mirror of
				https://github.com/ethereum/solidity
				synced 2023-10-03 13:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			196 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
	This file is part of solidity.
 | 
						|
 | 
						|
	solidity is free software: you can redistribute it and/or modify
 | 
						|
	it under the terms of the GNU General Public License as published by
 | 
						|
	the Free Software Foundation, either version 3 of the License, or
 | 
						|
	(at your option) any later version.
 | 
						|
 | 
						|
	solidity is distributed in the hope that it will be useful,
 | 
						|
	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
	GNU General Public License for more details.
 | 
						|
 | 
						|
	You should have received a copy of the GNU General Public License
 | 
						|
	along with solidity.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
*/
 | 
						|
// SPDX-License-Identifier: GPL-3.0
 | 
						|
 | 
						|
#include <test/yulPhaser/TestHelpers.h>
 | 
						|
 | 
						|
#include <tools/yulPhaser/SimulationRNG.h>
 | 
						|
 | 
						|
#include <boost/test/unit_test.hpp>
 | 
						|
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
 | 
						|
namespace solidity::phaser::test
 | 
						|
{
 | 
						|
 | 
						|
BOOST_AUTO_TEST_SUITE(Phaser, *boost::unit_test::label("nooptions"))
 | 
						|
BOOST_AUTO_TEST_SUITE(RandomTest)
 | 
						|
 | 
						|
BOOST_AUTO_TEST_CASE(bernoulliTrial_should_produce_samples_with_right_expected_value_and_variance)
 | 
						|
{
 | 
						|
	SimulationRNG::reset(1);
 | 
						|
	constexpr size_t numSamples = 10000;
 | 
						|
	constexpr double successProbability = 0.4;
 | 
						|
	constexpr double relativeTolerance = 0.05;
 | 
						|
 | 
						|
	// For bernoulli distribution with success probability p: EX = p, VarX = p(1 - p)
 | 
						|
	constexpr double expectedValue = successProbability;
 | 
						|
	constexpr double variance = successProbability * (1 - successProbability);
 | 
						|
 | 
						|
	vector<uint32_t> samples;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
 | 
						|
 | 
						|
	BOOST_TEST(abs(mean(samples) - expectedValue) < expectedValue * relativeTolerance);
 | 
						|
	BOOST_TEST(abs(meanSquaredError(samples, expectedValue) - variance) < variance * relativeTolerance);
 | 
						|
}
 | 
						|
 | 
						|
BOOST_AUTO_TEST_CASE(bernoulliTrial_can_be_reset)
 | 
						|
{
 | 
						|
	constexpr size_t numSamples = 10;
 | 
						|
	constexpr double successProbability = 0.4;
 | 
						|
 | 
						|
	SimulationRNG::reset(1);
 | 
						|
	vector<uint32_t> samples1;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples1.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
 | 
						|
 | 
						|
	vector<uint32_t> samples2;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples2.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
 | 
						|
 | 
						|
	SimulationRNG::reset(1);
 | 
						|
	vector<uint32_t> samples3;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples3.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
 | 
						|
 | 
						|
	SimulationRNG::reset(2);
 | 
						|
	vector<uint32_t> samples4;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples4.push_back(static_cast<uint32_t>(SimulationRNG::bernoulliTrial(successProbability)));
 | 
						|
 | 
						|
	BOOST_TEST(samples1 != samples2);
 | 
						|
	BOOST_TEST(samples1 == samples3);
 | 
						|
	BOOST_TEST(samples1 != samples4);
 | 
						|
	BOOST_TEST(samples2 != samples3);
 | 
						|
	BOOST_TEST(samples2 != samples4);
 | 
						|
	BOOST_TEST(samples3 != samples4);
 | 
						|
}
 | 
						|
 | 
						|
BOOST_AUTO_TEST_CASE(uniformInt_returns_different_values_when_called_multiple_times)
 | 
						|
{
 | 
						|
	SimulationRNG::reset(1);
 | 
						|
	constexpr size_t numSamples = 1000;
 | 
						|
	constexpr uint32_t minValue = 50;
 | 
						|
	constexpr uint32_t maxValue = 80;
 | 
						|
	constexpr double relativeTolerance = 0.05;
 | 
						|
 | 
						|
	// For uniform distribution from range a..b: EX = (a + b) / 2, VarX = ((b - a + 1)^2 - 1) / 12
 | 
						|
	constexpr double expectedValue = (minValue + maxValue) / 2.0;
 | 
						|
	constexpr double variance = ((maxValue - minValue + 1) * (maxValue - minValue + 1) - 1) / 12.0;
 | 
						|
 | 
						|
	vector<size_t> samples;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples.push_back(SimulationRNG::uniformInt(minValue, maxValue));
 | 
						|
 | 
						|
	BOOST_TEST(abs(mean(samples) - expectedValue) < expectedValue * relativeTolerance);
 | 
						|
	BOOST_TEST(abs(meanSquaredError(samples, expectedValue) - variance) < variance * relativeTolerance);
 | 
						|
}
 | 
						|
 | 
						|
BOOST_AUTO_TEST_CASE(uniformInt_can_be_reset)
 | 
						|
{
 | 
						|
	constexpr size_t numSamples = 10;
 | 
						|
	constexpr uint32_t minValue = 50;
 | 
						|
	constexpr uint32_t maxValue = 80;
 | 
						|
 | 
						|
	SimulationRNG::reset(1);
 | 
						|
	vector<size_t> samples1;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples1.push_back(SimulationRNG::uniformInt(minValue, maxValue));
 | 
						|
 | 
						|
	vector<size_t> samples2;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples2.push_back(SimulationRNG::uniformInt(minValue, maxValue));
 | 
						|
 | 
						|
	SimulationRNG::reset(1);
 | 
						|
	vector<size_t> samples3;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples3.push_back(SimulationRNG::uniformInt(minValue, maxValue));
 | 
						|
 | 
						|
	SimulationRNG::reset(2);
 | 
						|
	vector<size_t> samples4;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples4.push_back(SimulationRNG::uniformInt(minValue, maxValue));
 | 
						|
 | 
						|
	BOOST_TEST(samples1 != samples2);
 | 
						|
	BOOST_TEST(samples1 == samples3);
 | 
						|
	BOOST_TEST(samples1 != samples4);
 | 
						|
	BOOST_TEST(samples2 != samples3);
 | 
						|
	BOOST_TEST(samples2 != samples4);
 | 
						|
	BOOST_TEST(samples3 != samples4);
 | 
						|
}
 | 
						|
 | 
						|
BOOST_AUTO_TEST_CASE(binomialInt_should_produce_samples_with_right_expected_value_and_variance)
 | 
						|
{
 | 
						|
	SimulationRNG::reset(1);
 | 
						|
	constexpr size_t numSamples = 1000;
 | 
						|
	constexpr uint32_t numTrials = 100;
 | 
						|
	constexpr double successProbability = 0.2;
 | 
						|
	constexpr double relativeTolerance = 0.05;
 | 
						|
 | 
						|
	// For binomial distribution with n trials and success probability p: EX = np, VarX = np(1 - p)
 | 
						|
	constexpr double expectedValue = numTrials * successProbability;
 | 
						|
	constexpr double variance = numTrials * successProbability * (1 - successProbability);
 | 
						|
 | 
						|
	vector<size_t> samples;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
 | 
						|
 | 
						|
	BOOST_TEST(abs(mean(samples) - expectedValue) < expectedValue * relativeTolerance);
 | 
						|
	BOOST_TEST(abs(meanSquaredError(samples, expectedValue) - variance) < variance * relativeTolerance);
 | 
						|
}
 | 
						|
 | 
						|
BOOST_AUTO_TEST_CASE(binomialInt_can_be_reset)
 | 
						|
{
 | 
						|
	constexpr size_t numSamples = 10;
 | 
						|
	constexpr uint32_t numTrials = 10;
 | 
						|
	constexpr double successProbability = 0.6;
 | 
						|
 | 
						|
	SimulationRNG::reset(1);
 | 
						|
	vector<size_t> samples1;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples1.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
 | 
						|
 | 
						|
	vector<size_t> samples2;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples2.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
 | 
						|
 | 
						|
	SimulationRNG::reset(1);
 | 
						|
	vector<size_t> samples3;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples3.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
 | 
						|
 | 
						|
	SimulationRNG::reset(2);
 | 
						|
	vector<size_t> samples4;
 | 
						|
	for (uint32_t i = 0; i < numSamples; ++i)
 | 
						|
		samples4.push_back(SimulationRNG::binomialInt(numTrials, successProbability));
 | 
						|
 | 
						|
	BOOST_TEST(samples1 != samples2);
 | 
						|
	BOOST_TEST(samples1 == samples3);
 | 
						|
	BOOST_TEST(samples1 != samples4);
 | 
						|
	BOOST_TEST(samples2 != samples3);
 | 
						|
	BOOST_TEST(samples2 != samples4);
 | 
						|
	BOOST_TEST(samples3 != samples4);
 | 
						|
}
 | 
						|
 | 
						|
BOOST_AUTO_TEST_SUITE_END()
 | 
						|
BOOST_AUTO_TEST_SUITE_END()
 | 
						|
 | 
						|
}
 |