mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
ada046ba9a
From 62021c1abc
362 lines
19 KiB
Solidity
362 lines
19 KiB
Solidity
// SPDX-License-Identifier: WTFPL
|
|
pragma solidity >=0.8.0;
|
|
|
|
/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
|
|
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
|
|
// representation. When it does not, it is annonated in the function's NatSpec documentation.
|
|
library PRBMathCommon {
|
|
/// @dev How many trailing decimals can be represented.
|
|
uint256 internal constant SCALE = 1e18;
|
|
|
|
/// @dev Largest power of two divisor of SCALE.
|
|
uint256 internal constant SCALE_LPOTD = 262144;
|
|
|
|
/// @dev SCALE inverted mod 2^256.
|
|
uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661508869554232690281;
|
|
|
|
/// @notice Calculates the binary exponent of x using the binary fraction method.
|
|
/// @dev Uses 128.128-bit fixed-point numbers, which is the most efficient way.
|
|
/// See https://ethereum.stackexchange.com/a/96594/24693.
|
|
/// @param x The exponent as an unsigned 128.128-bit fixed-point number.
|
|
/// @return result The result as an unsigned 60x18 decimal fixed-point number.
|
|
function exp2(uint256 x) internal pure returns (uint256 result) {
|
|
unchecked {
|
|
// Start from 0.5 in the 128.128-bit fixed-point format.
|
|
result = 0x80000000000000000000000000000000;
|
|
|
|
// Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
|
|
// because the initial result is 2^127 and all magic factors are less than 2^129.
|
|
if (x & 0x80000000000000000000000000000000 > 0) result = (result * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128;
|
|
if (x & 0x40000000000000000000000000000000 > 0) result = (result * 0x1306FE0A31B7152DE8D5A46305C85EDED) >> 128;
|
|
if (x & 0x20000000000000000000000000000000 > 0) result = (result * 0x1172B83C7D517ADCDF7C8C50EB14A7920) >> 128;
|
|
if (x & 0x10000000000000000000000000000000 > 0) result = (result * 0x10B5586CF9890F6298B92B71842A98364) >> 128;
|
|
if (x & 0x8000000000000000000000000000000 > 0) result = (result * 0x1059B0D31585743AE7C548EB68CA417FE) >> 128;
|
|
if (x & 0x4000000000000000000000000000000 > 0) result = (result * 0x102C9A3E778060EE6F7CACA4F7A29BDE9) >> 128;
|
|
if (x & 0x2000000000000000000000000000000 > 0) result = (result * 0x10163DA9FB33356D84A66AE336DCDFA40) >> 128;
|
|
if (x & 0x1000000000000000000000000000000 > 0) result = (result * 0x100B1AFA5ABCBED6129AB13EC11DC9544) >> 128;
|
|
if (x & 0x800000000000000000000000000000 > 0) result = (result * 0x10058C86DA1C09EA1FF19D294CF2F679C) >> 128;
|
|
if (x & 0x400000000000000000000000000000 > 0) result = (result * 0x1002C605E2E8CEC506D21BFC89A23A011) >> 128;
|
|
if (x & 0x200000000000000000000000000000 > 0) result = (result * 0x100162F3904051FA128BCA9C55C31E5E0) >> 128;
|
|
if (x & 0x100000000000000000000000000000 > 0) result = (result * 0x1000B175EFFDC76BA38E31671CA939726) >> 128;
|
|
if (x & 0x80000000000000000000000000000 > 0) result = (result * 0x100058BA01FB9F96D6CACD4B180917C3E) >> 128;
|
|
if (x & 0x40000000000000000000000000000 > 0) result = (result * 0x10002C5CC37DA9491D0985C348C68E7B4) >> 128;
|
|
if (x & 0x20000000000000000000000000000 > 0) result = (result * 0x1000162E525EE054754457D5995292027) >> 128;
|
|
if (x & 0x10000000000000000000000000000 > 0) result = (result * 0x10000B17255775C040618BF4A4ADE83FD) >> 128;
|
|
if (x & 0x8000000000000000000000000000 > 0) result = (result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAC) >> 128;
|
|
if (x & 0x4000000000000000000000000000 > 0) result = (result * 0x100002C5C89D5EC6CA4D7C8ACC017B7CA) >> 128;
|
|
if (x & 0x2000000000000000000000000000 > 0) result = (result * 0x10000162E43F4F831060E02D839A9D16D) >> 128;
|
|
if (x & 0x1000000000000000000000000000 > 0) result = (result * 0x100000B1721BCFC99D9F890EA06911763) >> 128;
|
|
if (x & 0x800000000000000000000000000 > 0) result = (result * 0x10000058B90CF1E6D97F9CA14DBCC1629) >> 128;
|
|
if (x & 0x400000000000000000000000000 > 0) result = (result * 0x1000002C5C863B73F016468F6BAC5CA2C) >> 128;
|
|
if (x & 0x200000000000000000000000000 > 0) result = (result * 0x100000162E430E5A18F6119E3C02282A6) >> 128;
|
|
if (x & 0x100000000000000000000000000 > 0) result = (result * 0x1000000B1721835514B86E6D96EFD1BFF) >> 128;
|
|
if (x & 0x80000000000000000000000000 > 0) result = (result * 0x100000058B90C0B48C6BE5DF846C5B2F0) >> 128;
|
|
if (x & 0x40000000000000000000000000 > 0) result = (result * 0x10000002C5C8601CC6B9E94213C72737B) >> 128;
|
|
if (x & 0x20000000000000000000000000 > 0) result = (result * 0x1000000162E42FFF037DF38AA2B219F07) >> 128;
|
|
if (x & 0x10000000000000000000000000 > 0) result = (result * 0x10000000B17217FBA9C739AA5819F44FA) >> 128;
|
|
if (x & 0x8000000000000000000000000 > 0) result = (result * 0x1000000058B90BFCDEE5ACD3C1CEDC824) >> 128;
|
|
if (x & 0x4000000000000000000000000 > 0) result = (result * 0x100000002C5C85FE31F35A6A30DA1BE51) >> 128;
|
|
if (x & 0x2000000000000000000000000 > 0) result = (result * 0x10000000162E42FF0999CE3541B9FFFD0) >> 128;
|
|
if (x & 0x1000000000000000000000000 > 0) result = (result * 0x100000000B17217F80F4EF5AADDA45554) >> 128;
|
|
if (x & 0x800000000000000000000000 > 0) result = (result * 0x10000000058B90BFBF8479BD5A81B51AE) >> 128;
|
|
if (x & 0x400000000000000000000000 > 0) result = (result * 0x1000000002C5C85FDF84BD62AE30A74CD) >> 128;
|
|
if (x & 0x200000000000000000000000 > 0) result = (result * 0x100000000162E42FEFB2FED257559BDAA) >> 128;
|
|
if (x & 0x100000000000000000000000 > 0) result = (result * 0x1000000000B17217F7D5A7716BBA4A9AF) >> 128;
|
|
if (x & 0x80000000000000000000000 > 0) result = (result * 0x100000000058B90BFBE9DDBAC5E109CCF) >> 128;
|
|
if (x & 0x40000000000000000000000 > 0) result = (result * 0x10000000002C5C85FDF4B15DE6F17EB0E) >> 128;
|
|
if (x & 0x20000000000000000000000 > 0) result = (result * 0x1000000000162E42FEFA494F1478FDE05) >> 128;
|
|
if (x & 0x10000000000000000000000 > 0) result = (result * 0x10000000000B17217F7D20CF927C8E94D) >> 128;
|
|
if (x & 0x8000000000000000000000 > 0) result = (result * 0x1000000000058B90BFBE8F71CB4E4B33E) >> 128;
|
|
if (x & 0x4000000000000000000000 > 0) result = (result * 0x100000000002C5C85FDF477B662B26946) >> 128;
|
|
if (x & 0x2000000000000000000000 > 0) result = (result * 0x10000000000162E42FEFA3AE53369388D) >> 128;
|
|
if (x & 0x1000000000000000000000 > 0) result = (result * 0x100000000000B17217F7D1D351A389D41) >> 128;
|
|
if (x & 0x800000000000000000000 > 0) result = (result * 0x10000000000058B90BFBE8E8B2D3D4EDF) >> 128;
|
|
if (x & 0x400000000000000000000 > 0) result = (result * 0x1000000000002C5C85FDF4741BEA6E77F) >> 128;
|
|
if (x & 0x200000000000000000000 > 0) result = (result * 0x100000000000162E42FEFA39FE95583C3) >> 128;
|
|
if (x & 0x100000000000000000000 > 0) result = (result * 0x1000000000000B17217F7D1CFB72B45E3) >> 128;
|
|
if (x & 0x80000000000000000000 > 0) result = (result * 0x100000000000058B90BFBE8E7CC35C3F2) >> 128;
|
|
if (x & 0x40000000000000000000 > 0) result = (result * 0x10000000000002C5C85FDF473E242EA39) >> 128;
|
|
if (x & 0x20000000000000000000 > 0) result = (result * 0x1000000000000162E42FEFA39F02B772C) >> 128;
|
|
if (x & 0x10000000000000000000 > 0) result = (result * 0x10000000000000B17217F7D1CF7D83C1A) >> 128;
|
|
if (x & 0x8000000000000000000 > 0) result = (result * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128;
|
|
if (x & 0x4000000000000000000 > 0) result = (result * 0x100000000000002C5C85FDF473DEA871F) >> 128;
|
|
if (x & 0x2000000000000000000 > 0) result = (result * 0x10000000000000162E42FEFA39EF44D92) >> 128;
|
|
if (x & 0x1000000000000000000 > 0) result = (result * 0x100000000000000B17217F7D1CF79E949) >> 128;
|
|
if (x & 0x800000000000000000 > 0) result = (result * 0x10000000000000058B90BFBE8E7BCE545) >> 128;
|
|
if (x & 0x400000000000000000 > 0) result = (result * 0x1000000000000002C5C85FDF473DE6ECA) >> 128;
|
|
if (x & 0x200000000000000000 > 0) result = (result * 0x100000000000000162E42FEFA39EF366F) >> 128;
|
|
if (x & 0x100000000000000000 > 0) result = (result * 0x1000000000000000B17217F7D1CF79AFA) >> 128;
|
|
if (x & 0x80000000000000000 > 0) result = (result * 0x100000000000000058B90BFBE8E7BCD6E) >> 128;
|
|
if (x & 0x40000000000000000 > 0) result = (result * 0x10000000000000002C5C85FDF473DE6B3) >> 128;
|
|
if (x & 0x20000000000000000 > 0) result = (result * 0x1000000000000000162E42FEFA39EF359) >> 128;
|
|
if (x & 0x10000000000000000 > 0) result = (result * 0x10000000000000000B17217F7D1CF79AC) >> 128;
|
|
|
|
// We do two things at the same time below:
|
|
//
|
|
// 1. Multiply the result by 2^n + 1, where 2^n is the integer part and 1 is an extra bit to account
|
|
// for the fact that we initially set the result to 0.5 We implement this by subtracting from 127
|
|
// instead of 128.
|
|
// 2. Convert the result to the unsigned 60.18-decimal fixed-point format.
|
|
//
|
|
// This works because result * SCALE * 2^ip / 2^127 = result * SCALE / 2^(127 - ip), where ip is the integer
|
|
// part and SCALE / 2^128 is what converts the result to our unsigned fixed-point format.
|
|
result *= SCALE;
|
|
result >>= (127 - (x >> 128));
|
|
}
|
|
}
|
|
|
|
/// @notice Finds the zero-based index of the first one in the binary representation of x.
|
|
/// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
|
|
/// @param x The uint256 number for which to find the index of the most significant bit.
|
|
/// @return msb The index of the most significant bit as an uint256.
|
|
function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
|
|
if (x >= 2**128) {
|
|
x >>= 128;
|
|
msb += 128;
|
|
}
|
|
if (x >= 2**64) {
|
|
x >>= 64;
|
|
msb += 64;
|
|
}
|
|
if (x >= 2**32) {
|
|
x >>= 32;
|
|
msb += 32;
|
|
}
|
|
if (x >= 2**16) {
|
|
x >>= 16;
|
|
msb += 16;
|
|
}
|
|
if (x >= 2**8) {
|
|
x >>= 8;
|
|
msb += 8;
|
|
}
|
|
if (x >= 2**4) {
|
|
x >>= 4;
|
|
msb += 4;
|
|
}
|
|
if (x >= 2**2) {
|
|
x >>= 2;
|
|
msb += 2;
|
|
}
|
|
if (x >= 2**1) {
|
|
// No need to shift x any more.
|
|
msb += 1;
|
|
}
|
|
}
|
|
|
|
/// @notice Calculates floor(x*y÷denominator) with full precision.
|
|
///
|
|
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
|
|
///
|
|
/// Requirements:
|
|
/// - The denominator cannot be zero.
|
|
/// - The result must fit within uint256.
|
|
///
|
|
/// Caveats:
|
|
/// - This function does not work with fixed-point numbers.
|
|
///
|
|
/// @param x The multiplicand as an uint256.
|
|
/// @param y The multiplier as an uint256.
|
|
/// @param denominator The divisor as an uint256.
|
|
/// @return result The result as an uint256.
|
|
function mulDiv(
|
|
uint256 x,
|
|
uint256 y,
|
|
uint256 denominator
|
|
) internal pure returns (uint256 result) {
|
|
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2**256 and mod 2**256 - 1, then use
|
|
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
|
|
// variables such that product = prod1 * 2**256 + prod0.
|
|
uint256 prod0; // Least significant 256 bits of the product
|
|
uint256 prod1; // Most significant 256 bits of the product
|
|
assembly {
|
|
let mm := mulmod(x, y, not(0))
|
|
prod0 := mul(x, y)
|
|
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
|
|
}
|
|
|
|
// Handle non-overflow cases, 256 by 256 division
|
|
if (prod1 == 0) {
|
|
require(denominator > 0);
|
|
assembly {
|
|
result := div(prod0, denominator)
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Make sure the result is less than 2**256. Also prevents denominator == 0.
|
|
require(denominator > prod1);
|
|
|
|
///////////////////////////////////////////////
|
|
// 512 by 256 division.
|
|
///////////////////////////////////////////////
|
|
|
|
// Make division exact by subtracting the remainder from [prod1 prod0].
|
|
uint256 remainder;
|
|
assembly {
|
|
// Compute remainder using mulmod.
|
|
remainder := mulmod(x, y, denominator)
|
|
|
|
// Subtract 256 bit number from 512 bit number
|
|
prod1 := sub(prod1, gt(remainder, prod0))
|
|
prod0 := sub(prod0, remainder)
|
|
}
|
|
|
|
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
|
|
// See https://cs.stackexchange.com/q/138556/92363.
|
|
unchecked {
|
|
// Does not overflow because the denominator cannot be zero at this stage in the function.
|
|
uint256 lpotdod = denominator & (~denominator + 1);
|
|
assembly {
|
|
// Divide denominator by lpotdod.
|
|
denominator := div(denominator, lpotdod)
|
|
|
|
// Divide [prod1 prod0] by lpotdod.
|
|
prod0 := div(prod0, lpotdod)
|
|
|
|
// Flip lpotdod such that it is 2**256 / lpotdod. If lpotdod is zero, then it becomes one.
|
|
lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
|
|
}
|
|
|
|
// Shift in bits from prod1 into prod0.
|
|
prod0 |= prod1 * lpotdod;
|
|
|
|
// Invert denominator mod 2**256. Now that denominator is an odd number, it has an inverse modulo 2**256 such
|
|
// that denominator * inv = 1 mod 2**256. Compute the inverse by starting with a seed that is correct for
|
|
// four bits. That is, denominator * inv = 1 mod 2**4
|
|
uint256 inverse = (3 * denominator) ^ 2;
|
|
|
|
// Now use Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
|
|
// in modular arithmetic, doubling the correct bits in each step.
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2**8
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2**16
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2**32
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2**64
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2**128
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2**256
|
|
|
|
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
|
|
// This will give us the correct result modulo 2**256. Since the precoditions guarantee that the outcome is
|
|
// less than 2**256, this is the final result. We don't need to compute the high bits of the result and prod1
|
|
// is no longer required.
|
|
result = prod0 * inverse;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/// @notice Calculates floor(x*y÷1e18) with full precision.
|
|
///
|
|
/// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
|
|
/// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
|
|
/// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
|
|
///
|
|
/// Requirements:
|
|
/// - The result must fit within uint256.
|
|
///
|
|
/// Caveats:
|
|
/// - The body is purposely left uncommented; see the NatSpec comments in "PRBMathCommon.mulDiv" to understand how this works.
|
|
/// - It is assumed that the result can never be type(uint256).max when x and y solve the following two queations:
|
|
/// 1. x * y = type(uint256).max * SCALE
|
|
/// 2. (x * y) % SCALE >= SCALE / 2
|
|
///
|
|
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
|
|
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
|
|
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
|
|
function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
|
|
uint256 prod0;
|
|
uint256 prod1;
|
|
assembly {
|
|
let mm := mulmod(x, y, not(0))
|
|
prod0 := mul(x, y)
|
|
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
|
|
}
|
|
|
|
uint256 remainder;
|
|
uint256 roundUpUnit;
|
|
assembly {
|
|
remainder := mulmod(x, y, SCALE)
|
|
roundUpUnit := gt(remainder, 499999999999999999)
|
|
}
|
|
|
|
if (prod1 == 0) {
|
|
unchecked {
|
|
result = (prod0 / SCALE) + roundUpUnit;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
require(SCALE > prod1);
|
|
|
|
assembly {
|
|
result := add(
|
|
mul(
|
|
or(
|
|
div(sub(prod0, remainder), SCALE_LPOTD),
|
|
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
|
|
),
|
|
SCALE_INVERSE
|
|
),
|
|
roundUpUnit
|
|
)
|
|
}
|
|
}
|
|
|
|
/// @notice Calculates the square root of x, rounding down.
|
|
/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
|
|
///
|
|
/// Caveats:
|
|
/// - This function does not work with fixed-point numbers.
|
|
///
|
|
/// @param x The uint256 number for which to calculate the square root.
|
|
/// @return result The result as an uint256.
|
|
function sqrt(uint256 x) internal pure returns (uint256 result) {
|
|
if (x == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// Calculate the square root of the perfect square of a power of two that is the closest to x.
|
|
uint256 xAux = uint256(x);
|
|
result = 1;
|
|
if (xAux >= 0x100000000000000000000000000000000) {
|
|
xAux >>= 128;
|
|
result <<= 64;
|
|
}
|
|
if (xAux >= 0x10000000000000000) {
|
|
xAux >>= 64;
|
|
result <<= 32;
|
|
}
|
|
if (xAux >= 0x100000000) {
|
|
xAux >>= 32;
|
|
result <<= 16;
|
|
}
|
|
if (xAux >= 0x10000) {
|
|
xAux >>= 16;
|
|
result <<= 8;
|
|
}
|
|
if (xAux >= 0x100) {
|
|
xAux >>= 8;
|
|
result <<= 4;
|
|
}
|
|
if (xAux >= 0x10) {
|
|
xAux >>= 4;
|
|
result <<= 2;
|
|
}
|
|
if (xAux >= 0x8) {
|
|
result <<= 1;
|
|
}
|
|
|
|
// The operations can never overflow because the result is max 2^127 when it enters this block.
|
|
unchecked {
|
|
result = (result + x / result) >> 1;
|
|
result = (result + x / result) >> 1;
|
|
result = (result + x / result) >> 1;
|
|
result = (result + x / result) >> 1;
|
|
result = (result + x / result) >> 1;
|
|
result = (result + x / result) >> 1;
|
|
result = (result + x / result) >> 1; // Seven iterations should be enough
|
|
uint256 roundedDownResult = x / result;
|
|
return result >= roundedDownResult ? roundedDownResult : result;
|
|
}
|
|
}
|
|
}
|