solidity/libsolidity/ast/Types.h
2023-07-05 12:34:39 +02:00

1743 lines
70 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Solidity data types
*/
#pragma once
#include <libsolidity/ast/ASTEnums.h>
#include <libsolidity/ast/ASTForward.h>
#include <libsolidity/parsing/Token.h>
#include <liblangutil/Exceptions.h>
#include <libsolutil/Common.h>
#include <libsolutil/Numeric.h>
#include <libsolutil/CommonIO.h>
#include <libsolutil/LazyInit.h>
#include <libsolutil/Result.h>
#include <boost/rational.hpp>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <utility>
namespace solidity::frontend
{
class TypeProvider;
class Type; // forward
class FunctionType; // forward
using FunctionTypePointer = FunctionType const*;
using TypePointers = std::vector<Type const*>;
using rational = boost::rational<bigint>;
using TypeResult = util::Result<Type const*>;
using BoolResult = util::Result<bool>;
}
namespace solidity::frontend
{
inline rational makeRational(bigint const& _numerator, bigint const& _denominator)
{
solAssert(_denominator != 0, "division by zero");
// due to a bug in certain versions of boost the denominator has to be positive
if (_denominator < 0)
return rational(-_numerator, -_denominator);
else
return rational(_numerator, _denominator);
}
enum class DataLocation { Storage, CallData, Memory };
/**
* Helper class to compute storage offsets of members of structs and contracts.
*/
class StorageOffsets
{
public:
/// Resets the StorageOffsets objects and determines the position in storage for each
/// of the elements of @a _types.
void computeOffsets(TypePointers const& _types);
/// @returns the offset of the given member, might be null if the member is not part of storage.
std::pair<u256, unsigned> const* offset(size_t _index) const;
/// @returns the total number of slots occupied by all members.
u256 const& storageSize() const { return m_storageSize; }
private:
u256 m_storageSize;
std::map<size_t, std::pair<u256, unsigned>> m_offsets;
};
/**
* List of members of a type.
*/
class MemberList
{
public:
struct Member
{
/// Manual constructor for members that are not taken from a declaration.
Member(char const* _name, Type const* _type):
name(_name),
type(_type),
declaration(nullptr)
{
}
/// Constructs a Member with the name extracted from @p _declaration's name.
Member(Declaration const* _declaration, Type const* _type);
Member(Declaration const* _declaration, Type const* _type, std::string _name);
std::string name;
Type const* type = nullptr;
Declaration const* declaration = nullptr;
};
using MemberMap = std::vector<Member>;
explicit MemberList(MemberMap _members): m_memberTypes(std::move(_members)) {}
void combine(MemberList const& _other);
Type const* memberType(std::string const& _name) const
{
Type const* type = nullptr;
for (auto const& it: m_memberTypes)
if (it.name == _name)
{
solAssert(!type, "Requested member type by non-unique name.");
type = it.type;
}
return type;
}
MemberMap membersByName(std::string const& _name) const
{
MemberMap members;
for (auto const& it: m_memberTypes)
if (it.name == _name)
members.push_back(it);
return members;
}
/// @returns the offset of the given member in storage slots and bytes inside a slot or
/// a nullptr if the member is not part of storage.
std::pair<u256, unsigned> const* memberStorageOffset(std::string const& _name) const;
/// @returns the number of storage slots occupied by the members.
u256 const& storageSize() const;
MemberMap::const_iterator begin() const { return m_memberTypes.begin(); }
MemberMap::const_iterator end() const { return m_memberTypes.end(); }
private:
StorageOffsets const& storageOffsets() const;
MemberMap m_memberTypes;
util::LazyInit<StorageOffsets> m_storageOffsets;
};
static_assert(std::is_nothrow_move_constructible<MemberList>::value, "MemberList should be noexcept move constructible");
/**
* Abstract base class that forms the root of the type hierarchy.
*/
class Type
{
public:
Type() = default;
Type(Type const&) = delete;
Type(Type&&) = delete;
Type& operator=(Type const&) = delete;
Type& operator=(Type&&) = delete;
virtual ~Type() = default;
enum class Category
{
Address,
Integer,
RationalNumber,
StringLiteral,
Bool,
FixedPoint,
Array,
ArraySlice,
FixedBytes,
Contract,
Struct,
Function,
Enum,
UserDefinedValueType,
Tuple,
Mapping,
TypeType,
Modifier,
Magic,
Module,
InaccessibleDynamic
};
/// @returns a pointer to _a or _b if the other is implicitly convertible to it or nullptr otherwise
static Type const* commonType(Type const* _a, Type const* _b);
virtual Category category() const = 0;
/// @returns a valid solidity identifier such that two types should compare equal if and
/// only if they have the same identifier.
/// The identifier should start with "t_".
/// Can contain characters which are invalid in identifiers.
virtual std::string richIdentifier() const = 0;
/// @returns a valid solidity identifier such that two types should compare equal if and
/// only if they have the same identifier.
/// The identifier should start with "t_".
/// Will not contain any character which would be invalid as an identifier.
std::string identifier() const;
/// More complex identifier strings use "parentheses", where $_ is interpreted as
/// "opening parenthesis", _$ as "closing parenthesis", _$_ as "comma" and any $ that
/// appears as part of a user-supplied identifier is escaped as _$$$_.
/// @returns an escaped identifier (will not contain any parenthesis or commas)
static std::string escapeIdentifier(std::string const& _identifier);
virtual BoolResult isImplicitlyConvertibleTo(Type const& _other) const { return *this == _other; }
virtual BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return isImplicitlyConvertibleTo(_convertTo);
}
/// @returns the resulting type of applying the given unary operator or an empty pointer if
/// this is not possible.
/// The default implementation does not allow any unary operator.
virtual TypeResult unaryOperatorResult(Token) const { return nullptr; }
/// @returns the resulting type of applying the given binary operator or an empty pointer if
/// this is not possible.
/// The default implementation allows comparison operators if a common type exists
virtual TypeResult binaryOperatorResult(Token _operator, Type const* _other) const
{
return TokenTraits::isCompareOp(_operator) ? commonType(this, _other) : nullptr;
}
virtual bool operator==(Type const& _other) const { return category() == _other.category(); }
virtual bool operator!=(Type const& _other) const { return !this->operator ==(_other); }
/// @returns number of bytes used by this type when encoded for CALL. Cannot be used for
/// dynamically encoded types.
/// Always returns a value greater than zero and throws if the type cannot be encoded in calldata
/// (or is dynamically encoded).
/// If @a _padded then it is assumed that each element is padded to a multiple of 32 bytes.
virtual unsigned calldataEncodedSize([[maybe_unused]] bool _padded) const { solAssert(false, ""); }
/// Convenience version of @see calldataEncodedSize(bool)
unsigned calldataEncodedSize() const { return calldataEncodedSize(true); }
/// @returns the distance between two elements of this type in a calldata array, tuple or struct.
/// For statically encoded types this is the same as calldataEncodedSize(true).
/// For dynamically encoded types this is the distance between two tail pointers, i.e. 32.
/// Always returns a value greater than zero and throws if the type cannot be encoded in calldata.
unsigned calldataHeadSize() const { return isDynamicallyEncoded() ? 32 : calldataEncodedSize(true); }
/// @returns the (minimal) size of the calldata tail for this type. Can only be used for
/// dynamically encoded types. For dynamically-sized arrays this is 32 (the size of the length),
/// for statically-sized, but dynamically encoded arrays this is 32*length(), for structs
/// this is the sum of the calldataHeadSize's of its members.
/// Always returns a value greater than zero and throws if the type cannot be encoded in calldata
/// (or is not dynamically encoded).
virtual unsigned calldataEncodedTailSize() const { solAssert(false, ""); }
/// @returns the size of this data type in bytes when stored in memory. For memory-reference
/// types, this is the size of the memory pointer.
virtual unsigned memoryHeadSize() const { return calldataEncodedSize(); }
/// @returns the size of this data type in bytes when stored in memory. For memory-reference
/// types, this is the size of the actual data area, if it is statically-sized.
virtual u256 memoryDataSize() const { return calldataEncodedSize(); }
/// @returns true if the type is a dynamic array
virtual bool isDynamicallySized() const { return false; }
/// @returns true if the type is dynamically encoded in the ABI
virtual bool isDynamicallyEncoded() const { return false; }
/// @returns the number of storage slots required to hold this value in storage.
/// For dynamically "allocated" types, it returns the size of the statically allocated head,
virtual u256 storageSize() const { return 1; }
/// @returns an upper bound on the total storage size required by this type, descending
/// into structs and statically-sized arrays. This is mainly to ensure that the storage
/// slot allocation algorithm does not overflow, it is not a protection against collisions.
virtual bigint storageSizeUpperBound() const { return 1; }
/// Multiple small types can be packed into a single storage slot. If such a packing is possible
/// this function @returns the size in bytes smaller than 32. Data is moved to the next slot if
/// it does not fit.
/// In order to avoid computation at runtime of whether such moving is necessary, structs and
/// array data (not each element) always start a new slot.
virtual unsigned storageBytes() const { return 32; }
/// Returns true if the type is a value type that is left-aligned on the stack with a size of
/// storageBytes() bytes. Returns false if the type is a value type that is right-aligned on
/// the stack with a size of storageBytes() bytes. Asserts if it is not a value type or the
/// encoding is more complicated.
/// Signed integers are not considered "more complicated" even though they need to be
/// sign-extended.
virtual bool leftAligned() const { solAssert(false, "Alignment property of non-value type requested."); }
/// Returns true if the type can be stored in storage.
virtual bool canBeStored() const { return true; }
/// Returns false if the type cannot live outside the storage, i.e. if it includes some mapping.
virtual bool containsNestedMapping() const
{
solAssert(nameable(), "Called for a non nameable type.");
return false;
}
/// Returns true if the type can be stored as a value (as opposed to a reference) on the stack,
/// i.e. it behaves differently in lvalue context and in value context.
virtual bool isValueType() const { return false; }
/// @returns true if this type can be used for variables. It returns false for
/// types like magic types, literals and function types with a kind that is not
/// internal or external.
virtual bool nameable() const { return false; }
/// @returns a list of named and typed stack items that determine the layout of this type on the stack.
/// A stack item either has an empty name and type ``nullptr`` referring to a single stack slot, or
/// has a non-empty name and a valid type referring to the stack layout of that type.
/// The complete layout of a type on the stack can be obtained from its stack items recursively as follows:
/// - Each unnamed stack item is untyped (its type is ``nullptr``) and contributes exactly one stack slot.
/// - Each named stack item is typed and contributes the stack slots given by the stack items of its type.
std::vector<std::tuple<std::string, Type const*>> const& stackItems() const
{
if (!m_stackItems)
m_stackItems = makeStackItems();
return *m_stackItems;
}
/// Total number of stack slots occupied by this type. This is the sum of ``sizeOnStack`` of all ``stackItems()``.
// TODO: consider changing the return type to be size_t
unsigned sizeOnStack() const
{
if (!m_stackSize)
{
size_t sizeOnStack = 0;
for (auto const& slot: stackItems())
if (std::get<1>(slot))
sizeOnStack += std::get<1>(slot)->sizeOnStack();
else
++sizeOnStack;
m_stackSize = sizeOnStack;
}
return static_cast<unsigned>(*m_stackSize);
}
/// If it is possible to initialize such a value in memory by just writing zeros
/// of the size memoryHeadSize().
virtual bool hasSimpleZeroValueInMemory() const { return true; }
/// @returns the mobile (in contrast to static) type corresponding to the given type.
/// This returns the corresponding IntegerType or FixedPointType for RationalNumberType
/// and the pointer type for storage reference types.
/// Might return a null pointer if there is no fitting type.
virtual Type const* mobileType() const { return this; }
/// @returns true if this is a non-value type and the data of this type is stored at the
/// given location.
virtual bool dataStoredIn(DataLocation) const { return false; }
/// Returns the list of all members of this type. Default implementation: no members apart from attached functions.
/// @param _currentScope scope in which the members are accessed.
MemberList const& members(ASTNode const* _currentScope) const;
/// Convenience method, returns the type of the given named member or an empty pointer if no such member exists.
Type const* memberType(std::string const& _name, ASTNode const* _currentScope = nullptr) const
{
return members(_currentScope).memberType(_name);
}
virtual std::string toString(bool _withoutDataLocation) const = 0;
std::string toString() const { return toString(false); }
/// @returns the canonical name of this type for use in library function signatures.
virtual std::string canonicalName() const { return toString(true); }
virtual std::string humanReadableName() const { return toString(); }
virtual std::string eip712TypeName() const { return encodingType()->toString(true); }
/// @returns the signature of this type in external functions, i.e. `uint256` for integers
/// or `(uint256,bytes8)[2]` for an array of structs. If @a _structsByName,
/// structs are given by canonical name like `ContractName.StructName[2]`.
virtual std::string signatureInExternalFunction(bool /*_structsByName*/) const
{
return canonicalName();
}
virtual u256 literalValue(Literal const*) const
{
solAssert(false, "Literal value requested for type without literals: " + toString(false));
}
/// @returns a (simpler) type that is encoded in the same way for external function calls.
/// This for example returns address for contract types.
/// If there is no such type, returns an empty shared pointer.
virtual Type const* encodingType() const { return nullptr; }
/// @returns the encoding type used under the given circumstances for the type of an expression
/// when used for e.g. abi.encode(...) or the empty pointer if the object
/// cannot be encoded.
/// This is different from encodingType since it takes implicit conversions into account.
Type const* fullEncodingType(bool _inLibraryCall, bool _encoderV2, bool _packed) const;
/// @returns a (simpler) type that is used when decoding this type in calldata.
virtual Type const* decodingType() const { return encodingType(); }
/// @returns a type that will be used outside of Solidity for e.g. function signatures.
/// This for example returns address for contract types.
/// If there is no such type, returns an empty shared pointer.
/// @param _inLibrary if set, returns types as used in a library, e.g. struct and contract types
/// are returned without modification.
virtual TypeResult interfaceType(bool /*_inLibrary*/) const { return nullptr; }
/// @returns the declaration of a user defined type (enum, struct, user defined value type).
/// Returns nullptr otherwise.
virtual Declaration const* typeDefinition() const { return nullptr; }
/// Clears all internally cached values (if any).
virtual void clearCache() const;
/// Scans all "using for" directives in the @a _scope for functions implementing
/// the operator represented by @a _token. Returns the set of all definitions where the type
/// of the first argument matches this type object.
///
/// @note: If the AST has passed analysis without errors,
/// the function will find at most one definition for an operator.
///
/// @param _unary If true, only definitions that accept exactly one argument are included.
/// Otherwise only definitions that accept exactly two arguments.
std::set<FunctionDefinition const*, ASTCompareByID<ASTNode>> operatorDefinitions(
Token _token,
ASTNode const& _scope,
bool _unary
) const;
private:
/// @returns a member list containing all members added to this type by `using for` directives.
static MemberList::MemberMap attachedFunctions(Type const& _type, ASTNode const& _scope);
protected:
/// @returns the members native to this type depending on the given context. This function
/// is used (in conjunction with attachedFunctions to fill m_members below.
virtual MemberList::MemberMap nativeMembers(ASTNode const* /*_currentScope*/) const
{
return MemberList::MemberMap();
}
/// Generates the stack items to be returned by ``stackItems()``. Defaults
/// to exactly one unnamed and untyped stack item referring to a single stack slot.
virtual std::vector<std::tuple<std::string, Type const*>> makeStackItems() const
{
return {std::make_tuple(std::string(), nullptr)};
}
/// List of member types (parameterised by scape), will be lazy-initialized.
mutable std::map<ASTNode const*, std::unique_ptr<MemberList>> m_members;
mutable std::optional<std::vector<std::tuple<std::string, Type const*>>> m_stackItems;
mutable std::optional<size_t> m_stackSize;
};
/**
* Type for addresses.
*/
class AddressType: public Type
{
public:
explicit AddressType(StateMutability _stateMutability);
Category category() const override { return Category::Address; }
std::string richIdentifier() const override;
BoolResult isImplicitlyConvertibleTo(Type const& _other) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : 160 / 8; }
unsigned storageBytes() const override { return 160 / 8; }
bool leftAligned() const override { return false; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
MemberList::MemberMap nativeMembers(ASTNode const*) const override;
std::string toString(bool _withoutDataLocation) const override;
std::string canonicalName() const override;
u256 literalValue(Literal const* _literal) const override;
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
StateMutability stateMutability(void) const { return m_stateMutability; }
private:
StateMutability m_stateMutability;
};
/**
* Any kind of integer type (signed, unsigned).
*/
class IntegerType: public Type
{
public:
enum class Modifier
{
Unsigned, Signed
};
explicit IntegerType(unsigned _bits, Modifier _modifier = Modifier::Unsigned);
Category category() const override { return Category::Integer; }
std::string richIdentifier() const override;
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : m_bits / 8; }
unsigned storageBytes() const override { return m_bits / 8; }
bool leftAligned() const override { return false; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
std::string toString(bool _withoutDataLocation) const override;
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
unsigned numBits() const { return m_bits; }
bool isSigned() const { return m_modifier == Modifier::Signed; }
u256 min() const;
u256 max() const;
bigint minValue() const;
bigint maxValue() const;
private:
unsigned const m_bits;
Modifier const m_modifier;
};
/**
* A fixed point type number (signed, unsigned).
*/
class FixedPointType: public Type
{
public:
enum class Modifier
{
Unsigned, Signed
};
explicit FixedPointType(unsigned _totalBits, unsigned _fractionalDigits, Modifier _modifier = Modifier::Unsigned);
Category category() const override { return Category::FixedPoint; }
std::string richIdentifier() const override;
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : m_totalBits / 8; }
unsigned storageBytes() const override { return m_totalBits / 8; }
bool leftAligned() const override { return false; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
std::string toString(bool _withoutDataLocation) const override;
std::string eip712TypeName() const override{ solAssert(false, "EIP-712 is not supported for struct members of fixed point type"); }
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
/// Number of bits used for this type in total.
unsigned numBits() const { return m_totalBits; }
/// Number of decimal digits after the radix point.
unsigned fractionalDigits() const { return m_fractionalDigits; }
bool isSigned() const { return m_modifier == Modifier::Signed; }
/// @returns the largest integer value this type con hold. Note that this is not the
/// largest value in general.
bigint maxIntegerValue() const;
/// @returns the smallest integer value this type can hold. Note hat this is not the
/// smallest value in general.
bigint minIntegerValue() const;
/// @returns the smallest integer type that can hold this type with fractional parts shifted to integers.
IntegerType const* asIntegerType() const;
private:
unsigned m_totalBits;
unsigned m_fractionalDigits;
Modifier m_modifier;
};
/**
* Integer and fixed point constants either literals or computed.
* Example expressions: 2, 3.14, 2+10.2, ~10.
* There is one distinct type per value.
*/
class RationalNumberType: public Type
{
public:
explicit RationalNumberType(rational _value, Type const* _compatibleBytesType = nullptr):
m_value(std::move(_value)), m_compatibleBytesType(_compatibleBytesType)
{}
Category category() const override { return Category::RationalNumber; }
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
bool canBeStored() const override { return false; }
std::string toString(bool _withoutDataLocation) const override;
u256 literalValue(Literal const* _literal) const override;
Type const* mobileType() const override;
/// @returns the underlying raw literal value.
///
/// @see literalValue(Literal const*))
rational const& value() const noexcept { return m_value; }
/// @returns the smallest integer type that can hold the value or an empty pointer if not possible.
IntegerType const* integerType() const;
/// @returns the smallest fixed type that can hold the value or incurs the least precision loss,
/// unless the value was truncated, then a suitable type will be chosen to indicate such event.
/// If the integer part does not fit, returns an empty pointer.
FixedPointType const* fixedPointType() const;
/// @returns true if the value is not an integer.
bool isFractional() const { return m_value.denominator() != 1; }
/// @returns true if the value is negative.
bool isNegative() const { return m_value < 0; }
/// @returns true if the value is zero.
bool isZero() const { return m_value == 0; }
/// @returns true if the literal is a valid integer.
static std::tuple<bool, rational> isValidLiteral(Literal const& _literal);
private:
rational m_value;
/// Bytes type to which the rational can be implicitly converted.
/// Empty for all rationals that are not directly parsed from hex literals.
Type const* m_compatibleBytesType;
/// @returns true if the literal is a valid rational number.
static std::tuple<bool, rational> parseRational(std::string const& _value);
/// @returns a truncated readable representation of the bigint keeping only
/// up to 4 leading and 4 trailing digits.
static std::string bigintToReadableString(bigint const& num);
};
/**
* Literal string, can be converted to bytes, bytesX or string.
*/
class StringLiteralType: public Type
{
public:
explicit StringLiteralType(Literal const& _literal);
explicit StringLiteralType(std::string _value);
Category category() const override { return Category::StringLiteral; }
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult binaryOperatorResult(Token, Type const*) const override
{
return nullptr;
}
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
bool canBeStored() const override { return false; }
std::string toString(bool) const override;
Type const* mobileType() const override;
std::string const& value() const { return m_value; }
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override { return {}; }
private:
std::string m_value;
};
/**
* Bytes type with fixed length of up to 32 bytes.
*/
class FixedBytesType: public Type
{
public:
explicit FixedBytesType(unsigned _bytes);
Category category() const override { return Category::FixedBytes; }
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
unsigned calldataEncodedSize(bool _padded) const override { return _padded && m_bytes > 0 ? 32 : m_bytes; }
unsigned storageBytes() const override { return m_bytes; }
bool leftAligned() const override { return true; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
std::string toString(bool) const override { return "bytes" + util::toString(m_bytes); }
MemberList::MemberMap nativeMembers(ASTNode const*) const override;
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
unsigned numBytes() const { return m_bytes; }
private:
unsigned m_bytes;
};
/**
* The boolean type.
*/
class BoolType: public Type
{
public:
Category category() const override { return Category::Bool; }
std::string richIdentifier() const override { return "t_bool"; }
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
unsigned calldataEncodedSize(bool _padded) const override{ return _padded ? 32 : 1; }
unsigned storageBytes() const override { return 1; }
bool leftAligned() const override { return false; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
std::string toString(bool) const override { return "bool"; }
u256 literalValue(Literal const* _literal) const override;
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
};
/**
* Base class for types which can be thought of as several elements of other types put together.
* For example a struct is composed of its members, an array is composed of multiple copies of its
* base element and a mapping is composed of its value type elements (note that keys are not
* stored anywhere).
*/
class CompositeType: public Type
{
protected:
CompositeType() = default;
public:
/// @returns a list containing the type itself, elements of its decomposition,
/// elements of decomposition of these elements and so on, up to non-composite types.
/// Each type is included only once.
std::vector<Type const*> fullDecomposition() const;
protected:
/// @returns a list of types that together make up the data part of this type.
/// Contains all types that will have to be implicitly stored, whenever an object of this type is stored.
/// In particular, it returns the base type for arrays and array slices, the member types for structs,
/// the component types for tuples and the value type for mappings
/// (note that the key type of a mapping is *not* part of the list).
virtual std::vector<Type const*> decomposition() const = 0;
};
/**
* Base class used by types which are not value types and can be stored either in storage, memory
* or calldata. This is currently used by arrays and structs.
*/
class ReferenceType: public CompositeType
{
protected:
explicit ReferenceType(DataLocation _location): m_location(_location) {}
public:
DataLocation location() const { return m_location; }
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token, Type const*) const override
{
return nullptr;
}
unsigned memoryHeadSize() const override { return 32; }
u256 memoryDataSize() const override = 0;
unsigned calldataEncodedSize(bool) const override = 0;
unsigned calldataEncodedTailSize() const override = 0;
/// @returns a copy of this type with location (recursively) changed to @a _location,
/// whereas isPointer is only shallowly changed - the deep copy is always a bound reference.
virtual std::unique_ptr<ReferenceType> copyForLocation(DataLocation _location, bool _isPointer) const = 0;
Type const* mobileType() const override { return withLocation(m_location, true); }
bool dataStoredIn(DataLocation _location) const override { return m_location == _location; }
bool hasSimpleZeroValueInMemory() const override { return false; }
/// Storage references can be pointers or bound references. In general, local variables are of
/// pointer type, state variables are bound references. Assignments to pointers or deleting
/// them will not modify storage (that will only change the pointer). Assignment from
/// non-storage objects to a variable of storage pointer type is not possible.
/// For anything other than storage, this always returns true because assignments
/// never change the contents of the original value.
bool isPointer() const;
/// @returns true if this is valid to be stored in data location _loc
/// The function mostly checks sizes. For calldata, this should only be called
/// if the type has an interfaceType.
virtual BoolResult validForLocation(DataLocation _loc) const = 0;
bool equals(ReferenceType const& _other) const
{
return location() == _other.location() && isPointer() == _other.isPointer();
}
Type const* withLocation(DataLocation _location, bool _isPointer) const;
protected:
Type const* copyForLocationIfReference(Type const* _type) const;
/// @returns a human-readable description of the reference part of the type.
std::string stringForReferencePart() const;
/// @returns the suffix computed from the reference part to be used by identifier();
std::string identifierLocationSuffix() const;
DataLocation m_location = DataLocation::Storage;
bool m_isPointer = true;
};
/**
* The type of an array. The flavours are byte array (bytes), statically- (<type>[<length>])
* and dynamically-sized array (<type>[]).
* In storage, all arrays are packed tightly (as long as more than one elementary type fits in
* one slot). Dynamically sized arrays (including byte arrays) start with their size as a uint and
* thus start on their own slot.
*/
class ArrayType: public ReferenceType
{
public:
/// Constructor for a byte array ("bytes") and string.
explicit ArrayType(DataLocation _location, bool _isString = false);
/// Constructor for a dynamically sized array type ("<type>[]")
ArrayType(DataLocation _location, Type const* _baseType):
ReferenceType(_location),
m_baseType(copyForLocationIfReference(_baseType))
{
}
/// Constructor for a fixed-size array type ("<type>[<length>]")
ArrayType(DataLocation _location, Type const* _baseType, u256 _length):
ReferenceType(_location),
m_baseType(copyForLocationIfReference(_baseType)),
m_hasDynamicLength(false),
m_length(std::move(_length))
{}
Category category() const override { return Category::Array; }
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool) const override;
unsigned calldataEncodedTailSize() const override;
bool isDynamicallySized() const override { return m_hasDynamicLength; }
bool isDynamicallyEncoded() const override;
bigint storageSizeUpperBound() const override;
u256 storageSize() const override;
bool containsNestedMapping() const override { return m_baseType->containsNestedMapping(); }
bool nameable() const override { return true; }
std::string toString(bool _withoutDataLocation) const override;
std::string humanReadableName() const override;
std::string canonicalName() const override;
std::string eip712TypeName() const override;
std::string signatureInExternalFunction(bool _structsByName) const override;
MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override;
Type const* encodingType() const override;
Type const* decodingType() const override;
TypeResult interfaceType(bool _inLibrary) const override;
BoolResult validForLocation(DataLocation _loc) const override;
/// @returns true if this is a byte array.
bool isByteArray() const { return m_arrayKind == ArrayKind::Bytes; }
/// @returns true if this is a byte array or a string
bool isByteArrayOrString() const { return m_arrayKind != ArrayKind::Ordinary; }
/// @returns true if this is a string
bool isString() const { return m_arrayKind == ArrayKind::String; }
Type const* baseType() const { solAssert(!!m_baseType, ""); return m_baseType; }
Type const* finalBaseType(bool breakIfDynamicArrayType) const;
u256 const& length() const { return m_length; }
u256 memoryDataSize() const override;
std::unique_ptr<ReferenceType> copyForLocation(DataLocation _location, bool _isPointer) const override;
/// The offset to advance in calldata to move from one array element to the next.
unsigned calldataStride() const { return isByteArrayOrString() ? 1 : m_baseType->calldataHeadSize(); }
/// The offset to advance in memory to move from one array element to the next.
unsigned memoryStride() const { return isByteArrayOrString() ? 1 : m_baseType->memoryHeadSize(); }
/// The offset to advance in storage to move from one array element to the next.
unsigned storageStride() const { return isByteArrayOrString() ? 1 : m_baseType->storageBytes(); }
void clearCache() const override;
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
std::vector<Type const*> decomposition() const override { return {m_baseType}; }
private:
enum class ArrayKind { Ordinary, Bytes, String };
bigint unlimitedStaticCalldataSize(bool _padded) const;
///< Byte arrays ("bytes") and strings have different semantics from ordinary arrays.
ArrayKind m_arrayKind = ArrayKind::Ordinary;
Type const* m_baseType;
bool m_hasDynamicLength = true;
u256 m_length;
mutable std::optional<TypeResult> m_interfaceType;
mutable std::optional<TypeResult> m_interfaceType_library;
};
class ArraySliceType: public ReferenceType
{
public:
explicit ArraySliceType(ArrayType const& _arrayType): ReferenceType(_arrayType.location()), m_arrayType(_arrayType) {}
Category category() const override { return Category::ArraySlice; }
BoolResult isImplicitlyConvertibleTo(Type const& _other) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
std::string richIdentifier() const override;
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of array slice type"); }
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool) const override { solAssert(false, ""); }
unsigned calldataEncodedTailSize() const override { return 32; }
bool isDynamicallySized() const override { return true; }
bool isDynamicallyEncoded() const override { return true; }
std::string toString(bool _withoutDataLocation) const override;
std::string humanReadableName() const override;
Type const* mobileType() const override;
BoolResult validForLocation(DataLocation _loc) const override { return m_arrayType.validForLocation(_loc); }
ArrayType const& arrayType() const { return m_arrayType; }
u256 memoryDataSize() const override { solAssert(false, ""); }
std::unique_ptr<ReferenceType> copyForLocation(DataLocation, bool) const override { solAssert(false, ""); }
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
std::vector<Type const*> decomposition() const override { return {m_arrayType.baseType()}; }
private:
ArrayType const& m_arrayType;
};
/**
* The type of a contract instance or library, there is one distinct type for each contract definition.
*/
class ContractType: public Type
{
public:
explicit ContractType(ContractDefinition const& _contract, bool _super = false):
m_contract(_contract), m_super(_super) {}
Category category() const override { return Category::Contract; }
/// Contracts can be implicitly converted only to base contracts.
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
/// Contracts can only be explicitly converted to address types and base contracts.
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded ) const override
{
solAssert(!isSuper(), "");
return encodingType()->calldataEncodedSize(_padded);
}
unsigned storageBytes() const override { solAssert(!isSuper(), ""); return 20; }
bool leftAligned() const override { solAssert(!isSuper(), ""); return false; }
bool isValueType() const override { return !isSuper(); }
bool nameable() const override { return !isSuper(); }
std::string toString(bool _withoutDataLocation) const override;
std::string canonicalName() const override;
MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override;
Type const* encodingType() const override;
TypeResult interfaceType(bool _inLibrary) const override
{
if (isSuper())
return nullptr;
return _inLibrary ? this : encodingType();
}
/// See documentation of m_super
bool isSuper() const { return m_super; }
// @returns true if and only if the contract has a receive ether function or a payable fallback function, i.e.
// if it has code that will be executed on plain ether transfers
bool isPayable() const;
ContractDefinition const& contractDefinition() const { return m_contract; }
/// Returns the function type of the constructor modified to return an object of the contract's type.
FunctionType const* newExpressionType() const;
/// @returns a list of all state variables (including inherited) of the contract and their
/// offsets in storage.
std::vector<std::tuple<VariableDeclaration const*, u256, unsigned>> stateVariables() const;
/// @returns a list of all immutable variables (including inherited) of the contract.
std::vector<VariableDeclaration const*> immutableVariables() const;
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
private:
ContractDefinition const& m_contract;
/// If true, this is a special "super" type of m_contract containing only members that m_contract inherited
bool m_super = false;
/// Type of the constructor, @see constructorType. Lazily initialized.
mutable FunctionType const* m_constructorType = nullptr;
};
/**
* The type of a struct instance, there is one distinct type per struct definition.
*/
class StructType: public ReferenceType
{
public:
explicit StructType(StructDefinition const& _struct, DataLocation _location = DataLocation::Storage):
ReferenceType(_location), m_struct(_struct) {}
Category category() const override { return Category::Struct; }
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool) const override;
unsigned calldataEncodedTailSize() const override;
bool isDynamicallyEncoded() const override;
u256 memoryDataSize() const override;
bigint storageSizeUpperBound() const override;
u256 storageSize() const override;
bool containsNestedMapping() const override;
bool nameable() const override { return true; }
std::string toString(bool _withoutDataLocation) const override;
MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override;
Type const* encodingType() const override;
TypeResult interfaceType(bool _inLibrary) const override;
Declaration const* typeDefinition() const override;
BoolResult validForLocation(DataLocation _loc) const override;
bool recursive() const;
std::unique_ptr<ReferenceType> copyForLocation(DataLocation _location, bool _isPointer) const override;
std::string canonicalName() const override;
std::string eip712TypeName() const override;
std::string signatureInExternalFunction(bool _structsByName) const override;
/// @returns a function that performs the type conversion between a list of struct members
/// and a memory struct of this type.
FunctionType const* constructorType() const;
std::pair<u256, unsigned> const& storageOffsetsOfMember(std::string const& _name) const;
u256 memoryOffsetOfMember(std::string const& _name) const;
unsigned calldataOffsetOfMember(std::string const& _name) const;
StructDefinition const& structDefinition() const { return m_struct; }
/// @returns the vector of types of members available in memory.
TypePointers memoryMemberTypes() const;
void clearCache() const override;
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
std::vector<Type const*> decomposition() const override;
private:
StructDefinition const& m_struct;
// Caches for interfaceType(bool)
mutable std::optional<TypeResult> m_interfaceType;
mutable std::optional<TypeResult> m_interfaceType_library;
};
/**
* The type of an enum instance, there is one distinct type per enum definition.
*/
class EnumType: public Type
{
public:
explicit EnumType(EnumDefinition const& _enum): m_enum(_enum) {}
Category category() const override { return Category::Enum; }
TypeResult unaryOperatorResult(Token _operator) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded) const override
{
return encodingType()->calldataEncodedSize(_padded);
}
unsigned storageBytes() const override;
bool leftAligned() const override { return false; }
std::string toString(bool _withoutDataLocation) const override;
std::string canonicalName() const override;
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of Enum type"); }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
Type const* encodingType() const override;
TypeResult interfaceType(bool _inLibrary) const override
{
return _inLibrary ? this : encodingType();
}
Declaration const* typeDefinition() const override;
EnumDefinition const& enumDefinition() const { return m_enum; }
/// @returns the value that the string has in the Enum
unsigned int memberValue(ASTString const& _member) const;
size_t numberOfMembers() const;
unsigned int minValue() const { return 0; }
unsigned int maxValue() const
{
solAssert(numberOfMembers() <= 256, "");
return static_cast<unsigned int>(numberOfMembers()) - 1;
}
private:
EnumDefinition const& m_enum;
};
/**
* The type of a UserDefinedValueType.
*/
class UserDefinedValueType: public Type
{
public:
explicit UserDefinedValueType(UserDefinedValueTypeDefinition const& _definition):
m_definition(_definition)
{}
Category category() const override { return Category::UserDefinedValueType; }
Type const& underlyingType() const;
UserDefinedValueTypeDefinition const& definition() const { return m_definition; }
TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; }
Type const* encodingType() const override { return &underlyingType(); }
TypeResult interfaceType(bool /* _inLibrary */) const override {return &underlyingType(); }
Declaration const* typeDefinition() const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded) const override { return underlyingType().calldataEncodedSize(_padded); }
bool leftAligned() const override { return underlyingType().leftAligned(); }
bool canBeStored() const override { return underlyingType().canBeStored(); }
u256 storageSize() const override { return underlyingType().storageSize(); }
unsigned storageBytes() const override { return underlyingType().storageBytes(); }
bool isValueType() const override { return true; }
bool nameable() const override
{
solAssert(underlyingType().nameable(), "");
return true;
}
bool containsNestedMapping() const override
{
solAssert(nameable(), "Called for a non nameable type.");
// DeclarationTypeChecker::endVisit(VariableDeclaration const&)
// assumes that this will never be true.
solAssert(!underlyingType().containsNestedMapping(), "");
return false;
}
bool hasSimpleZeroValueInMemory() const override
{
solAssert(underlyingType().hasSimpleZeroValueInMemory(), "");
return true;
}
bool dataStoredIn(DataLocation _loc) const override
{
solAssert(!underlyingType().dataStoredIn(_loc), "");
return false;
}
std::string toString(bool _withoutDataLocation) const override;
std::string canonicalName() const override;
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of user defined value type"); }
std::string signatureInExternalFunction(bool) const override { solAssert(false, ""); }
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
private:
UserDefinedValueTypeDefinition const& m_definition;
};
/**
* Type that can hold a finite sequence of values of different types.
* In some cases, the components are empty pointers (when used as placeholders).
*/
class TupleType: public CompositeType
{
public:
explicit TupleType(std::vector<Type const*> _types = {}): m_components(std::move(_types)) {}
Category category() const override { return Category::Tuple; }
BoolResult isImplicitlyConvertibleTo(Type const& _other) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; }
std::string toString(bool _withoutDataLocation) const override;
std::string humanReadableName() const override;
bool canBeStored() const override { return false; }
u256 storageSize() const override;
bool hasSimpleZeroValueInMemory() const override { return false; }
Type const* mobileType() const override;
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of tuple type"); }
std::vector<Type const*> const& components() const { return m_components; }
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
std::vector<Type const*> decomposition() const override
{
// Currently calling TupleType::decomposition() is not expected, because we cannot declare a variable of a tuple type.
// If that changes, before removing the solAssert, make sure the function does the right thing and is used properly.
// Note that different tuple members can have different data locations, so using decomposition() to check
// the tuple validity for a data location might require special care.
solUnimplemented("Tuple decomposition is not expected.");
return m_components;
}
private:
std::vector<Type const*> const m_components;
};
/**
* The type of a function, identified by its (return) parameter types.
* @todo the return parameters should also have names, i.e. return parameters should be a struct
* type.
*/
class FunctionType: public Type
{
public:
/// How this function is invoked on the EVM.
enum class Kind
{
Internal, ///< stack-call using plain JUMP
External, ///< external call using CALL
DelegateCall, ///< external call using DELEGATECALL, i.e. not exchanging the storage
BareCall, ///< CALL without function hash
BareCallCode, ///< CALLCODE without function hash
BareDelegateCall, ///< DELEGATECALL without function hash
BareStaticCall, ///< STATICCALL without function hash
Creation, ///< external call using CREATE
Send, ///< CALL, but without data and gas
Transfer, ///< CALL, but without data and throws on error
KECCAK256, ///< KECCAK256
Selfdestruct, ///< SELFDESTRUCT
Revert, ///< REVERT
ECRecover, ///< CALL to special contract for ecrecover
SHA256, ///< CALL to special contract for sha256
RIPEMD160, ///< CALL to special contract for ripemd160
Event, ///< syntactic sugar for LOG*
Error, ///< creating an error instance in revert or require
Wrap, ///< customType.wrap(...) for user defined value types
Unwrap, ///< customType.unwrap(...) for user defined value types
SetGas, ///< modify the default gas value for the function call
SetValue, ///< modify the default value transfer for the function call
BlockHash, ///< BLOCKHASH
AddMod, ///< ADDMOD
MulMod, ///< MULMOD
ArrayPush, ///< .push() to a dynamically sized array in storage
ArrayPop, ///< .pop() from a dynamically sized array in storage
BytesConcat, ///< .concat() on bytes (type type)
StringConcat, ///< .concat() on string (type type)
ObjectCreation, ///< array creation using new
Assert, ///< assert()
Require, ///< require()
ABIEncode,
ABIEncodePacked,
ABIEncodeWithSelector,
ABIEncodeCall,
ABIEncodeWithSignature,
ABIDecode,
GasLeft, ///< gasleft()
MetaType, ///< type(...)
/// Refers to a function declaration without calling context
/// (i.e. when accessed directly via the name of the containing contract).
/// Cannot be called.
Declaration,
};
struct Options
{
/// true iff the function takes an arbitrary number of arguments of arbitrary types
bool arbitraryParameters = false;
/// true iff the gas value to be used is on the stack
bool gasSet = false;
/// true iff the value to be sent is on the stack
bool valueSet = false;
/// iff the salt value (for create2) to be used is on the stack
bool saltSet = false;
/// true iff the function is called as arg1.fun(arg2, ..., argn).
/// This is achieved through the "using for" directive.
bool hasBoundFirstArgument = false;
static Options withArbitraryParameters()
{
Options result;
result.arbitraryParameters = true;
return result;
}
static Options fromFunctionType(FunctionType const& _type)
{
Options result;
result.arbitraryParameters = _type.takesArbitraryParameters();
result.gasSet = _type.gasSet();
result.valueSet = _type.valueSet();
result.saltSet = _type.saltSet();
result.hasBoundFirstArgument = _type.hasBoundFirstArgument();
return result;
}
};
/// Creates the type of a function.
/// @arg _kind must be Kind::Internal, Kind::External or Kind::Declaration.
explicit FunctionType(FunctionDefinition const& _function, Kind _kind = Kind::Declaration);
/// Creates the accessor function type of a state variable.
explicit FunctionType(VariableDeclaration const& _varDecl);
/// Creates the function type of an event.
explicit FunctionType(EventDefinition const& _event);
explicit FunctionType(ErrorDefinition const& _error);
/// Creates the type of a function type name.
explicit FunctionType(FunctionTypeName const& _typeName);
/// Function type constructor to be used for a plain type (not derived from a declaration).
FunctionType(
strings const& _parameterTypes,
strings const& _returnParameterTypes,
Kind _kind,
StateMutability _stateMutability = StateMutability::NonPayable,
Options _options = Options{false, false, false, false, false}
): FunctionType(
parseElementaryTypeVector(_parameterTypes),
parseElementaryTypeVector(_returnParameterTypes),
strings(_parameterTypes.size(), ""),
strings(_returnParameterTypes.size(), ""),
_kind,
_stateMutability,
nullptr,
std::move(_options)
)
{
// In this constructor, only the "arbitrary Parameters" option should be used.
solAssert(!hasBoundFirstArgument() && !gasSet() && !valueSet() && !saltSet());
}
/// Detailed constructor, use with care.
FunctionType(
TypePointers _parameterTypes,
TypePointers _returnParameterTypes,
strings _parameterNames = strings(),
strings _returnParameterNames = strings(),
Kind _kind = Kind::Internal,
StateMutability _stateMutability = StateMutability::NonPayable,
Declaration const* _declaration = nullptr,
Options _options = Options{false, false, false, false, false}
):
m_parameterTypes(std::move(_parameterTypes)),
m_returnParameterTypes(std::move(_returnParameterTypes)),
m_parameterNames(std::move(_parameterNames)),
m_returnParameterNames(std::move(_returnParameterNames)),
m_kind(_kind),
m_stateMutability(_stateMutability),
m_declaration(_declaration),
m_options(std::move(_options))
{
solAssert(
m_parameterNames.size() == m_parameterTypes.size(),
"Parameter names list must match parameter types list!"
);
solAssert(
m_returnParameterNames.size() == m_returnParameterTypes.size(),
"Return parameter names list must match return parameter types list!"
);
solAssert(
!hasBoundFirstArgument() || !m_parameterTypes.empty(),
"Attempted construction of attached function without self type"
);
}
Category category() const override { return Category::Function; }
/// @returns the type of the "new Contract" function, i.e. basically the constructor.
static FunctionTypePointer newExpressionType(ContractDefinition const& _contract);
TypePointers parameterTypes() const;
TypePointers const& parameterTypesIncludingSelf() const;
std::vector<std::string> parameterNames() const;
TypePointers const& returnParameterTypes() const { return m_returnParameterTypes; }
/// @returns the list of return parameter types. All dynamically-sized types (this excludes
/// storage pointers) are replaced by InaccessibleDynamicType instances.
TypePointers returnParameterTypesWithoutDynamicTypes() const;
std::vector<std::string> const& returnParameterNames() const { return m_returnParameterNames; }
/// @returns the "self" parameter type for an attached function
Type const* selfType() const;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token, Type const*) const override;
std::string canonicalName() const override;
std::string humanReadableName() const override;
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of function type"); }
std::string toString(bool _withoutDataLocation) const override;
unsigned calldataEncodedSize(bool _padded) const override;
bool canBeStored() const override { return m_kind == Kind::Internal || m_kind == Kind::External; }
u256 storageSize() const override;
bool leftAligned() const override;
unsigned storageBytes() const override;
bool isValueType() const override { return true; }
bool nameable() const override;
bool hasSimpleZeroValueInMemory() const override { return false; }
MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override;
Type const* encodingType() const override;
TypeResult interfaceType(bool _inLibrary) const override;
Type const* mobileType() const override;
/// @returns Type const* of a new FunctionType object. All input/return parameters are an
/// appropriate external types (i.e. the interfaceType()s) of input/return parameters of
/// current function.
/// @returns an empty shared pointer if one of the input/return parameters does not have an
/// external type.
FunctionTypePointer interfaceFunctionType() const;
/// @returns true if this function can take the given arguments (possibly
/// after implicit conversion).
/// @param _selfType if the function is attached as a member function, this has to be supplied
/// and is the type of the expression the function is called on.
bool canTakeArguments(
FuncCallArguments const& _arguments,
Type const* _selfType = nullptr
) const;
/// @returns true if the types of parameters are equal (does not check return parameter types)
bool hasEqualParameterTypes(FunctionType const& _other) const;
/// @returns true iff the return types are equal (does not check parameter types)
bool hasEqualReturnTypes(FunctionType const& _other) const;
/// @returns true iff the function type is equal to the given type, ignoring state mutability differences.
bool equalExcludingStateMutability(FunctionType const& _other) const;
/// @returns true if the ABI is NOT used for this call (only meaningful for external calls)
bool isBareCall() const;
Kind const& kind() const { return m_kind; }
StateMutability stateMutability() const { return m_stateMutability; }
/// @returns the external signature of this function type given the function name
std::string externalSignature() const;
/// @returns the external identifier of this function (the hash of the signature).
u256 externalIdentifier() const;
/// @returns the external identifier of this function (the hash of the signature) as a hex string.
std::string externalIdentifierHex() const;
Declaration const& declaration() const
{
solAssert(m_declaration, "Requested declaration from a FunctionType that has none");
return *m_declaration;
}
bool hasDeclaration() const { return !!m_declaration; }
/// @returns true if the result of this function only depends on its arguments,
/// does not modify the state and is a compile-time constant.
/// Currently, this will only return true for internal functions like keccak and ecrecover.
bool isPure() const;
bool isPayable() const { return m_stateMutability == StateMutability::Payable; }
/// @return A shared pointer of StructuredDocumentation.
/// Can contain a nullptr in which case indicates absence of documentation.
ASTPointer<StructuredDocumentation> documentation() const;
/// true iff arguments are to be padded to multiples of 32 bytes for external calls
/// The only functions that do not pad are hash functions, the low-level call functions
/// and abi.encodePacked.
bool padArguments() const;
bool takesArbitraryParameters() const { return m_options.arbitraryParameters; }
/// true iff the function takes a single bytes parameter and it is passed on without padding.
bool takesSinglePackedBytesParameter() const
{
switch (m_kind)
{
case FunctionType::Kind::KECCAK256:
case FunctionType::Kind::SHA256:
case FunctionType::Kind::RIPEMD160:
case FunctionType::Kind::BareCall:
case FunctionType::Kind::BareCallCode:
case FunctionType::Kind::BareDelegateCall:
case FunctionType::Kind::BareStaticCall:
return true;
default:
return false;
}
}
bool gasSet() const { return m_options.gasSet; }
bool valueSet() const { return m_options.valueSet; }
bool saltSet() const { return m_options.saltSet; }
bool hasBoundFirstArgument() const { return m_options.hasBoundFirstArgument; }
/// @returns a copy of this type, where gas or value are set manually. This will never set one
/// of the parameters to false.
Type const* copyAndSetCallOptions(bool _setGas, bool _setValue, bool _setSalt) const;
/// @returns a copy of this function type with the `hasBoundFirstArgument` flag set to true.
/// Should only be called on library functions.
FunctionTypePointer withBoundFirstArgument() const;
/// @returns a copy of this function type where the location of reference types is changed
/// from CallData to Memory. This is the type that would be used when the function is
/// called externally, as opposed to the parameter types that are available inside the function body.
/// Also supports variants to be used for library or attached function calls.
/// @param _inLibrary if true, uses DelegateCall as location.
FunctionTypePointer asExternallyCallableFunction(bool _inLibrary) const;
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
private:
static TypePointers parseElementaryTypeVector(strings const& _types);
TypePointers m_parameterTypes;
TypePointers m_returnParameterTypes;
std::vector<std::string> m_parameterNames;
std::vector<std::string> m_returnParameterNames;
Kind const m_kind;
StateMutability m_stateMutability = StateMutability::NonPayable;
Declaration const* m_declaration = nullptr;
Options const m_options;
};
/**
* The type of a mapping, there is one distinct type per key/value type pair.
* Mappings always occupy their own storage slot, but do not actually use it.
*/
class MappingType: public CompositeType
{
public:
MappingType(Type const* _keyType, ASTString _keyName, Type const* _valueType, ASTString _valueName):
m_keyType(_keyType), m_keyName(_keyName), m_valueType(_valueType), m_valueName(_valueName) {}
Category category() const override { return Category::Mapping; }
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
std::string toString(bool _withoutDataLocation) const override;
std::string canonicalName() const override;
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of mapping type"); }
bool containsNestedMapping() const override { return true; }
TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; }
Type const* encodingType() const override;
TypeResult interfaceType(bool _inLibrary) const override;
bool dataStoredIn(DataLocation _location) const override { return _location == DataLocation::Storage; }
/// Cannot be stored in memory, but just in case.
bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); }
bool nameable() const override { return true; }
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
Type const* keyType() const { return m_keyType; }
ASTString keyName() const { return m_keyName; }
Type const* valueType() const { return m_valueType; }
ASTString valueName() const { return m_valueName; }
protected:
std::vector<Type const*> decomposition() const override { return {m_valueType}; }
private:
Type const* m_keyType;
ASTString m_keyName;
Type const* m_valueType;
ASTString m_valueName;
};
/**
* The type of a type reference. The type of "uint32" when used in "a = uint32(2)" is an example
* of a TypeType.
* For super contracts or libraries, this has members directly.
*/
class TypeType: public Type
{
public:
explicit TypeType(Type const* _actualType): m_actualType(_actualType) {}
Category category() const override { return Category::TypeType; }
Type const* actualType() const { return m_actualType; }
TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; }
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
bool canBeStored() const override { return false; }
u256 storageSize() const override;
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of type type"); }
bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); }
std::string toString(bool _withoutDataLocation) const override { return "type(" + m_actualType->toString(_withoutDataLocation) + ")"; }
MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
private:
Type const* m_actualType;
};
/**
* The type of a function modifier. Not used for anything for now.
*/
class ModifierType: public Type
{
public:
explicit ModifierType(ModifierDefinition const& _modifier);
Category category() const override { return Category::Modifier; }
TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; }
bool canBeStored() const override { return false; }
u256 storageSize() const override;
bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); }
std::string richIdentifier() const override;
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of modfier type"); }
bool operator==(Type const& _other) const override;
std::string toString(bool _withoutDataLocation) const override;
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override { return {}; }
private:
TypePointers m_parameterTypes;
};
/**
* Special type for imported modules. These mainly give access to their scope via members.
*/
class ModuleType: public Type
{
public:
explicit ModuleType(SourceUnit const& _source): m_sourceUnit(_source) {}
Category category() const override { return Category::Module; }
TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; }
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
bool canBeStored() const override { return false; }
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of module type"); }
bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); }
MemberList::MemberMap nativeMembers(ASTNode const*) const override;
std::string toString(bool _withoutDataLocation) const override;
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override { return {}; }
private:
SourceUnit const& m_sourceUnit;
};
/**
* Special type for magic variables (block, msg, tx, type(...)), similar to a struct but without any reference.
*/
class MagicType: public Type
{
public:
enum class Kind {
Block, ///< "block"
Message, ///< "msg"
Transaction, ///< "tx"
ABI, ///< "abi"
MetaType ///< "type(...)"
};
public:
explicit MagicType(Kind _kind): m_kind(_kind) {}
explicit MagicType(Type const* _metaTypeArg): m_kind{Kind::MetaType}, m_typeArgument{_metaTypeArg} {}
Category category() const override { return Category::Magic; }
TypeResult binaryOperatorResult(Token, Type const*) const override
{
return nullptr;
}
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
bool canBeStored() const override { return false; }
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of magic type"); }
bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); }
MemberList::MemberMap nativeMembers(ASTNode const*) const override;
std::string toString(bool _withoutDataLocation) const override;
Kind kind() const { return m_kind; }
Type const* typeArgument() const;
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override { return {}; }
private:
Kind m_kind;
/// Contract type used for contract metadata magic.
Type const* m_typeArgument;
};
/**
* Special type that is used for dynamic types in returns from external function calls
* (The EVM currently cannot access dynamically-sized return values).
*/
class InaccessibleDynamicType: public Type
{
public:
Category category() const override { return Category::InaccessibleDynamic; }
std::string richIdentifier() const override { return "t_inaccessible"; }
BoolResult isImplicitlyConvertibleTo(Type const&) const override { return false; }
BoolResult isExplicitlyConvertibleTo(Type const&) const override { return false; }
TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; }
unsigned calldataEncodedSize(bool) const override { return 32; }
bool canBeStored() const override { return false; }
bool isValueType() const override { return true; }
std::string eip712TypeName() const override { solAssert(false, "EIP-712 is not supported for struct members of inaccessible dynamic type"); }
bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); }
std::string toString(bool) const override { return "inaccessible dynamic type"; }
Type const* decodingType() const override;
};
}