewasm = std::move(result.assembly);
compiledContract.ewasmObject = std::move(*result.bytecode);
}
CompilerStack::Contract const& CompilerStack::contract(string const& _contractName) const
{
solAssert(m_stackState >= AnalysisPerformed, "");
auto it = m_contracts.find(_contractName);
if (it != m_contracts.end())
return it->second;
// To provide a measure of backward-compatibility, if a contract is not located by its
// fully-qualified name, a lookup will be attempted purely on the contract's name to see
// if anything will satisfy.
if (_contractName.find(':') == string::npos)
{
for (auto const& contractEntry: m_contracts)
{
stringstream ss;
ss.str(contractEntry.first);
// All entries are <source>:<contract>
string source;
string foundName;
getline(ss, source, ':');
getline(ss, foundName, ':');
if (foundName == _contractName)
return contractEntry.second;
}
}
// If we get here, both lookup methods failed.
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Contract \"" + _contractName + "\" not found."));
}
CompilerStack::Source const& CompilerStack::source(string const& _sourceName) const
{
auto it = m_sources.find(_sourceName);
if (it == m_sources.end())
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Given source file not found."));
return it->second;
}
string CompilerStack::createMetadata(Contract const& _contract) const
{
Json::Value meta;
meta["version"] = 1;
meta["language"] = "Solidity";
meta["compiler"]["version"] = VersionStringStrict;
/// All the source files (including self), which should be included in the metadata.
set<string> referencedSources;
referencedSources.insert(_contract.contract->sourceUnit().annotation().path);
for (auto const sourceUnit: _contract.contract->sourceUnit().referencedSourceUnits(true))
referencedSources.insert(sourceUnit->annotation().path);
meta["sources"] = Json::objectValue;
for (auto const& s: m_sources)
{
if (!referencedSources.count(s.first))
continue;
solAssert(s.second.scanner, "Scanner not available");
meta["sources"][s.first]["keccak256"] = "0x" + toHex(s.second.keccak256().asBytes());
if (m_metadataLiteralSources)
meta["sources"][s.first]["content"] = s.second.scanner->source();
else
{
meta["sources"][s.first]["urls"] = Json::arrayValue;
meta["sources"][s.first]["urls"].append("bzz-raw://" + toHex(s.second.swarmHash().asBytes()));
meta["sources"][s.first]["urls"].append(s.second.ipfsUrl());
}
}
static_assert(sizeof(m_optimiserSettings.expectedExecutionsPerDeployment) <= sizeof(Json::LargestUInt), "Invalid word size.");
solAssert(static_cast<Json::LargestUInt>(m_optimiserSettings.expectedExecutionsPerDeployment) < std::numeric_limits<Json::LargestUInt>::max(), "");
meta["settings"]["optimizer"]["runs"] = Json::Value(Json::LargestUInt(m_optimiserSettings.expectedExecutionsPerDeployment));
/// Backwards compatibility: If set to one of the default settings, do not provide details.
OptimiserSettings settingsWithoutRuns = m_optimiserSettings;
// reset to default
settingsWithoutRuns.expectedExecutionsPerDeployment = OptimiserSettings::minimal().expectedExecutionsPerDeployment;
if (settingsWithoutRuns == OptimiserSettings::minimal())
meta["settings"]["optimizer"]["enabled"] = false;
else if (settingsWithoutRuns == OptimiserSettings::standard())
meta["settings"]["optimizer"]["enabled"] = true;
else
{
Json::Value details{Json::objectValue};
details["orderLiterals"] = m_optimiserSettings.runOrderLiterals;
details["jumpdestRemover"] = m_optimiserSettings.runJumpdestRemover;
details["peephole"] = m_optimiserSettings.runPeephole;
details["deduplicate"] = m_optimiserSettings.runDeduplicate;
details["cse"] = m_optimiserSettings.runCSE;
details["constantOptimizer"] = m_optimiserSettings.runConstantOptimiser;
details["yul"] = m_optimiserSettings.runYulOptimiser;
if (m_optimiserSettings.runYulOptimiser)
{
details["yulDetails"] = Json::objectValue;
details["yulDetails"]["stackAllocation"] = m_optimiserSettings.optimizeStackAllocation;
}
meta["settings"]["optimizer"]["details"] = std::move(details);
}
if (m_revertStrings != RevertStrings::Default)
meta["settings"]["debug"]["revertStrings"] = revertStringsToString(m_revertStrings);
if (m_metadataLiteralSources)
meta["settings"]["metadata"]["useLiteralContent"] = true;
static vector<string> hashes{"ipfs", "bzzr1", "none"};
meta["settings"]["metadata"]["bytecodeHash"] = hashes.at(unsigned(m_metadataHash));
meta["settings"]["evmVersion"] = m_evmVersion.name();
meta["settings"]["compilationTarget"][_contract.contract->sourceUnitName()] =
_contract.contract->annotation().canonicalName;
meta["settings"]["remappings"] = Json::arrayValue;
set<string> remappings;
for (auto const& r: m_remappings)
remappings.insert(r.context + ":" + r.prefix + "=" + r.target);
for (auto const& r: remappings)
meta["settings"]["remappings"].append(r);
meta["settings"]["libraries"] = Json::objectValue;
for (auto const& library: m_libraries)
meta["settings"]["libraries"][library.first] = "0x" + toHex(library.second.asBytes());
meta["output"]["abi"] = contractABI(_contract);
meta["output"]["userdoc"] = natspecUser(_contract);
meta["output"]["devdoc"] = natspecDev(_contract);
return jsonCompactPrint(meta);
}
class MetadataCBOREncoder
{
public:
void pushBytes(string const& key, bytes const& value)
{
m_entryCount++;
pushTextString(key);
pushByteString(value);
}
void pushString(string const& key, string const& value)
{
m_entryCount++;
pushTextString(key);
pushTextString(value);
}
void pushBool(string const& key, bool value)
{
m_entryCount++;
pushTextString(key);
pushBool(value);
}
bytes serialise() const
{
unsigned size = m_data.size() + 1;
solAssert(size <= 0xffff, "Metadata too large.");
solAssert(m_entryCount <= 0x1f, "Too many map entries.");
// CBOR fixed-length map
bytes ret{static_cast<unsigned char>(0xa0 + m_entryCount)};
// The already encoded key-value pairs
ret += m_data;
// 16-bit big endian length
ret += toCompactBigEndian(size, 2);
return ret;
}
private:
void pushTextString(string const& key)
{
unsigned length = key.size();
if (length < 24)
{
m_data += bytes{static_cast<unsigned char>(0x60 + length)};
m_data += key;
}
else if (length <= 256)
{
m_data += bytes{0x78, static_cast<unsigned char>(length)};
m_data += key;
}
else
solAssert(false, "Text string too large.");
}
void pushByteString(bytes const& key)
{
unsigned length = key.size();
if (length < 24)
{
m_data += bytes{static_cast<unsigned char>(0x40 + length)};
m_data += key;
}
else if (length <= 256)
{
m_data += bytes{0x58, static_cast<unsigned char>(length)};
m_data += key;
}
else
solAssert(false, "Byte string too large.");
}
void pushBool(bool value)
{
if (value)
m_data += bytes{0xf5};
else
m_data += bytes{0xf4};
}
unsigned m_entryCount = 0;
bytes m_data;
};
bytes CompilerStack::createCBORMetadata(string const& _metadata, bool _experimentalMode)
{
MetadataCBOREncoder encoder;
if (m_metadataHash == MetadataHash::IPFS)
{
solAssert(_metadata.length() < 1024 * 256, "Metadata too large.");
encoder.pushBytes("ipfs", dev::ipfsHash(_metadata));
}
else if (m_metadataHash == MetadataHash::Bzzr1)
encoder.pushBytes("bzzr1", dev::bzzr1Hash(_metadata).asBytes());
else
solAssert(m_metadataHash == MetadataHash::None, "Invalid metadata hash");
if (_experimentalMode)
encoder.pushBool("experimental", true);
if (m_release)
encoder.pushBytes("solc", VersionCompactBytes);
else
encoder.pushString("solc", VersionStringStrict);
return encoder.serialise();
}
string CompilerStack::computeSourceMapping(eth::AssemblyItems const& _items) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
string ret;
map<string, unsigned> sourceIndicesMap = sourceIndices();
int prevStart = -1;
int prevLength = -1;
int prevSourceIndex = -1;
size_t prevModifierDepth = -1;
char prevJump = 0;
for (auto const& item: _items)
{
if (!ret.empty())
ret += ";";
SourceLocation const& location = item.location();
int length = location.start != -1 && location.end != -1 ? location.end - location.start : -1;
int sourceIndex =
location.source && sourceIndicesMap.count(location.source->name()) ?
sourceIndicesMap.at(location.source->name()) :
-1;
char jump = '-';
if (item.getJumpType() == eth::AssemblyItem::JumpType::IntoFunction)
jump = 'i';
else if (item.getJumpType() == eth::AssemblyItem::JumpType::OutOfFunction)
jump = 'o';
size_t modifierDepth = item.m_modifierDepth;
unsigned components = 5;
if (modifierDepth == prevModifierDepth)
{
components--;
if (jump == prevJump)
{
components--;
if (sourceIndex == prevSourceIndex)
{
components--;
if (length == prevLength)
{
components--;
if (location.start == prevStart)
components--;
}
}
}
}
if (components-- > 0)
{
if (location.start != prevStart)
ret += to_string(location.start);
if (components-- > 0)
{
ret += ':';
if (length != prevLength)
ret += to_string(length);
if (components-- > 0)
{
ret += ':';
if (sourceIndex != prevSourceIndex)
ret += to_string(sourceIndex);
if (components-- > 0)
{
ret += ':';
if (jump != prevJump)
ret += jump;
if (components-- > 0)
{
ret += ':';
if (modifierDepth != prevModifierDepth)
ret += to_string(modifierDepth);
}
}
}
}
}
prevStart = location.start;
prevLength = length;
prevSourceIndex = sourceIndex;
prevJump = jump;
prevModifierDepth = modifierDepth;
}
return ret;
}
namespace
{
Json::Value gasToJson(GasEstimator::GasConsumption const& _gas)
{
if (_gas.isInfinite)
return Json::Value("infinite");
else
return Json::Value(toString(_gas.value));
}
}
Json::Value CompilerStack::gasEstimates(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
if (!assemblyItems(_contractName) && !runtimeAssemblyItems(_contractName))
return Json::Value();
using Gas = GasEstimator::GasConsumption;
GasEstimator gasEstimator(m_evmVersion);
Json::Value output(Json::objectValue);
if (eth::AssemblyItems const* items = assemblyItems(_contractName))
{
Gas executionGas = gasEstimator.functionalEstimation(*items);
Gas codeDepositGas{eth::GasMeter::dataGas(runtimeObject(_contractName).bytecode, false, m_evmVersion)};
Json::Value creation(Json::objectValue);
creation["codeDepositCost"] = gasToJson(codeDepositGas);
creation["executionCost"] = gasToJson(executionGas);
/// TODO: implement + overload to avoid the need of +=
executionGas += codeDepositGas;
creation["totalCost"] = gasToJson(executionGas);
output["creation"] = creation;
}
if (eth::AssemblyItems const* items = runtimeAssemblyItems(_contractName))
{
/// External functions
ContractDefinition const& contract = contractDefinition(_contractName);
Json::Value externalFunctions(Json::objectValue);
for (auto it: contract.interfaceFunctions())
{
string sig = it.second->externalSignature();
externalFunctions[sig] = gasToJson(gasEstimator.functionalEstimation(*items, sig));
}
if (contract.fallbackFunction())
/// This needs to be set to an invalid signature in order to trigger the fallback,
/// without the shortcut (of CALLDATSIZE == 0), and therefore to receive the upper bound.
/// An empty string ("") would work to trigger the shortcut only.
externalFunctions[""] = gasToJson(gasEstimator.functionalEstimation(*items, "INVALID"));
if (!externalFunctions.empty())
output["external"] = externalFunctions;
/// Internal functions
Json::Value internalFunctions(Json::objectValue);
for (auto const& it: contract.definedFunctions())
{
/// Exclude externally visible functions, constructor, fallback and receive ether function
if (it->isPartOfExternalInterface() || !it->isOrdinary())
continue;
size_t entry = functionEntryPoint(_contractName, *it);
GasEstimator::GasConsumption gas = GasEstimator::GasConsumption::infinite();
if (entry > 0)
gas = gasEstimator.functionalEstimation(*items, entry, *it);
/// TODO: This could move into a method shared with externalSignature()
FunctionType type(*it);
string sig = it->name() + "(";
auto paramTypes = type.parameterTypes();
for (auto it = paramTypes.begin(); it != paramTypes.end(); ++it)
sig += (*it)->toString() + (it + 1 == paramTypes.end() ? "" : ",");
sig += ")";
internalFunctions[sig] = gasToJson(gas);
}
if (!internalFunctions.empty())
output["internal"] = internalFunctions;
}
return output;
}