mirror of
				https://github.com/ethereum/solidity
				synced 2023-10-03 13:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			593 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			593 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
#################################################
 | 
						|
Joyfully Universal Language for (Inline) Assembly
 | 
						|
#################################################
 | 
						|
 | 
						|
.. _julia:
 | 
						|
 | 
						|
.. index:: ! assembly, ! asm, ! evmasm, ! julia
 | 
						|
 | 
						|
JULIA is an intermediate language that can compile to various different backends
 | 
						|
(EVM 1.0, EVM 1.5 and eWASM are planned).
 | 
						|
Because of that, it is designed to be a usable common denominator of all three
 | 
						|
platforms.
 | 
						|
It can already be used for "inline assembly" inside Solidity and
 | 
						|
future versions of the Solidity compiler will even use JULIA as intermediate
 | 
						|
language. It should also be easy to build high-level optimizer stages for JULIA.
 | 
						|
 | 
						|
.. note::
 | 
						|
 | 
						|
    Note that the flavour used for "inline assembly" does not have types
 | 
						|
    (everything is ``u256``) and the built-in functions are identical
 | 
						|
    to the EVM opcodes. Please resort to the inline assembly documentation
 | 
						|
    for details.
 | 
						|
 | 
						|
The core components of JULIA are functions, blocks, variables, literals,
 | 
						|
for-loops, if-statements, switch-statements, expressions and assignments to variables.
 | 
						|
 | 
						|
JULIA is typed, both variables and literals must specify the type with postfix
 | 
						|
notation. The supported types are ``bool``, ``u8``, ``s8``, ``u32``, ``s32``,
 | 
						|
``u64``, ``s64``, ``u128``, ``s128``, ``u256`` and ``s256``.
 | 
						|
 | 
						|
JULIA in itself does not even provide operators. If the EVM is targeted,
 | 
						|
opcodes will be available as built-in functions, but they can be reimplemented
 | 
						|
if the backend changes. For a list of mandatory built-in functions, see the section below.
 | 
						|
 | 
						|
The following example program assumes that the EVM opcodes ``mul``, ``div``
 | 
						|
and ``mod`` are available either natively or as functions and computes exponentiation.
 | 
						|
 | 
						|
.. code::
 | 
						|
 | 
						|
    {
 | 
						|
        function power(base:u256, exponent:u256) -> result:u256
 | 
						|
        {
 | 
						|
            switch exponent
 | 
						|
            case 0:u256 { result := 1:u256 }
 | 
						|
            case 1:u256 { result := base }
 | 
						|
            default:
 | 
						|
            {
 | 
						|
                result := power(mul(base, base), div(exponent, 2:u256))
 | 
						|
                switch mod(exponent, 2:u256)
 | 
						|
                    case 1:u256 { result := mul(base, result) }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
It is also possible to implement the same function using a for-loop
 | 
						|
instead of with recursion. Here, we need the EVM opcodes ``lt`` (less-than)
 | 
						|
and ``add`` to be available.
 | 
						|
 | 
						|
.. code::
 | 
						|
 | 
						|
    {
 | 
						|
        function power(base:u256, exponent:u256) -> result:u256
 | 
						|
        {
 | 
						|
            result := 1:u256
 | 
						|
            for { let i := 0:u256 } lt(i, exponent) { i := add(i, 1:u256) }
 | 
						|
            {
 | 
						|
                result := mul(result, base)
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
Specification of JULIA
 | 
						|
======================
 | 
						|
 | 
						|
JULIA code is described in this chapter. JULIA code is usually placed into a JULIA object, which is described in the following chapter.
 | 
						|
 | 
						|
Grammar::
 | 
						|
 | 
						|
    Block = '{' Statement* '}'
 | 
						|
    Statement =
 | 
						|
        Block |
 | 
						|
        FunctionDefinition |
 | 
						|
        VariableDeclaration |
 | 
						|
        Assignment |
 | 
						|
        Expression |
 | 
						|
        Switch |
 | 
						|
        ForLoop |
 | 
						|
        BreakContinue
 | 
						|
    FunctionDefinition =
 | 
						|
        'function' Identifier '(' TypedIdentifierList? ')'
 | 
						|
        ( '->' TypedIdentifierList )? Block
 | 
						|
    VariableDeclaration =
 | 
						|
        'let' TypedIdentifierList ( ':=' Expression )?
 | 
						|
    Assignment =
 | 
						|
        IdentifierList ':=' Expression
 | 
						|
    Expression =
 | 
						|
        FunctionCall | Identifier | Literal
 | 
						|
    If =
 | 
						|
        'if' Expression Block
 | 
						|
    Switch =
 | 
						|
        'switch' Expression Case* ( 'default' Block )?
 | 
						|
    Case =
 | 
						|
        'case' Literal Block
 | 
						|
    ForLoop =
 | 
						|
        'for' Block Expression Block Block
 | 
						|
    BreakContinue =
 | 
						|
        'break' | 'continue'
 | 
						|
    FunctionCall =
 | 
						|
        Identifier '(' ( Expression ( ',' Expression )* )? ')'
 | 
						|
    Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
 | 
						|
    IdentifierList = Identifier ( ',' Identifier)*
 | 
						|
    TypeName = Identifier | BuiltinTypeName
 | 
						|
    BuiltinTypeName = 'bool' | [us] ( '8' | '32' | '64' | '128' | '256' )
 | 
						|
    TypedIdentifierList = Identifier ':' TypeName ( ',' Identifier ':' TypeName )*
 | 
						|
    Literal =
 | 
						|
        (NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':' TypeName
 | 
						|
    NumberLiteral = HexNumber | DecimalNumber
 | 
						|
    HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
 | 
						|
    StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
 | 
						|
    TrueLiteral = 'true'
 | 
						|
    FalseLiteral = 'false'
 | 
						|
    HexNumber = '0x' [0-9a-fA-F]+
 | 
						|
    DecimalNumber = [0-9]+
 | 
						|
 | 
						|
Restrictions on the Grammar
 | 
						|
---------------------------
 | 
						|
 | 
						|
Switches must have at least one case (including the default case).
 | 
						|
If all possible values of the expression is covered, the default case should
 | 
						|
not be allowed (i.e. a switch with a ``bool`` expression and having both a
 | 
						|
true and false case should not allow a default case).
 | 
						|
 | 
						|
Every expression evaluates to zero or more values. Identifiers and Literals
 | 
						|
evaluate to exactly
 | 
						|
one value and function calls evaluate to a number of values equal to the
 | 
						|
number of return values of the function called.
 | 
						|
 | 
						|
In variable declarations and assignments, the right-hand-side expression
 | 
						|
(if present) has to evaluate to a number of values equal to the number of
 | 
						|
variables on the left-hand-side.
 | 
						|
This is the only situation where an expression evaluating
 | 
						|
to more than one value is allowed.
 | 
						|
 | 
						|
Expressions that are also statements (i.e. at the block level) have to
 | 
						|
evaluate to zero values.
 | 
						|
 | 
						|
In all other situations, expressions have to evaluate to exactly one value.
 | 
						|
 | 
						|
The ``continue`` and ``break`` statements can only be used inside loop bodies
 | 
						|
and have to be in the same function as the loop (or both have to be at the
 | 
						|
top level).
 | 
						|
The condition part of the for-loop has to evaluate to exactly one value.
 | 
						|
 | 
						|
Literals cannot be larger than the their type. The largest type defined is 256-bit wide.
 | 
						|
 | 
						|
Scoping Rules
 | 
						|
-------------
 | 
						|
 | 
						|
Scopes in JULIA are tied to Blocks (exceptions are functions and the for loop
 | 
						|
as explained below) and all declarations
 | 
						|
(``FunctionDefinition``, ``VariableDeclaration``)
 | 
						|
introduce new identifiers into these scopes.
 | 
						|
 | 
						|
Identifiers are visible in
 | 
						|
the block they are defined in (including all sub-nodes and sub-blocks).
 | 
						|
As an exception, identifiers defined in the "init" part of the for-loop
 | 
						|
(the first block) are visible in all other parts of the for-loop
 | 
						|
(but not outside of the loop).
 | 
						|
Identifiers declared in the other parts of the for loop respect the regular
 | 
						|
syntatical scoping rules.
 | 
						|
The parameters and return parameters of functions are visible in the
 | 
						|
function body and their names cannot overlap.
 | 
						|
 | 
						|
Variables can only be referenced after their declaration. In particular,
 | 
						|
variables cannot be referenced in the right hand side of their own variable
 | 
						|
declaration.
 | 
						|
Functions can be referenced already before their declaration (if they are visible).
 | 
						|
 | 
						|
Shadowing is disallowed, i.e. you cannot declare an identifier at a point
 | 
						|
where another identifier with the same name is also visible, even if it is
 | 
						|
not accessible.
 | 
						|
 | 
						|
Inside functions, it is not possible to access a variable that was declared
 | 
						|
outside of that function.
 | 
						|
 | 
						|
Formal Specification
 | 
						|
--------------------
 | 
						|
 | 
						|
We formally specify JULIA by providing an evaluation function E overloaded
 | 
						|
on the various nodes of the AST. Any functions can have side effects, so
 | 
						|
E takes two state objects and the AST node and returns two new
 | 
						|
state objects and a variable number of other values.
 | 
						|
The two state objects are the global state object
 | 
						|
(which in the context of the EVM is the memory, storage and state of the
 | 
						|
blockchain) and the local state object (the state of local variables, i.e. a
 | 
						|
segment of the stack in the EVM).
 | 
						|
If the AST node is a statement, E returns the two state objects and a "mode",
 | 
						|
which is used for the ``break`` and ``continue`` statements.
 | 
						|
If the AST node is an expression, E returns the two state objects and
 | 
						|
as many values as the expression evaluates to.
 | 
						|
 | 
						|
 | 
						|
The exact nature of the global state is unspecified for this high level
 | 
						|
description. The local state ``L`` is a mapping of identifiers ``i`` to values ``v``,
 | 
						|
denoted as ``L[i] = v``.
 | 
						|
 | 
						|
For an identifier ``v``, let ``$v`` be the name of the identifier.
 | 
						|
 | 
						|
We will use a destructuring notation for the AST nodes.
 | 
						|
 | 
						|
.. code::
 | 
						|
 | 
						|
    E(G, L, <{St1, ..., Stn}>: Block) =
 | 
						|
        let G1, L1, mode = E(G, L, St1, ..., Stn)
 | 
						|
        let L2 be a restriction of L1 to the identifiers of L
 | 
						|
        G1, L2, mode
 | 
						|
    E(G, L, St1, ..., Stn: Statement) =
 | 
						|
        if n is zero:
 | 
						|
            G, L, regular
 | 
						|
        else:
 | 
						|
            let G1, L1, mode = E(G, L, St1)
 | 
						|
            if mode is regular then
 | 
						|
                E(G1, L1, St2, ..., Stn)
 | 
						|
            otherwise
 | 
						|
                G1, L1, mode
 | 
						|
    E(G, L, FunctionDefinition) =
 | 
						|
        G, L, regular
 | 
						|
    E(G, L, <let var1, ..., varn := rhs>: VariableDeclaration) =
 | 
						|
        E(G, L, <var1, ..., varn := rhs>: Assignment)
 | 
						|
    E(G, L, <let var1, ..., varn>: VariableDeclaration) =
 | 
						|
        let L1 be a copy of L where L1[$vari] = 0 for i = 1, ..., n
 | 
						|
        G, L1, regular
 | 
						|
    E(G, L, <var1, ..., varn := rhs>: Assignment) =
 | 
						|
        let G1, L1, v1, ..., vn = E(G, L, rhs)
 | 
						|
        let L2 be a copy of L1 where L2[$vari] = vi for i = 1, ..., n
 | 
						|
        G, L2, regular
 | 
						|
    E(G, L, <for { i1, ..., in } condition post body>: ForLoop) =
 | 
						|
        if n >= 1:
 | 
						|
            let G1, L1, mode = E(G, L, i1, ..., in)
 | 
						|
            // mode has to be regular due to the syntactic restrictions
 | 
						|
            let G2, L2, mode = E(G1, L1, for {} condition post body)
 | 
						|
            // mode has to be regular due to the syntactic restrictions
 | 
						|
            let L3 be the restriction of L2 to only variables of L
 | 
						|
            G2, L3, regular
 | 
						|
        else:
 | 
						|
            let G1, L1, v = E(G, L, condition)
 | 
						|
            if v is false:
 | 
						|
                G1, L1, regular
 | 
						|
            else:
 | 
						|
                let G2, L2, mode = E(G1, L, body)
 | 
						|
                if mode is break:
 | 
						|
                    G2, L2, regular
 | 
						|
                else:
 | 
						|
                    G3, L3, mode = E(G2, L2, post)
 | 
						|
                    E(G3, L3, for {} condition post body)
 | 
						|
    E(G, L, break: BreakContinue) =
 | 
						|
        G, L, break
 | 
						|
    E(G, L, continue: BreakContinue) =
 | 
						|
        G, L, continue
 | 
						|
    E(G, L, <if condition body>: If) =
 | 
						|
        let G0, L0, v = E(G, L, condition)
 | 
						|
        if v is true:
 | 
						|
            E(G0, L0, body)
 | 
						|
        else:
 | 
						|
            G0, L0, regular
 | 
						|
    E(G, L, <switch condition case l1:t1 st1 ... case ln:tn stn>: Switch) =
 | 
						|
        E(G, L, switch condition case l1:t1 st1 ... case ln:tn stn default {})
 | 
						|
    E(G, L, <switch condition case l1:t1 st1 ... case ln:tn stn default st'>: Switch) =
 | 
						|
        let G0, L0, v = E(G, L, condition)
 | 
						|
        // i = 1 .. n
 | 
						|
        // Evaluate literals, context doesn't matter
 | 
						|
        let _, _, v1 = E(G0, L0, l1)
 | 
						|
        ...
 | 
						|
        let _, _, vn = E(G0, L0, ln)
 | 
						|
        if there exists smallest i such that vi = v:
 | 
						|
            E(G0, L0, sti)
 | 
						|
        else:
 | 
						|
            E(G0, L0, st')
 | 
						|
 | 
						|
    E(G, L, <name>: Identifier) =
 | 
						|
        G, L, L[$name]
 | 
						|
    E(G, L, <fname(arg1, ..., argn)>: FunctionCall) =
 | 
						|
        G1, L1, vn = E(G, L, argn)
 | 
						|
        ...
 | 
						|
        G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2)
 | 
						|
        Gn, Ln, v1 = E(G(n-1), L(n-1), arg1)
 | 
						|
        Let <function fname (param1, ..., paramn) -> ret1, ..., retm block>
 | 
						|
        be the function of name $fname visible at the point of the call.
 | 
						|
        Let L' be a new local state such that
 | 
						|
        L'[$parami] = vi and L'[$reti] = 0 for all i.
 | 
						|
        Let G'', L'', mode = E(Gn, L', block)
 | 
						|
        G'', Ln, L''[$ret1], ..., L''[$retm]
 | 
						|
    E(G, L, l: HexLiteral) = G, L, hexString(l),
 | 
						|
        where hexString decodes l from hex and left-aligns it into 32 bytes
 | 
						|
    E(G, L, l: StringLiteral) = G, L, utf8EncodeLeftAligned(l),
 | 
						|
        where utf8EncodeLeftAligned performs a utf8 encoding of l
 | 
						|
        and aligns it left into 32 bytes
 | 
						|
    E(G, L, n: HexNumber) = G, L, hex(n)
 | 
						|
        where hex is the hexadecimal decoding function
 | 
						|
    E(G, L, n: DecimalNumber) = G, L, dec(n),
 | 
						|
        where dec is the decimal decoding function
 | 
						|
 | 
						|
Type Conversion Functions
 | 
						|
-------------------------
 | 
						|
 | 
						|
JULIA has no support for implicit type conversion and therefore functions exists to provide explicit conversion.
 | 
						|
When converting a larger type to a shorter type a runtime exception can occur in case of an overflow.
 | 
						|
 | 
						|
Truncating conversions are supported between the following types:
 | 
						|
 - ``bool``
 | 
						|
 - ``u32``
 | 
						|
 - ``u64``
 | 
						|
 - ``u256``
 | 
						|
 - ``s256``
 | 
						|
 | 
						|
For each of these a type conversion function exists having the prototype in the form of ``<input_type>to<output_type>(x:<input_type>) -> y:<output_type>``,
 | 
						|
such as ``u32tobool(x:u32) -> y:bool``, ``u256tou32(x:u256) -> y:u32`` or ``s256tou256(x:s256) -> y:u256``.
 | 
						|
 | 
						|
.. note::
 | 
						|
 | 
						|
    ``u32tobool(x:u32) -> y:bool`` can be implemented as ``y := not(iszerou256(x))`` and
 | 
						|
    ``booltou32(x:bool) -> y:u32`` can be implemented as ``switch x case true:bool { y := 1:u32 } case false:bool { y := 0:u32 }``
 | 
						|
 | 
						|
Low-level Functions
 | 
						|
-------------------
 | 
						|
 | 
						|
The following functions must be available:
 | 
						|
 | 
						|
+---------------------------------------------------------------------------------------------------------------+
 | 
						|
| *Logic*                                                                                                       |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| not(x:bool) -> z:bool                       | logical not                                                     |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| and(x:bool, y:bool) -> z:bool               | logical and                                                     |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| or(x:bool, y:bool) -> z:bool                | logical or                                                      |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| xor(x:bool, y:bool) -> z:bool               | xor                                                             |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| *Arithmetics*                                                                                                 |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| addu256(x:u256, y:u256) -> z:u256           | x + y                                                           |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| subu256(x:u256, y:u256) -> z:u256           | x - y                                                           |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| mulu256(x:u256, y:u256) -> z:u256           | x * y                                                           |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| divu256(x:u256, y:u256) -> z:u256           | x / y                                                           |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| divs256(x:s256, y:s256) -> z:s256           | x / y, for signed numbers in two's complement                   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| modu256(x:u256, y:u256) -> z:u256           | x % y                                                           |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| mods256(x:s256, y:s256) -> z:s256           | x % y, for signed numbers in two's complement                   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| signextendu256(i:u256, x:u256) -> z:u256    | sign extend from (i*8+7)th bit counting from least significant  |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| expu256(x:u256, y:u256) -> z:u256           | x to the power of y                                             |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| addmodu256(x:u256, y:u256, m:u256) -> z:u256| (x + y) % m with arbitrary precision arithmetics                |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| mulmodu256(x:u256, y:u256, m:u256) -> z:u256| (x * y) % m with arbitrary precision arithmetics                |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| ltu256(x:u256, y:u256) -> z:bool            | true if x < y, false otherwise                                  |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| gtu256(x:u256, y:u256) -> z:bool            | true if x > y, false otherwise                                  |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| sltu256(x:s256, y:s256) -> z:bool           | true if x < y, false otherwise                                  |
 | 
						|
|                                             | (for signed numbers in two's complement)                        |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| sgtu256(x:s256, y:s256) -> z:bool           | true if x > y, false otherwise                                  |
 | 
						|
|                                             | (for signed numbers in two's complement)                        |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| equ256(x:u256, y:u256) -> z:bool            | true if x == y, false otherwise                                 |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| iszerou256(x:u256) -> z:bool                | true if x == 0, false otherwise                                 |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| notu256(x:u256) -> z:u256                   | ~x, every bit of x is negated                                   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| andu256(x:u256, y:u256) -> z:u256           | bitwise and of x and y                                          |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| oru256(x:u256, y:u256) -> z:u256            | bitwise or of x and y                                           |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| xoru256(x:u256, y:u256) -> z:u256           | bitwise xor of x and y                                          |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| shlu256(x:u256, y:u256) -> z:u256           | logical left shift of x by y                                    |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| shru256(x:u256, y:u256) -> z:u256           | logical right shift of x by y                                   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| saru256(x:u256, y:u256) -> z:u256           | arithmetic right shift of x by y                                |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| byte(n:u256, x:u256) -> v:u256              | nth byte of x, where the most significant byte is the 0th byte  |
 | 
						|
|                                             | Cannot this be just replaced by and256(shr256(n, x), 0xff) and  |
 | 
						|
|                                             | let it be optimised out by the EVM backend?                     |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| *Memory and storage*                                                                                          |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| mload(p:u256) -> v:u256                     | mem[p..(p+32))                                                  |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| mstore(p:u256, v:u256)                      | mem[p..(p+32)) := v                                             |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| mstore8(p:u256, v:u256)                     | mem[p] := v & 0xff    - only modifies a single byte             |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| sload(p:u256) -> v:u256                     | storage[p]                                                      |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| sstore(p:u256, v:u256)                      | storage[p] := v                                                 |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| msize() -> size:u256                        | size of memory, i.e. largest accessed memory index, albeit due  |
 | 
						|
|                                             | due to the memory extension function, which extends by words,   |
 | 
						|
|                                             | this will always be a multiple of 32 bytes                      |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| *Execution control*                                                                                           |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| create(v:u256, p:u256, s:u256)              | create new contract with code mem[p..(p+s)) and send v wei      |
 | 
						|
|                                             | and return the new address                                      |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| call(g:u256, a:u256, v:u256, in:u256,       | call contract at address a with input mem[in..(in+insize))      |
 | 
						|
| insize:u256, out:u256,                      | providing g gas and v wei and output area                       |
 | 
						|
| outsize:u256)                               | mem[out..(out+outsize)) returning 0 on error (eg. out of gas)   |
 | 
						|
| -> r:u256                                   | and 1 on success                                                |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| callcode(g:u256, a:u256, v:u256, in:u256,   | identical to ``call`` but only use the code from a              |
 | 
						|
| insize:u256, out:u256,                      | and stay in the context of the                                  |
 | 
						|
| outsize:u256) -> r:u256                     | current contract otherwise                                      |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| delegatecall(g:u256, a:u256, in:u256,       | identical to ``callcode``,                                      |
 | 
						|
| insize:u256, out:u256,                      | but also keep ``caller``                                        |
 | 
						|
| outsize:u256) -> r:u256                     | and ``callvalue``                                               |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| abort()                                     | abort (equals to invalid instruction on EVM)                    |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| return(p:u256, s:u256)                      | end execution, return data mem[p..(p+s))                        |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| revert(p:u256, s:u256)                      | end execution, revert state changes, return data mem[p..(p+s))  |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| selfdestruct(a:u256)                        | end execution, destroy current contract and send funds to a     |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| log0(p:u256, s:u256)                        | log without topics and data mem[p..(p+s))                       |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| log1(p:u256, s:u256, t1:u256)               | log with topic t1 and data mem[p..(p+s))                        |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| log2(p:u256, s:u256, t1:u256, t2:u256)      | log with topics t1, t2 and data mem[p..(p+s))                   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| log3(p:u256, s:u256, t1:u256, t2:u256,      | log with topics t, t2, t3 and data mem[p..(p+s))                |
 | 
						|
| t3:u256)                                    |                                                                 |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| log4(p:u256, s:u256, t1:u256, t2:u256,      | log with topics t1, t2, t3, t4 and data mem[p..(p+s))           |
 | 
						|
| t3:u256, t4:u256)                           |                                                                 |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| *State queries*                                                                                               |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| blockcoinbase() -> address:u256             | current mining beneficiary                                      |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| blockdifficulty() -> difficulty:u256        | difficulty of the current block                                 |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| blockgaslimit() -> limit:u256               | block gas limit of the current block                            |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| blockhash(b:u256) -> hash:u256              | hash of block nr b - only for last 256 blocks excluding current |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| blocknumber() -> block:u256                 | current block number                                            |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| blocktimestamp() -> timestamp:u256          | timestamp of the current block in seconds since the epoch       |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| txorigin() -> address:u256                  | transaction sender                                              |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| txgasprice() -> price:u256                  | gas price of the transaction                                    |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| gasleft() -> gas:u256                       | gas still available to execution                                |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| balance(a:u256) -> v:u256                   | wei balance at address a                                        |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| this() -> address:u256                      | address of the current contract / execution context             |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| caller() -> address:u256                    | call sender (excluding delegatecall)                            |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| callvalue() -> v:u256                       | wei sent together with the current call                         |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| calldataload(p:u256) -> v:u256              | call data starting from position p (32 bytes)                   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| calldatasize() -> v:u256                    | size of call data in bytes                                      |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| calldatacopy(t:u256, f:u256, s:u256)        | copy s bytes from calldata at position f to mem at position t   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| codesize() -> size:u256                     | size of the code of the current contract / execution context    |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| codecopy(t:u256, f:u256, s:u256)            | copy s bytes from code at position f to mem at position t       |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| extcodesize(a:u256) -> size:u256            | size of the code at address a                                   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| extcodecopy(a:u256, t:u256, f:u256, s:u256) | like codecopy(t, f, s) but take code at address a               |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| *Others*                                                                                                      |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| discard(unused:bool)                        | discard value                                                   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| discardu256(unused:u256)                    | discard value                                                   |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| splitu256tou64(x:u256) -> (x1:u64, x2:u64,  | split u256 to four u64's                                        |
 | 
						|
| x3:u64, x4:u64)                             |                                                                 |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| combineu64tou256(x1:u64, x2:u64, x3:u64,    | combine four u64's into a single u256                           |
 | 
						|
| x4:u64) -> (x:u256)                         |                                                                 |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
| keccak256(p:u256, s:u256) -> v:u256         | keccak(mem[p...(p+s)))                                          |
 | 
						|
+---------------------------------------------+-----------------------------------------------------------------+
 | 
						|
 | 
						|
Backends
 | 
						|
--------
 | 
						|
 | 
						|
Backends or targets are the translators from JULIA to a specific bytecode. Each of the backends can expose functions
 | 
						|
prefixed with the name of the backend. We reserve ``evm_`` and ``ewasm_`` prefixes for the two proposed backends.
 | 
						|
 | 
						|
Backend: EVM
 | 
						|
------------
 | 
						|
 | 
						|
The EVM target will have all the underlying EVM opcodes exposed with the `evm_` prefix.
 | 
						|
 | 
						|
Backend: "EVM 1.5"
 | 
						|
------------------
 | 
						|
 | 
						|
TBD
 | 
						|
 | 
						|
Backend: eWASM
 | 
						|
--------------
 | 
						|
 | 
						|
TBD
 | 
						|
 | 
						|
Specification of JULIA Object
 | 
						|
=============================
 | 
						|
 | 
						|
Grammar::
 | 
						|
 | 
						|
    TopLevelObject = 'object' '{' Code? ( Object | Data )* '}'
 | 
						|
    Object = 'object' StringLiteral '{' Code? ( Object | Data )* '}'
 | 
						|
    Code = 'code' Block
 | 
						|
    Data = 'data' StringLiteral HexLiteral
 | 
						|
    HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
 | 
						|
    StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
 | 
						|
 | 
						|
Above, ``Block`` refers to ``Block`` in the JULIA code grammar explained in the previous chapter.
 | 
						|
 | 
						|
An example JULIA Object is shown below:
 | 
						|
 | 
						|
..code::
 | 
						|
 | 
						|
    // Code consists of a single object. A single "code" node is the code of the object.
 | 
						|
    // Every (other) named object or data section is serialized and
 | 
						|
    // made accessible to the special built-in functions datacopy / dataoffset / datasize
 | 
						|
    object {
 | 
						|
        code {
 | 
						|
            let size = datasize("runtime")
 | 
						|
            let offset = allocate(size)
 | 
						|
            // This will turn into a memory->memory copy for eWASM and
 | 
						|
            // a codecopy for EVM
 | 
						|
            datacopy(dataoffset("runtime"), offset, size)
 | 
						|
            // this is a constructor and the runtime code is returned
 | 
						|
            return(offset, size)
 | 
						|
        }
 | 
						|
 | 
						|
        data "Table2" hex"4123"
 | 
						|
 | 
						|
        object "runtime" {
 | 
						|
            code {
 | 
						|
                // runtime code
 | 
						|
 | 
						|
                let size = datasize("Contract2")
 | 
						|
                let offset = allocate(size)
 | 
						|
                // This will turn into a memory->memory copy for eWASM and
 | 
						|
                // a codecopy for EVM
 | 
						|
                datacopy(dataoffset("Contract2"), offset, size)
 | 
						|
                // constructor parameter is a single number 0x1234
 | 
						|
                mstore(add(offset, size), 0x1234)
 | 
						|
                create(offset, add(size, 32))
 | 
						|
            }
 | 
						|
 | 
						|
            // Embedded object. Use case is that the outside is a factory contract,
 | 
						|
            // and Contract2 is the code to be created by the factory
 | 
						|
            object "Contract2" {
 | 
						|
                code {
 | 
						|
                    // code here ...
 | 
						|
                }
 | 
						|
 | 
						|
                object "runtime" {
 | 
						|
                    code {
 | 
						|
                        // code here ...
 | 
						|
                    }
 | 
						|
                 }
 | 
						|
 | 
						|
                 data "Table1" hex"4123"
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 |