mirror of
				https://github.com/ethereum/solidity
				synced 2023-10-03 13:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1133 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1133 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| 	This file is part of cpp-ethereum.
 | |
| 
 | |
| 	cpp-ethereum is free software: you can redistribute it and/or modify
 | |
| 	it under the terms of the GNU General Public License as published by
 | |
| 	the Free Software Foundation, either version 3 of the License, or
 | |
| 	(at your option) any later version.
 | |
| 
 | |
| 	cpp-ethereum is distributed in the hope that it will be useful,
 | |
| 	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| 	GNU General Public License for more details.
 | |
| 
 | |
| 	You should have received a copy of the GNU General Public License
 | |
| 	along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| /**
 | |
|  * @author Christian <c@ethdev.com>
 | |
|  * @date 2014
 | |
|  * Tests for the Solidity optimizer.
 | |
|  */
 | |
| 
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <memory>
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/lexical_cast.hpp>
 | |
| #include <test/libsolidity/solidityExecutionFramework.h>
 | |
| #include <libevmasm/CommonSubexpressionEliminator.h>
 | |
| #include <libevmasm/ControlFlowGraph.h>
 | |
| #include <libevmasm/Assembly.h>
 | |
| #include <libevmasm/BlockDeduplicator.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace dev::eth;
 | |
| 
 | |
| namespace dev
 | |
| {
 | |
| namespace solidity
 | |
| {
 | |
| namespace test
 | |
| {
 | |
| 
 | |
| class OptimizerTestFramework: public ExecutionFramework
 | |
| {
 | |
| public:
 | |
| 	OptimizerTestFramework() { }
 | |
| 	/// Compiles the source code with and without optimizing.
 | |
| 	void compileBothVersions(
 | |
| 		std::string const& _sourceCode,
 | |
| 		u256 const& _value = 0,
 | |
| 		std::string const& _contractName = ""
 | |
| 	)
 | |
| 	{
 | |
| 		m_optimize = false;
 | |
| 		bytes nonOptimizedBytecode = compileAndRun(_sourceCode, _value, _contractName);
 | |
| 		m_nonOptimizedContract = m_contractAddress;
 | |
| 		m_optimize = true;
 | |
| 		bytes optimizedBytecode = compileAndRun(_sourceCode, _value, _contractName);
 | |
| 		size_t nonOptimizedSize = 0;
 | |
| 		eth::eachInstruction(nonOptimizedBytecode, [&](Instruction, u256 const&) {
 | |
| 			nonOptimizedSize++;
 | |
| 		});
 | |
| 		size_t optimizedSize = 0;
 | |
| 		eth::eachInstruction(optimizedBytecode, [&](Instruction, u256 const&) {
 | |
| 			optimizedSize++;
 | |
| 		});
 | |
| 		BOOST_CHECK_MESSAGE(
 | |
| 			nonOptimizedSize > optimizedSize,
 | |
| 			"Optimizer did not reduce bytecode size."
 | |
| 		);
 | |
| 		m_optimizedContract = m_contractAddress;
 | |
| 	}
 | |
| 
 | |
| 	template <class... Args>
 | |
| 	void compareVersions(std::string _sig, Args const&... _arguments)
 | |
| 	{
 | |
| 		m_contractAddress = m_nonOptimizedContract;
 | |
| 		bytes nonOptimizedOutput = callContractFunction(_sig, _arguments...);
 | |
| 		m_contractAddress = m_optimizedContract;
 | |
| 		bytes optimizedOutput = callContractFunction(_sig, _arguments...);
 | |
| 		BOOST_CHECK_MESSAGE(nonOptimizedOutput == optimizedOutput, "Computed values do not match."
 | |
| 							"\nNon-Optimized: " + toHex(nonOptimizedOutput) +
 | |
| 							"\nOptimized:     " + toHex(optimizedOutput));
 | |
| 	}
 | |
| 
 | |
| 	AssemblyItems addDummyLocations(AssemblyItems const& _input)
 | |
| 	{
 | |
| 		// add dummy locations to each item so that we can check that they are not deleted
 | |
| 		AssemblyItems input = _input;
 | |
| 		for (AssemblyItem& item: input)
 | |
| 			item.setLocation(SourceLocation(1, 3, make_shared<string>("")));
 | |
| 		return input;
 | |
| 	}
 | |
| 
 | |
| 	eth::KnownState createInitialState(AssemblyItems const& _input)
 | |
| 	{
 | |
| 		eth::KnownState state;
 | |
| 		for (auto const& item: addDummyLocations(_input))
 | |
| 			state.feedItem(item, true);
 | |
| 		return state;
 | |
| 	}
 | |
| 
 | |
| 	AssemblyItems getCSE(AssemblyItems const& _input, eth::KnownState const& _state = eth::KnownState())
 | |
| 	{
 | |
| 		AssemblyItems input = addDummyLocations(_input);
 | |
| 
 | |
| 		eth::CommonSubexpressionEliminator cse(_state);
 | |
| 		BOOST_REQUIRE(cse.feedItems(input.begin(), input.end()) == input.end());
 | |
| 		AssemblyItems output = cse.getOptimizedItems();
 | |
| 
 | |
| 		for (AssemblyItem const& item: output)
 | |
| 		{
 | |
| 			BOOST_CHECK(item == Instruction::POP || !item.getLocation().isEmpty());
 | |
| 		}
 | |
| 		return output;
 | |
| 	}
 | |
| 
 | |
| 	void checkCSE(
 | |
| 		AssemblyItems const& _input,
 | |
| 		AssemblyItems const& _expectation,
 | |
| 		KnownState const& _state = eth::KnownState()
 | |
| 	)
 | |
| 	{
 | |
| 		AssemblyItems output = getCSE(_input, _state);
 | |
| 		BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
 | |
| 	}
 | |
| 
 | |
| 	AssemblyItems getCFG(AssemblyItems const& _input)
 | |
| 	{
 | |
| 		AssemblyItems output = _input;
 | |
| 		// Running it four times should be enough for these tests.
 | |
| 		for (unsigned i = 0; i < 4; ++i)
 | |
| 		{
 | |
| 			ControlFlowGraph cfg(output);
 | |
| 			AssemblyItems optItems;
 | |
| 			for (BasicBlock const& block: cfg.optimisedBlocks())
 | |
| 				copy(output.begin() + block.begin, output.begin() + block.end,
 | |
| 					 back_inserter(optItems));
 | |
| 			output = move(optItems);
 | |
| 		}
 | |
| 		return output;
 | |
| 	}
 | |
| 
 | |
| 	void checkCFG(AssemblyItems const& _input, AssemblyItems const& _expectation)
 | |
| 	{
 | |
| 		AssemblyItems output = getCFG(_input);
 | |
| 		BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
 | |
| 	}
 | |
| 
 | |
| protected:
 | |
| 	Address m_optimizedContract;
 | |
| 	Address m_nonOptimizedContract;
 | |
| };
 | |
| 
 | |
| BOOST_FIXTURE_TEST_SUITE(SolidityOptimizer, OptimizerTestFramework)
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(smoke_test)
 | |
| {
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract test {
 | |
| 			function f(uint a) returns (uint b) {
 | |
| 				return a;
 | |
| 			}
 | |
| 		})";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f(uint256)", u256(7));
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(identities)
 | |
| {
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract test {
 | |
| 			function f(int a) returns (int b) {
 | |
| 				return int(0) | (int(1) * (int(0) ^ (0 + a)));
 | |
| 			}
 | |
| 		})";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f(uint256)", u256(0x12334664));
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(unused_expressions)
 | |
| {
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract test {
 | |
| 			uint data;
 | |
| 			function f() returns (uint a, uint b) {
 | |
| 				10 + 20;
 | |
| 				data;
 | |
| 			}
 | |
| 		})";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f()");
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(constant_folding_both_sides)
 | |
| {
 | |
| 	// if constants involving the same associative and commutative operator are applied from both
 | |
| 	// sides, the operator should be applied only once, because the expression compiler pushes
 | |
| 	// literals as late as possible
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract test {
 | |
| 			function f(uint x) returns (uint y) {
 | |
| 				return 98 ^ (7 * ((1 | (x | 1000)) * 40) ^ 102);
 | |
| 			}
 | |
| 		})";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f(uint256)");
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(storage_access)
 | |
| {
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract test {
 | |
| 			uint8[40] data;
 | |
| 			function f(uint x) returns (uint y) {
 | |
| 				data[2] = data[7] = uint8(x);
 | |
| 				data[4] = data[2] * 10 + data[3];
 | |
| 			}
 | |
| 		}
 | |
| 	)";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f(uint256)");
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(array_copy)
 | |
| {
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract test {
 | |
| 			bytes2[] data1;
 | |
| 			bytes5[] data2;
 | |
| 			function f(uint x) returns (uint l, uint y) {
 | |
| 				for (uint i = 0; i < msg.data.length; ++i)
 | |
| 					data1[i] = msg.data[i];
 | |
| 				data2 = data1;
 | |
| 				l = data2.length;
 | |
| 				y = uint(data2[x]);
 | |
| 			}
 | |
| 		}
 | |
| 	)";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f(uint256)", 0);
 | |
| 	compareVersions("f(uint256)", 10);
 | |
| 	compareVersions("f(uint256)", 36);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(function_calls)
 | |
| {
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract test {
 | |
| 			function f1(uint x) returns (uint) { return x*x; }
 | |
| 			function f(uint x) returns (uint) { return f1(7+x) - this.f1(x**9); }
 | |
| 		}
 | |
| 	)";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f(uint256)", 0);
 | |
| 	compareVersions("f(uint256)", 10);
 | |
| 	compareVersions("f(uint256)", 36);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(storage_write_in_loops)
 | |
| {
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract test {
 | |
| 			uint d;
 | |
| 			function f(uint a) returns (uint r) {
 | |
| 				var x = d;
 | |
| 				for (uint i = 1; i < a * a; i++) {
 | |
| 					r = d;
 | |
| 					d = i;
 | |
| 				}
 | |
| 
 | |
| 			}
 | |
| 		}
 | |
| 	)";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f(uint256)", 0);
 | |
| 	compareVersions("f(uint256)", 10);
 | |
| 	compareVersions("f(uint256)", 36);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(retain_information_in_branches)
 | |
| {
 | |
| 	// This tests that the optimizer knows that we already have "z == sha3(y)" inside both branches.
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract c {
 | |
| 			bytes32 d;
 | |
| 			uint a;
 | |
| 			function f(uint x, bytes32 y) returns (uint r_a, bytes32 r_d) {
 | |
| 				bytes32 z = sha3(y);
 | |
| 				if (x > 8) {
 | |
| 					z = sha3(y);
 | |
| 					a = x;
 | |
| 				} else {
 | |
| 					z = sha3(y);
 | |
| 					a = x;
 | |
| 				}
 | |
| 				r_a = a;
 | |
| 				r_d = d;
 | |
| 			}
 | |
| 		}
 | |
| 	)";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f(uint256,bytes32)", 0, "abc");
 | |
| 	compareVersions("f(uint256,bytes32)", 8, "def");
 | |
| 	compareVersions("f(uint256,bytes32)", 10, "ghi");
 | |
| 
 | |
| 	m_optimize = true;
 | |
| 	bytes optimizedBytecode = compileAndRun(sourceCode, 0, "c");
 | |
| 	size_t numSHA3s = 0;
 | |
| 	eth::eachInstruction(optimizedBytecode, [&](Instruction _instr, u256 const&) {
 | |
| 		if (_instr == eth::Instruction::SHA3)
 | |
| 			numSHA3s++;
 | |
| 	});
 | |
| 	BOOST_CHECK_EQUAL(1, numSHA3s);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(store_tags_as_unions)
 | |
| {
 | |
| 	// This calls the same function from two sources and both calls have a certain sha3 on
 | |
| 	// the stack at the same position.
 | |
| 	// Without storing tags as unions, the return from the shared function would not know where to
 | |
| 	// jump and thus all jumpdests are forced to clear their state and we do not know about the
 | |
| 	// sha3 anymore.
 | |
| 	// Note that, for now, this only works if the functions have the same number of return
 | |
| 	// parameters since otherwise, the return jump addresses are at different stack positions
 | |
| 	// which triggers the "unknown jump target" situation.
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract test {
 | |
| 			bytes32 data;
 | |
| 			function f(uint x, bytes32 y) external returns (uint r_a, bytes32 r_d) {
 | |
| 				r_d = sha3(y);
 | |
| 				shared(y);
 | |
| 				r_d = sha3(y);
 | |
| 				r_a = 5;
 | |
| 			}
 | |
| 			function g(uint x, bytes32 y) external returns (uint r_a, bytes32 r_d) {
 | |
| 				r_d = sha3(y);
 | |
| 				shared(y);
 | |
| 				r_d = bytes32(uint(sha3(y)) + 2);
 | |
| 				r_a = 7;
 | |
| 			}
 | |
| 			function shared(bytes32 y) internal {
 | |
| 				data = sha3(y);
 | |
| 			}
 | |
| 		}
 | |
| 	)";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("f()", 7, "abc");
 | |
| 
 | |
| 	m_optimize = true;
 | |
| 	bytes optimizedBytecode = compileAndRun(sourceCode, 0, "test");
 | |
| 	size_t numSHA3s = 0;
 | |
| 	eth::eachInstruction(optimizedBytecode, [&](Instruction _instr, u256 const&) {
 | |
| 		if (_instr == eth::Instruction::SHA3)
 | |
| 			numSHA3s++;
 | |
| 	});
 | |
| // TEST DISABLED UNTIL 93693404 IS IMPLEMENTED
 | |
| //	BOOST_CHECK_EQUAL(2, numSHA3s);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_intermediate_swap)
 | |
| {
 | |
| 	eth::KnownState state;
 | |
| 	eth::CommonSubexpressionEliminator cse(state);
 | |
| 	AssemblyItems input{
 | |
| 		Instruction::SWAP1, Instruction::POP, Instruction::ADD, u256(0), Instruction::SWAP1,
 | |
| 		Instruction::SLOAD, Instruction::SWAP1, u256(100), Instruction::EXP, Instruction::SWAP1,
 | |
| 		Instruction::DIV, u256(0xff), Instruction::AND
 | |
| 	};
 | |
| 	BOOST_REQUIRE(cse.feedItems(input.begin(), input.end()) == input.end());
 | |
| 	AssemblyItems output = cse.getOptimizedItems();
 | |
| 	BOOST_CHECK(!output.empty());
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_negative_stack_access)
 | |
| {
 | |
| 	AssemblyItems input{Instruction::DUP2, u256(0)};
 | |
| 	checkCSE(input, input);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_negative_stack_end)
 | |
| {
 | |
| 	AssemblyItems input{Instruction::ADD};
 | |
| 	checkCSE(input, input);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_intermediate_negative_stack)
 | |
| {
 | |
| 	AssemblyItems input{Instruction::ADD, u256(1), Instruction::DUP1};
 | |
| 	checkCSE(input, input);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_pop)
 | |
| {
 | |
| 	checkCSE({Instruction::POP}, {Instruction::POP});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_unneeded_items)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SWAP1,
 | |
| 		Instruction::POP,
 | |
| 		u256(7),
 | |
| 		u256(8),
 | |
| 	};
 | |
| 	checkCSE(input, input);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_constant_addition)
 | |
| {
 | |
| 	AssemblyItems input{u256(7), u256(8), Instruction::ADD};
 | |
| 	checkCSE(input, {u256(7 + 8)});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_invariants)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::DUP1,
 | |
| 		u256(0),
 | |
| 		Instruction::OR,
 | |
| 		Instruction::OR
 | |
| 	};
 | |
| 	checkCSE(input, {Instruction::DUP1});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_subself)
 | |
| {
 | |
| 	checkCSE({Instruction::DUP1, Instruction::SUB}, {Instruction::POP, u256(0)});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_subother)
 | |
| {
 | |
| 	checkCSE({Instruction::SUB}, {Instruction::SUB});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_double_negation)
 | |
| {
 | |
| 	checkCSE({Instruction::DUP5, Instruction::NOT, Instruction::NOT}, {Instruction::DUP5});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_double_iszero)
 | |
| {
 | |
| 	checkCSE({Instruction::GT, Instruction::ISZERO, Instruction::ISZERO}, {Instruction::GT});
 | |
| 	checkCSE({Instruction::GT, Instruction::ISZERO}, {Instruction::GT, Instruction::ISZERO});
 | |
| 	checkCSE(
 | |
| 		{Instruction::ISZERO, Instruction::ISZERO, Instruction::ISZERO},
 | |
| 		{Instruction::ISZERO}
 | |
| 	);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_associativity)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::DUP1,
 | |
| 		u256(0),
 | |
| 		Instruction::OR,
 | |
| 		Instruction::OR
 | |
| 	};
 | |
| 	checkCSE(input, {Instruction::DUP1});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_associativity2)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		u256(0),
 | |
| 		Instruction::DUP2,
 | |
| 		u256(2),
 | |
| 		u256(1),
 | |
| 		Instruction::DUP6,
 | |
| 		Instruction::ADD,
 | |
| 		u256(2),
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::ADD
 | |
| 	};
 | |
| 	checkCSE(input, {Instruction::DUP2, Instruction::DUP2, Instruction::ADD, u256(5), Instruction::ADD});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_storage)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		u256(0),
 | |
| 		Instruction::SLOAD,
 | |
| 		u256(0),
 | |
| 		Instruction::SLOAD,
 | |
| 		Instruction::ADD,
 | |
| 		u256(0),
 | |
| 		Instruction::SSTORE
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(0),
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::SLOAD,
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SWAP1,
 | |
| 		Instruction::SSTORE
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_noninterleaved_storage)
 | |
| {
 | |
| 	// two stores to the same location should be replaced by only one store, even if we
 | |
| 	// read in the meantime
 | |
| 	AssemblyItems input{
 | |
| 		u256(7),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SSTORE,
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::SLOAD,
 | |
| 		u256(8),
 | |
| 		Instruction::DUP3,
 | |
| 		Instruction::SSTORE
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(8),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SSTORE,
 | |
| 		u256(7)
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_interleaved_storage)
 | |
| {
 | |
| 	// stores and reads to/from two unknown locations, should not optimize away the first store
 | |
| 	AssemblyItems input{
 | |
| 		u256(7),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SSTORE, // store to "DUP1"
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
 | |
| 		u256(0),
 | |
| 		Instruction::DUP3,
 | |
| 		Instruction::SSTORE // store different value to "DUP1"
 | |
| 	};
 | |
| 	checkCSE(input, input);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_interleaved_storage_same_value)
 | |
| {
 | |
| 	// stores and reads to/from two unknown locations, should not optimize away the first store
 | |
| 	// but it should optimize away the second, since we already know the value will be the same
 | |
| 	AssemblyItems input{
 | |
| 		u256(7),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SSTORE, // store to "DUP1"
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
 | |
| 		u256(6),
 | |
| 		u256(1),
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::DUP3,
 | |
| 		Instruction::SSTORE // store same value to "DUP1"
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(7),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SSTORE,
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SLOAD
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location)
 | |
| {
 | |
| 	// stores and reads to/from two known locations, should optimize away the first store,
 | |
| 	// because we know that the location is different
 | |
| 	AssemblyItems input{
 | |
| 		u256(0x70),
 | |
| 		u256(1),
 | |
| 		Instruction::SSTORE, // store to 1
 | |
| 		u256(2),
 | |
| 		Instruction::SLOAD, // read from 2, is different from 1
 | |
| 		u256(0x90),
 | |
| 		u256(1),
 | |
| 		Instruction::SSTORE // store different value at 1
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(2),
 | |
| 		Instruction::SLOAD,
 | |
| 		u256(0x90),
 | |
| 		u256(1),
 | |
| 		Instruction::SSTORE
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location_offset)
 | |
| {
 | |
| 	// stores and reads to/from two locations which are known to be different,
 | |
| 	// should optimize away the first store, because we know that the location is different
 | |
| 	AssemblyItems input{
 | |
| 		u256(0x70),
 | |
| 		Instruction::DUP2,
 | |
| 		u256(1),
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SSTORE, // store to "DUP1"+1
 | |
| 		Instruction::DUP1,
 | |
| 		u256(2),
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SLOAD, // read from "DUP1"+2, is different from "DUP1"+1
 | |
| 		u256(0x90),
 | |
| 		Instruction::DUP3,
 | |
| 		u256(1),
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SSTORE // store different value at "DUP1"+1
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(2),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SLOAD,
 | |
| 		u256(0x90),
 | |
| 		u256(1),
 | |
| 		Instruction::DUP4,
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SSTORE
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_interleaved_memory_at_known_location_offset)
 | |
| {
 | |
| 	// stores and reads to/from two locations which are known to be different,
 | |
| 	// should not optimize away the first store, because the location overlaps with the load,
 | |
| 	// but it should optimize away the second, because we know that the location is different by 32
 | |
| 	AssemblyItems input{
 | |
| 		u256(0x50),
 | |
| 		Instruction::DUP2,
 | |
| 		u256(2),
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::MSTORE, // ["DUP1"+2] = 0x50
 | |
| 		u256(0x60),
 | |
| 		Instruction::DUP2,
 | |
| 		u256(32),
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::MSTORE, // ["DUP1"+32] = 0x60
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::MLOAD, // read from "DUP1"
 | |
| 		u256(0x70),
 | |
| 		Instruction::DUP3,
 | |
| 		u256(32),
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::MSTORE, // ["DUP1"+32] = 0x70
 | |
| 		u256(0x80),
 | |
| 		Instruction::DUP3,
 | |
| 		u256(2),
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::MSTORE, // ["DUP1"+2] = 0x80
 | |
| 	};
 | |
| 	// If the actual code changes too much, we could also simply check that the output contains
 | |
| 	// exactly 3 MSTORE and exactly 1 MLOAD instruction.
 | |
| 	checkCSE(input, {
 | |
| 		u256(0x50),
 | |
| 		u256(2),
 | |
| 		Instruction::DUP3,
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SWAP1,
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::MSTORE, // ["DUP1"+2] = 0x50
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::MLOAD, // read from "DUP1"
 | |
| 		u256(0x70),
 | |
| 		u256(32),
 | |
| 		Instruction::DUP5,
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::MSTORE, // ["DUP1"+32] = 0x70
 | |
| 		u256(0x80),
 | |
| 		Instruction::SWAP1,
 | |
| 		Instruction::SWAP2,
 | |
| 		Instruction::MSTORE // ["DUP1"+2] = 0x80
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_deep_stack)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SWAP1,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::SWAP8,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::SWAP8,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::SWAP8,
 | |
| 		Instruction::SWAP5,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::POP,
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		Instruction::SWAP4,
 | |
| 		Instruction::SWAP12,
 | |
| 		Instruction::SWAP3,
 | |
| 		Instruction::SWAP11,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::SWAP1,
 | |
| 		Instruction::SWAP3,
 | |
| 		Instruction::ADD,
 | |
| 		Instruction::SWAP8,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::SWAP6,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::POP,
 | |
| 		Instruction::POP,
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_jumpi_no_jump)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		u256(0),
 | |
| 		u256(1),
 | |
| 		Instruction::DUP2,
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		Instruction::JUMPI
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(0),
 | |
| 		u256(1)
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_jumpi_jump)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		u256(1),
 | |
| 		u256(1),
 | |
| 		Instruction::DUP2,
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		Instruction::JUMPI
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(1),
 | |
| 		Instruction::DUP1,
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		Instruction::JUMP
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_empty_sha3)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		u256(0),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SHA3
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(sha3(bytesConstRef()))
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_partial_sha3)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		u256(0xabcd) << (256 - 16),
 | |
| 		u256(0),
 | |
| 		Instruction::MSTORE,
 | |
| 		u256(2),
 | |
| 		u256(0),
 | |
| 		Instruction::SHA3
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(0xabcd) << (256 - 16),
 | |
| 		u256(0),
 | |
| 		Instruction::MSTORE,
 | |
| 		u256(sha3(bytes{0xab, 0xcd}))
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_location)
 | |
| {
 | |
| 	// sha3 twice from same dynamic location
 | |
| 	AssemblyItems input{
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::MSTORE,
 | |
| 		u256(64),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SHA3,
 | |
| 		u256(64),
 | |
| 		Instruction::DUP3,
 | |
| 		Instruction::SHA3
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::MSTORE,
 | |
| 		u256(64),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::SHA3,
 | |
| 		Instruction::DUP1
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_content)
 | |
| {
 | |
| 	// sha3 twice from different dynamic location but with same content
 | |
| 	AssemblyItems input{
 | |
| 		Instruction::DUP1,
 | |
| 		u256(0x80),
 | |
| 		Instruction::MSTORE, // m[128] = DUP1
 | |
| 		u256(0x20),
 | |
| 		u256(0x80),
 | |
| 		Instruction::SHA3, // sha3(m[128..(128+32)])
 | |
| 		Instruction::DUP2,
 | |
| 		u256(12),
 | |
| 		Instruction::MSTORE, // m[12] = DUP1
 | |
| 		u256(0x20),
 | |
| 		u256(12),
 | |
| 		Instruction::SHA3 // sha3(m[12..(12+32)])
 | |
| 	};
 | |
| 	checkCSE(input, {
 | |
| 		u256(0x80),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::MSTORE,
 | |
| 		u256(0x20),
 | |
| 		Instruction::SWAP1,
 | |
| 		Instruction::SHA3,
 | |
| 		u256(12),
 | |
| 		Instruction::DUP3,
 | |
| 		Instruction::SWAP1,
 | |
| 		Instruction::MSTORE,
 | |
| 		Instruction::DUP1
 | |
| 	});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_content_dynamic_store_in_between)
 | |
| {
 | |
| 	// sha3 twice from different dynamic location but with same content,
 | |
| 	// dynamic mstore in between, which forces us to re-calculate the sha3
 | |
| 	AssemblyItems input{
 | |
| 		u256(0x80),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::MSTORE, // m[128] = DUP1
 | |
| 		u256(0x20),
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::DUP3,
 | |
| 		Instruction::SHA3, // sha3(m[128..(128+32)])
 | |
| 		u256(12),
 | |
| 		Instruction::DUP5,
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::MSTORE, // m[12] = DUP1
 | |
| 		Instruction::DUP12,
 | |
| 		Instruction::DUP14,
 | |
| 		Instruction::MSTORE, // destroys memory knowledge
 | |
| 		Instruction::SWAP2,
 | |
| 		Instruction::SWAP1,
 | |
| 		Instruction::SWAP2,
 | |
| 		Instruction::SHA3 // sha3(m[12..(12+32)])
 | |
| 	};
 | |
| 	checkCSE(input, input);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_content_noninterfering_store_in_between)
 | |
| {
 | |
| 	// sha3 twice from different dynamic location but with same content,
 | |
| 	// dynamic mstore in between, but does not force us to re-calculate the sha3
 | |
| 	AssemblyItems input{
 | |
| 		u256(0x80),
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::MSTORE, // m[128] = DUP1
 | |
| 		u256(0x20),
 | |
| 		Instruction::DUP1,
 | |
| 		Instruction::DUP3,
 | |
| 		Instruction::SHA3, // sha3(m[128..(128+32)])
 | |
| 		u256(12),
 | |
| 		Instruction::DUP5,
 | |
| 		Instruction::DUP2,
 | |
| 		Instruction::MSTORE, // m[12] = DUP1
 | |
| 		Instruction::DUP12,
 | |
| 		u256(12 + 32),
 | |
| 		Instruction::MSTORE, // does not destoy memory knowledge
 | |
| 		Instruction::DUP13,
 | |
| 		u256(128 - 32),
 | |
| 		Instruction::MSTORE, // does not destoy memory knowledge
 | |
| 		u256(0x20),
 | |
| 		u256(12),
 | |
| 		Instruction::SHA3 // sha3(m[12..(12+32)])
 | |
| 	};
 | |
| 	// if this changes too often, only count the number of SHA3 and MSTORE instructions
 | |
| 	AssemblyItems output = getCSE(input);
 | |
| 	BOOST_CHECK_EQUAL(4, count(output.begin(), output.end(), AssemblyItem(Instruction::MSTORE)));
 | |
| 	BOOST_CHECK_EQUAL(1, count(output.begin(), output.end(), AssemblyItem(Instruction::SHA3)));
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_with_initially_known_stack)
 | |
| {
 | |
| 	eth::KnownState state = createInitialState(AssemblyItems{
 | |
| 		u256(0x12),
 | |
| 		u256(0x20),
 | |
| 		Instruction::ADD
 | |
| 	});
 | |
| 	AssemblyItems input{
 | |
| 		u256(0x12 + 0x20)
 | |
| 	};
 | |
| 	checkCSE(input, AssemblyItems{Instruction::DUP1}, state);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_equality_on_initially_known_stack)
 | |
| {
 | |
| 	eth::KnownState state = createInitialState(AssemblyItems{Instruction::DUP1});
 | |
| 	AssemblyItems input{
 | |
| 		Instruction::EQ
 | |
| 	};
 | |
| 	AssemblyItems output = getCSE(input, state);
 | |
| 	// check that it directly pushes 1 (true)
 | |
| 	BOOST_CHECK(find(output.begin(), output.end(), AssemblyItem(u256(1))) != output.end());
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_access_previous_sequence)
 | |
| {
 | |
| 	// Tests that the code generator detects whether it tries to access SLOAD instructions
 | |
| 	// from a sequenced expression which is not in its scope.
 | |
| 	eth::KnownState state = createInitialState(AssemblyItems{
 | |
| 		u256(0),
 | |
| 		Instruction::SLOAD,
 | |
| 		u256(1),
 | |
| 		Instruction::ADD,
 | |
| 		u256(0),
 | |
| 		Instruction::SSTORE
 | |
| 	});
 | |
| 	// now stored: val_1 + 1 (value at sequence 1)
 | |
| 	// if in the following instructions, the SLOAD cresolves to "val_1 + 1",
 | |
| 	// this cannot be generated because we cannot load from sequence 1 anymore.
 | |
| 	AssemblyItems input{
 | |
| 		u256(0),
 | |
| 		Instruction::SLOAD,
 | |
| 	};
 | |
| 	BOOST_CHECK_THROW(getCSE(input, state), StackTooDeepException);
 | |
| 	// @todo for now, this throws an exception, but it should recover to the following
 | |
| 	// (or an even better version) at some point:
 | |
| 	// 0, SLOAD, 1, ADD, SSTORE, 0 SLOAD
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(cse_optimise_return)
 | |
| {
 | |
| 	checkCSE(
 | |
| 		AssemblyItems{u256(0), u256(7), Instruction::RETURN},
 | |
| 		AssemblyItems{Instruction::STOP}
 | |
| 	);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused)
 | |
| {
 | |
| 	// remove parts of the code that are unused
 | |
| 	AssemblyItems input{
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		Instruction::JUMP,
 | |
| 		u256(7),
 | |
| 		AssemblyItem(Tag, 1),
 | |
| 	};
 | |
| 	checkCFG(input, {});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused_loop)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		AssemblyItem(PushTag, 3),
 | |
| 		Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 1),
 | |
| 		u256(7),
 | |
| 		AssemblyItem(PushTag, 2),
 | |
| 		Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 2),
 | |
| 		u256(8),
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 3),
 | |
| 		u256(11)
 | |
| 	};
 | |
| 	checkCFG(input, {u256(11)});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(control_flow_graph_reconnect_single_jump_source)
 | |
| {
 | |
| 	// move code that has only one unconditional jump source
 | |
| 	AssemblyItems input{
 | |
| 		u256(1),
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 2),
 | |
| 		u256(2),
 | |
| 		AssemblyItem(PushTag, 3),
 | |
| 		Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 1),
 | |
| 		u256(3),
 | |
| 		AssemblyItem(PushTag, 2),
 | |
| 		Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 3),
 | |
| 		u256(4),
 | |
| 	};
 | |
| 	checkCFG(input, {u256(1), u256(3), u256(2), u256(4)});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(control_flow_graph_do_not_remove_returned_to)
 | |
| {
 | |
| 	// do not remove parts that are "returned to"
 | |
| 	AssemblyItems input{
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		AssemblyItem(PushTag, 2),
 | |
| 		Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 2),
 | |
| 		Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 1),
 | |
| 		u256(2)
 | |
| 	};
 | |
| 	checkCFG(input, {u256(2)});
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(block_deduplicator)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		AssemblyItem(PushTag, 2),
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		AssemblyItem(PushTag, 3),
 | |
| 		u256(6),
 | |
| 		eth::Instruction::SWAP3,
 | |
| 		eth::Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 1),
 | |
| 		u256(6),
 | |
| 		eth::Instruction::SWAP3,
 | |
| 		eth::Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 2),
 | |
| 		u256(6),
 | |
| 		eth::Instruction::SWAP3,
 | |
| 		eth::Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 3)
 | |
| 	};
 | |
| 	BlockDeduplicator dedup(input);
 | |
| 	dedup.deduplicate();
 | |
| 
 | |
| 	set<u256> pushTags;
 | |
| 	for (AssemblyItem const& item: input)
 | |
| 		if (item.type() == PushTag)
 | |
| 			pushTags.insert(item.data());
 | |
| 	BOOST_CHECK_EQUAL(pushTags.size(), 2);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(block_deduplicator_loops)
 | |
| {
 | |
| 	AssemblyItems input{
 | |
| 		u256(0),
 | |
| 		eth::Instruction::SLOAD,
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		AssemblyItem(PushTag, 2),
 | |
| 		eth::Instruction::JUMPI,
 | |
| 		eth::Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 1),
 | |
| 		u256(5),
 | |
| 		u256(6),
 | |
| 		eth::Instruction::SSTORE,
 | |
| 		AssemblyItem(PushTag, 1),
 | |
| 		eth::Instruction::JUMP,
 | |
| 		AssemblyItem(Tag, 2),
 | |
| 		u256(5),
 | |
| 		u256(6),
 | |
| 		eth::Instruction::SSTORE,
 | |
| 		AssemblyItem(PushTag, 2),
 | |
| 		eth::Instruction::JUMP,
 | |
| 	};
 | |
| 	BlockDeduplicator dedup(input);
 | |
| 	dedup.deduplicate();
 | |
| 
 | |
| 	set<u256> pushTags;
 | |
| 	for (AssemblyItem const& item: input)
 | |
| 		if (item.type() == PushTag)
 | |
| 			pushTags.insert(item.data());
 | |
| 	BOOST_CHECK_EQUAL(pushTags.size(), 1);
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE(computing_constants)
 | |
| {
 | |
| 	char const* sourceCode = R"(
 | |
| 		contract c {
 | |
| 			uint a;
 | |
| 			uint b;
 | |
| 			uint c;
 | |
| 			function set() returns (uint a, uint b, uint c) {
 | |
| 				a = 0x77abc0000000000000000000000000000000000000000000000000000000001;
 | |
| 				b = 0x817416927846239487123469187231298734162934871263941234127518276;
 | |
| 				g();
 | |
| 			}
 | |
| 			function g() {
 | |
| 				b = 0x817416927846239487123469187231298734162934871263941234127518276;
 | |
| 				c = 0x817416927846239487123469187231298734162934871263941234127518276;
 | |
| 			}
 | |
| 			function get() returns (uint ra, uint rb, uint rc) {
 | |
| 				ra = a;
 | |
| 				rb = b;
 | |
| 				rc = c ;
 | |
| 			}
 | |
| 		}
 | |
| 	)";
 | |
| 	compileBothVersions(sourceCode);
 | |
| 	compareVersions("set()");
 | |
| 	compareVersions("get()");
 | |
| 
 | |
| 	m_optimize = true;
 | |
| 	m_optimizeRuns = 1;
 | |
| 	bytes optimizedBytecode = compileAndRun(sourceCode, 0, "c");
 | |
| 	bytes complicatedConstant = toBigEndian(u256("0x817416927846239487123469187231298734162934871263941234127518276"));
 | |
| 	unsigned occurrences = 0;
 | |
| 	for (auto iter = optimizedBytecode.cbegin(); iter < optimizedBytecode.cend(); ++occurrences)
 | |
| 		iter = search(iter, optimizedBytecode.cend(), complicatedConstant.cbegin(), complicatedConstant.cend()) + 1;
 | |
| 	BOOST_CHECK_EQUAL(2, occurrences);
 | |
| 
 | |
| 	bytes constantWithZeros = toBigEndian(u256("0x77abc0000000000000000000000000000000000000000000000000000000001"));
 | |
| 	BOOST_CHECK(search(
 | |
| 		optimizedBytecode.cbegin(),
 | |
| 		optimizedBytecode.cend(),
 | |
| 		constantWithZeros.cbegin(),
 | |
| 		constantWithZeros.cend()
 | |
| 	) == optimizedBytecode.cend());
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_SUITE_END()
 | |
| 
 | |
| }
 | |
| }
 | |
| } // end namespaces
 |