mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
1303 lines
46 KiB
C++
1303 lines
46 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/**
|
|
* @author Christian <c@ethdev.com>
|
|
* @date 2014
|
|
* Routines used by both the compiler and the expression compiler.
|
|
*/
|
|
|
|
#include <libsolidity/codegen/CompilerUtils.h>
|
|
|
|
#include <libsolidity/ast/AST.h>
|
|
#include <libsolidity/codegen/ArrayUtils.h>
|
|
#include <libsolidity/codegen/LValue.h>
|
|
#include <libsolidity/codegen/ABIFunctions.h>
|
|
|
|
#include <libevmasm/Instruction.h>
|
|
|
|
#include <libdevcore/Whiskers.h>
|
|
|
|
using namespace std;
|
|
|
|
namespace dev
|
|
{
|
|
namespace solidity
|
|
{
|
|
|
|
const unsigned CompilerUtils::dataStartOffset = 4;
|
|
const size_t CompilerUtils::freeMemoryPointer = 64;
|
|
const size_t CompilerUtils::zeroPointer = CompilerUtils::freeMemoryPointer + 32;
|
|
const size_t CompilerUtils::generalPurposeMemoryStart = CompilerUtils::zeroPointer + 32;
|
|
const unsigned CompilerUtils::identityContractAddress = 4;
|
|
|
|
static_assert(CompilerUtils::freeMemoryPointer >= 64, "Free memory pointer must not overlap with scratch area.");
|
|
static_assert(CompilerUtils::zeroPointer >= CompilerUtils::freeMemoryPointer + 32, "Zero pointer must not overlap with free memory pointer.");
|
|
static_assert(CompilerUtils::generalPurposeMemoryStart >= CompilerUtils::zeroPointer + 32, "General purpose memory must not overlap with zero area.");
|
|
|
|
void CompilerUtils::initialiseFreeMemoryPointer()
|
|
{
|
|
m_context << u256(generalPurposeMemoryStart);
|
|
storeFreeMemoryPointer();
|
|
}
|
|
|
|
void CompilerUtils::fetchFreeMemoryPointer()
|
|
{
|
|
m_context << u256(freeMemoryPointer) << Instruction::MLOAD;
|
|
}
|
|
|
|
void CompilerUtils::storeFreeMemoryPointer()
|
|
{
|
|
m_context << u256(freeMemoryPointer) << Instruction::MSTORE;
|
|
}
|
|
|
|
void CompilerUtils::allocateMemory()
|
|
{
|
|
fetchFreeMemoryPointer();
|
|
m_context << Instruction::SWAP1 << Instruction::DUP2 << Instruction::ADD;
|
|
storeFreeMemoryPointer();
|
|
}
|
|
|
|
void CompilerUtils::toSizeAfterFreeMemoryPointer()
|
|
{
|
|
fetchFreeMemoryPointer();
|
|
m_context << Instruction::DUP1 << Instruction::SWAP2 << Instruction::SUB;
|
|
m_context << Instruction::SWAP1;
|
|
}
|
|
|
|
void CompilerUtils::revertWithStringData(Type const& _argumentType)
|
|
{
|
|
solAssert(_argumentType.isImplicitlyConvertibleTo(*Type::fromElementaryTypeName("string memory")), "");
|
|
fetchFreeMemoryPointer();
|
|
m_context << (u256(FixedHash<4>::Arith(FixedHash<4>(dev::keccak256("Error(string)")))) << (256 - 32));
|
|
m_context << Instruction::DUP2 << Instruction::MSTORE;
|
|
m_context << u256(4) << Instruction::ADD;
|
|
// Stack: <string data> <mem pos of encoding start>
|
|
abiEncode({_argumentType.shared_from_this()}, {make_shared<ArrayType>(DataLocation::Memory, true)});
|
|
toSizeAfterFreeMemoryPointer();
|
|
m_context << Instruction::REVERT;
|
|
m_context.adjustStackOffset(_argumentType.sizeOnStack());
|
|
}
|
|
|
|
unsigned CompilerUtils::loadFromMemory(
|
|
unsigned _offset,
|
|
Type const& _type,
|
|
bool _fromCalldata,
|
|
bool _padToWordBoundaries
|
|
)
|
|
{
|
|
solAssert(_type.category() != Type::Category::Array, "Unable to statically load dynamic type.");
|
|
m_context << u256(_offset);
|
|
return loadFromMemoryHelper(_type, _fromCalldata, _padToWordBoundaries);
|
|
}
|
|
|
|
void CompilerUtils::loadFromMemoryDynamic(
|
|
Type const& _type,
|
|
bool _fromCalldata,
|
|
bool _padToWordBoundaries,
|
|
bool _keepUpdatedMemoryOffset
|
|
)
|
|
{
|
|
if (_keepUpdatedMemoryOffset)
|
|
m_context << Instruction::DUP1;
|
|
|
|
if (auto arrayType = dynamic_cast<ArrayType const*>(&_type))
|
|
{
|
|
solAssert(!arrayType->isDynamicallySized(), "");
|
|
solAssert(!_fromCalldata, "");
|
|
solAssert(_padToWordBoundaries, "");
|
|
if (_keepUpdatedMemoryOffset)
|
|
m_context << arrayType->memorySize() << Instruction::ADD;
|
|
}
|
|
else
|
|
{
|
|
unsigned numBytes = loadFromMemoryHelper(_type, _fromCalldata, _padToWordBoundaries);
|
|
if (_keepUpdatedMemoryOffset)
|
|
{
|
|
// update memory counter
|
|
moveToStackTop(_type.sizeOnStack());
|
|
m_context << u256(numBytes) << Instruction::ADD;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompilerUtils::storeInMemory(unsigned _offset)
|
|
{
|
|
unsigned numBytes = prepareMemoryStore(IntegerType(256), true);
|
|
if (numBytes > 0)
|
|
m_context << u256(_offset) << Instruction::MSTORE;
|
|
}
|
|
|
|
void CompilerUtils::storeInMemoryDynamic(Type const& _type, bool _padToWordBoundaries)
|
|
{
|
|
if (auto ref = dynamic_cast<ReferenceType const*>(&_type))
|
|
{
|
|
solUnimplementedAssert(ref->location() == DataLocation::Memory, "Only in-memory reference type can be stored.");
|
|
storeInMemoryDynamic(IntegerType(256), _padToWordBoundaries);
|
|
}
|
|
else if (auto str = dynamic_cast<StringLiteralType const*>(&_type))
|
|
{
|
|
m_context << Instruction::DUP1;
|
|
storeStringData(bytesConstRef(str->value()));
|
|
if (_padToWordBoundaries)
|
|
m_context << u256(max<size_t>(32, ((str->value().size() + 31) / 32) * 32));
|
|
else
|
|
m_context << u256(str->value().size());
|
|
m_context << Instruction::ADD;
|
|
}
|
|
else if (
|
|
_type.category() == Type::Category::Function &&
|
|
dynamic_cast<FunctionType const&>(_type).kind() == FunctionType::Kind::External
|
|
)
|
|
{
|
|
combineExternalFunctionType(true);
|
|
m_context << Instruction::DUP2 << Instruction::MSTORE;
|
|
m_context << u256(_padToWordBoundaries ? 32 : 24) << Instruction::ADD;
|
|
}
|
|
else
|
|
{
|
|
unsigned numBytes = prepareMemoryStore(_type, _padToWordBoundaries);
|
|
if (numBytes > 0)
|
|
{
|
|
solUnimplementedAssert(
|
|
_type.sizeOnStack() == 1,
|
|
"Memory store of types with stack size != 1 not implemented."
|
|
);
|
|
m_context << Instruction::DUP2 << Instruction::MSTORE;
|
|
m_context << u256(numBytes) << Instruction::ADD;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompilerUtils::abiDecode(TypePointers const& _typeParameters, bool _fromMemory, bool _revertOnOutOfBounds)
|
|
{
|
|
/// Stack: <source_offset> <length>
|
|
if (m_context.experimentalFeatureActive(ExperimentalFeature::ABIEncoderV2))
|
|
{
|
|
// Use the new JULIA-based decoding function
|
|
auto stackHeightBefore = m_context.stackHeight();
|
|
abiDecodeV2(_typeParameters, _fromMemory);
|
|
solAssert(m_context.stackHeight() - stackHeightBefore == sizeOnStack(_typeParameters) - 2, "");
|
|
return;
|
|
}
|
|
|
|
//@todo this does not yet support nested dynamic arrays
|
|
|
|
if (_revertOnOutOfBounds)
|
|
{
|
|
size_t encodedSize = 0;
|
|
for (auto const& t: _typeParameters)
|
|
encodedSize += t->decodingType()->calldataEncodedSize(true);
|
|
m_context.appendInlineAssembly("{ if lt(len, " + to_string(encodedSize) + ") { revert(0, 0) } }", {"len"});
|
|
}
|
|
|
|
m_context << Instruction::DUP2 << Instruction::ADD;
|
|
m_context << Instruction::SWAP1;
|
|
/// Stack: <input_end> <source_offset>
|
|
|
|
// Retain the offset pointer as base_offset, the point from which the data offsets are computed.
|
|
m_context << Instruction::DUP1;
|
|
for (TypePointer const& parameterType: _typeParameters)
|
|
{
|
|
// stack: v1 v2 ... v(k-1) input_end base_offset current_offset
|
|
TypePointer type = parameterType->decodingType();
|
|
solUnimplementedAssert(type, "No decoding type found.");
|
|
if (type->category() == Type::Category::Array)
|
|
{
|
|
auto const& arrayType = dynamic_cast<ArrayType const&>(*type);
|
|
solUnimplementedAssert(!arrayType.baseType()->isDynamicallyEncoded(), "Nested arrays not yet implemented.");
|
|
if (_fromMemory)
|
|
{
|
|
solUnimplementedAssert(
|
|
arrayType.baseType()->isValueType(),
|
|
"Nested memory arrays not yet implemented here."
|
|
);
|
|
// @todo If base type is an array or struct, it is still calldata-style encoded, so
|
|
// we would have to convert it like below.
|
|
solAssert(arrayType.location() == DataLocation::Memory, "");
|
|
if (arrayType.isDynamicallySized())
|
|
{
|
|
// compute data pointer
|
|
m_context << Instruction::DUP1 << Instruction::MLOAD;
|
|
if (_revertOnOutOfBounds)
|
|
{
|
|
// Check that the data pointer is valid and that length times
|
|
// item size is still inside the range.
|
|
Whiskers templ(R"({
|
|
if gt(ptr, 0x100000000) { revert(0, 0) }
|
|
ptr := add(ptr, base_offset)
|
|
let array_data_start := add(ptr, 0x20)
|
|
if gt(array_data_start, input_end) { revert(0, 0) }
|
|
let array_length := mload(ptr)
|
|
if or(
|
|
gt(array_length, 0x100000000),
|
|
gt(add(array_data_start, mul(array_length, <item_size>)), input_end)
|
|
) { revert(0, 0) }
|
|
})");
|
|
templ("item_size", to_string(arrayType.isByteArray() ? 1 : arrayType.baseType()->calldataEncodedSize(true)));
|
|
m_context.appendInlineAssembly(templ.render(), {"input_end", "base_offset", "offset", "ptr"});
|
|
}
|
|
else
|
|
m_context << Instruction::DUP3 << Instruction::ADD;
|
|
// stack: v1 v2 ... v(k-1) input_end base_offset current_offset v(k)
|
|
moveIntoStack(3);
|
|
m_context << u256(0x20) << Instruction::ADD;
|
|
}
|
|
else
|
|
{
|
|
// Size has already been checked for this one.
|
|
moveIntoStack(2);
|
|
m_context << Instruction::DUP3;
|
|
m_context << u256(arrayType.calldataEncodedSize(true)) << Instruction::ADD;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// first load from calldata and potentially convert to memory if arrayType is memory
|
|
TypePointer calldataType = arrayType.copyForLocation(DataLocation::CallData, false);
|
|
if (calldataType->isDynamicallySized())
|
|
{
|
|
// put on stack: data_pointer length
|
|
loadFromMemoryDynamic(IntegerType(256), !_fromMemory);
|
|
m_context << Instruction::SWAP1;
|
|
// stack: input_end base_offset next_pointer data_offset
|
|
if (_revertOnOutOfBounds)
|
|
m_context.appendInlineAssembly("{ if gt(data_offset, 0x100000000) { revert(0, 0) } }", {"data_offset"});
|
|
m_context << Instruction::DUP3 << Instruction::ADD;
|
|
// stack: input_end base_offset next_pointer array_head_ptr
|
|
if (_revertOnOutOfBounds)
|
|
m_context.appendInlineAssembly(
|
|
"{ if gt(add(array_head_ptr, 0x20), input_end) { revert(0, 0) } }",
|
|
{"input_end", "base_offset", "next_ptr", "array_head_ptr"}
|
|
);
|
|
// retrieve length
|
|
loadFromMemoryDynamic(IntegerType(256), !_fromMemory, true);
|
|
// stack: input_end base_offset next_pointer array_length data_pointer
|
|
m_context << Instruction::SWAP2;
|
|
// stack: input_end base_offset data_pointer array_length next_pointer
|
|
if (_revertOnOutOfBounds)
|
|
{
|
|
unsigned itemSize = arrayType.isByteArray() ? 1 : arrayType.baseType()->calldataEncodedSize(true);
|
|
m_context.appendInlineAssembly(R"({
|
|
if or(
|
|
gt(array_length, 0x100000000),
|
|
gt(add(data_ptr, mul(array_length, )" + to_string(itemSize) + R"()), input_end)
|
|
) { revert(0, 0) }
|
|
})", {"input_end", "base_offset", "data_ptr", "array_length", "next_ptr"});
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// size has already been checked
|
|
// stack: input_end base_offset data_offset
|
|
m_context << Instruction::DUP1;
|
|
m_context << u256(calldataType->calldataEncodedSize()) << Instruction::ADD;
|
|
}
|
|
if (arrayType.location() == DataLocation::Memory)
|
|
{
|
|
// stack: input_end base_offset calldata_ref [length] next_calldata
|
|
// copy to memory
|
|
// move calldata type up again
|
|
moveIntoStack(calldataType->sizeOnStack());
|
|
convertType(*calldataType, arrayType, false, false, true);
|
|
// fetch next pointer again
|
|
moveToStackTop(arrayType.sizeOnStack());
|
|
}
|
|
// move input_end up
|
|
// stack: input_end base_offset calldata_ref [length] next_calldata
|
|
moveToStackTop(2 + arrayType.sizeOnStack());
|
|
m_context << Instruction::SWAP1;
|
|
// stack: base_offset calldata_ref [length] input_end next_calldata
|
|
moveToStackTop(2 + arrayType.sizeOnStack());
|
|
m_context << Instruction::SWAP1;
|
|
// stack: calldata_ref [length] input_end base_offset next_calldata
|
|
}
|
|
}
|
|
else
|
|
{
|
|
solAssert(!type->isDynamicallyEncoded(), "Unknown dynamically sized type: " + type->toString());
|
|
loadFromMemoryDynamic(*type, !_fromMemory, true);
|
|
// stack: v1 v2 ... v(k-1) input_end base_offset v(k) mem_offset
|
|
moveToStackTop(1, type->sizeOnStack());
|
|
moveIntoStack(3, type->sizeOnStack());
|
|
}
|
|
// stack: v1 v2 ... v(k-1) v(k) input_end base_offset next_offset
|
|
}
|
|
popStackSlots(3);
|
|
}
|
|
|
|
void CompilerUtils::encodeToMemory(
|
|
TypePointers const& _givenTypes,
|
|
TypePointers const& _targetTypes,
|
|
bool _padToWordBoundaries,
|
|
bool _copyDynamicDataInPlace,
|
|
bool _encodeAsLibraryTypes
|
|
)
|
|
{
|
|
// stack: <v1> <v2> ... <vn> <mem>
|
|
TypePointers targetTypes = _targetTypes.empty() ? _givenTypes : _targetTypes;
|
|
solAssert(targetTypes.size() == _givenTypes.size(), "");
|
|
for (TypePointer& t: targetTypes)
|
|
{
|
|
solUnimplementedAssert(
|
|
t->mobileType() &&
|
|
t->mobileType()->interfaceType(_encodeAsLibraryTypes) &&
|
|
t->mobileType()->interfaceType(_encodeAsLibraryTypes)->encodingType(),
|
|
"Encoding type \"" + t->toString() + "\" not yet implemented."
|
|
);
|
|
t = t->mobileType()->interfaceType(_encodeAsLibraryTypes)->encodingType();
|
|
}
|
|
|
|
if (_givenTypes.empty())
|
|
return;
|
|
else if (
|
|
_padToWordBoundaries &&
|
|
!_copyDynamicDataInPlace &&
|
|
m_context.experimentalFeatureActive(ExperimentalFeature::ABIEncoderV2)
|
|
)
|
|
{
|
|
// Use the new JULIA-based encoding function
|
|
auto stackHeightBefore = m_context.stackHeight();
|
|
abiEncodeV2(_givenTypes, targetTypes, _encodeAsLibraryTypes);
|
|
solAssert(stackHeightBefore - m_context.stackHeight() == sizeOnStack(_givenTypes), "");
|
|
return;
|
|
}
|
|
|
|
// Stack during operation:
|
|
// <v1> <v2> ... <vn> <mem_start> <dyn_head_1> ... <dyn_head_r> <end_of_mem>
|
|
// The values dyn_head_i are added during the first loop and they point to the head part
|
|
// of the ith dynamic parameter, which is filled once the dynamic parts are processed.
|
|
|
|
// store memory start pointer
|
|
m_context << Instruction::DUP1;
|
|
|
|
unsigned argSize = CompilerUtils::sizeOnStack(_givenTypes);
|
|
unsigned stackPos = 0; // advances through the argument values
|
|
unsigned dynPointers = 0; // number of dynamic head pointers on the stack
|
|
for (size_t i = 0; i < _givenTypes.size(); ++i)
|
|
{
|
|
TypePointer targetType = targetTypes[i];
|
|
solAssert(!!targetType, "Externalable type expected.");
|
|
if (targetType->isDynamicallySized() && !_copyDynamicDataInPlace)
|
|
{
|
|
// leave end_of_mem as dyn head pointer
|
|
m_context << Instruction::DUP1 << u256(32) << Instruction::ADD;
|
|
dynPointers++;
|
|
solAssert((argSize + dynPointers) < 16, "Stack too deep, try using fewer variables.");
|
|
}
|
|
else
|
|
{
|
|
copyToStackTop(argSize - stackPos + dynPointers + 2, _givenTypes[i]->sizeOnStack());
|
|
solAssert(!!targetType, "Externalable type expected.");
|
|
TypePointer type = targetType;
|
|
if (_givenTypes[i]->dataStoredIn(DataLocation::Storage) && targetType->isValueType())
|
|
{
|
|
// special case: convert storage reference type to value type - this is only
|
|
// possible for library calls where we just forward the storage reference
|
|
solAssert(_encodeAsLibraryTypes, "");
|
|
solAssert(_givenTypes[i]->sizeOnStack() == 1, "");
|
|
}
|
|
else if (
|
|
_givenTypes[i]->dataStoredIn(DataLocation::Storage) ||
|
|
_givenTypes[i]->dataStoredIn(DataLocation::CallData) ||
|
|
_givenTypes[i]->category() == Type::Category::StringLiteral ||
|
|
_givenTypes[i]->category() == Type::Category::Function
|
|
)
|
|
type = _givenTypes[i]; // delay conversion
|
|
else
|
|
convertType(*_givenTypes[i], *targetType, true);
|
|
if (auto arrayType = dynamic_cast<ArrayType const*>(type.get()))
|
|
ArrayUtils(m_context).copyArrayToMemory(*arrayType, _padToWordBoundaries);
|
|
else
|
|
storeInMemoryDynamic(*type, _padToWordBoundaries);
|
|
}
|
|
stackPos += _givenTypes[i]->sizeOnStack();
|
|
}
|
|
|
|
// now copy the dynamic part
|
|
// Stack: <v1> <v2> ... <vn> <mem_start> <dyn_head_1> ... <dyn_head_r> <end_of_mem>
|
|
stackPos = 0;
|
|
unsigned thisDynPointer = 0;
|
|
for (size_t i = 0; i < _givenTypes.size(); ++i)
|
|
{
|
|
TypePointer targetType = targetTypes[i];
|
|
solAssert(!!targetType, "Externalable type expected.");
|
|
if (targetType->isDynamicallySized() && !_copyDynamicDataInPlace)
|
|
{
|
|
// copy tail pointer (=mem_end - mem_start) to memory
|
|
m_context << dupInstruction(2 + dynPointers) << Instruction::DUP2;
|
|
m_context << Instruction::SUB;
|
|
m_context << dupInstruction(2 + dynPointers - thisDynPointer);
|
|
m_context << Instruction::MSTORE;
|
|
// stack: ... <end_of_mem>
|
|
if (_givenTypes[i]->category() == Type::Category::StringLiteral)
|
|
{
|
|
auto const& strType = dynamic_cast<StringLiteralType const&>(*_givenTypes[i]);
|
|
m_context << u256(strType.value().size());
|
|
storeInMemoryDynamic(IntegerType(256), true);
|
|
// stack: ... <end_of_mem'>
|
|
storeInMemoryDynamic(strType, _padToWordBoundaries);
|
|
}
|
|
else
|
|
{
|
|
solAssert(_givenTypes[i]->category() == Type::Category::Array, "Unknown dynamic type.");
|
|
auto const& arrayType = dynamic_cast<ArrayType const&>(*_givenTypes[i]);
|
|
// now copy the array
|
|
copyToStackTop(argSize - stackPos + dynPointers + 2, arrayType.sizeOnStack());
|
|
// stack: ... <end_of_mem> <value...>
|
|
// copy length to memory
|
|
m_context << dupInstruction(1 + arrayType.sizeOnStack());
|
|
ArrayUtils(m_context).retrieveLength(arrayType, 1);
|
|
// stack: ... <end_of_mem> <value...> <end_of_mem'> <length>
|
|
storeInMemoryDynamic(IntegerType(256), true);
|
|
// stack: ... <end_of_mem> <value...> <end_of_mem''>
|
|
// copy the new memory pointer
|
|
m_context << swapInstruction(arrayType.sizeOnStack() + 1) << Instruction::POP;
|
|
// stack: ... <end_of_mem''> <value...>
|
|
// copy data part
|
|
ArrayUtils(m_context).copyArrayToMemory(arrayType, _padToWordBoundaries);
|
|
// stack: ... <end_of_mem'''>
|
|
}
|
|
|
|
thisDynPointer++;
|
|
}
|
|
stackPos += _givenTypes[i]->sizeOnStack();
|
|
}
|
|
|
|
// remove unneeded stack elements (and retain memory pointer)
|
|
m_context << swapInstruction(argSize + dynPointers + 1);
|
|
popStackSlots(argSize + dynPointers + 1);
|
|
}
|
|
|
|
void CompilerUtils::abiEncodeV2(
|
|
TypePointers const& _givenTypes,
|
|
TypePointers const& _targetTypes,
|
|
bool _encodeAsLibraryTypes
|
|
)
|
|
{
|
|
// stack: <$value0> <$value1> ... <$value(n-1)> <$headStart>
|
|
|
|
auto ret = m_context.pushNewTag();
|
|
moveIntoStack(sizeOnStack(_givenTypes) + 1);
|
|
|
|
string encoderName = m_context.abiFunctions().tupleEncoder(_givenTypes, _targetTypes, _encodeAsLibraryTypes);
|
|
m_context.appendJumpTo(m_context.namedTag(encoderName));
|
|
m_context.adjustStackOffset(-int(sizeOnStack(_givenTypes)) - 1);
|
|
m_context << ret.tag();
|
|
}
|
|
|
|
void CompilerUtils::abiDecodeV2(TypePointers const& _parameterTypes, bool _fromMemory)
|
|
{
|
|
// stack: <source_offset> <length> [stack top]
|
|
auto ret = m_context.pushNewTag();
|
|
moveIntoStack(2);
|
|
// stack: <return tag> <source_offset> <length> [stack top]
|
|
m_context << Instruction::DUP2 << Instruction::ADD;
|
|
m_context << Instruction::SWAP1;
|
|
// stack: <return tag> <end> <start>
|
|
string decoderName = m_context.abiFunctions().tupleDecoder(_parameterTypes, _fromMemory);
|
|
m_context.appendJumpTo(m_context.namedTag(decoderName));
|
|
m_context.adjustStackOffset(int(sizeOnStack(_parameterTypes)) - 3);
|
|
m_context << ret.tag();
|
|
}
|
|
|
|
void CompilerUtils::zeroInitialiseMemoryArray(ArrayType const& _type)
|
|
{
|
|
if (_type.baseType()->hasSimpleZeroValueInMemory())
|
|
{
|
|
solAssert(_type.baseType()->isValueType(), "");
|
|
Whiskers templ(R"({
|
|
let size := mul(length, <element_size>)
|
|
// cheap way of zero-initializing a memory range
|
|
codecopy(memptr, codesize(), size)
|
|
memptr := add(memptr, size)
|
|
})");
|
|
templ("element_size", to_string(_type.baseType()->memoryHeadSize()));
|
|
m_context.appendInlineAssembly(templ.render(), {"length", "memptr"});
|
|
}
|
|
else
|
|
{
|
|
// TODO: Potential optimization:
|
|
// When we create a new multi-dimensional dynamic array, each element
|
|
// is initialized to an empty array. It actually does not hurt
|
|
// to re-use exactly the same empty array for all elements. Currently,
|
|
// a new one is created each time.
|
|
auto repeat = m_context.newTag();
|
|
m_context << repeat;
|
|
pushZeroValue(*_type.baseType());
|
|
storeInMemoryDynamic(*_type.baseType());
|
|
m_context << Instruction::SWAP1 << u256(1) << Instruction::SWAP1;
|
|
m_context << Instruction::SUB << Instruction::SWAP1;
|
|
m_context << Instruction::DUP2;
|
|
m_context.appendConditionalJumpTo(repeat);
|
|
}
|
|
m_context << Instruction::SWAP1 << Instruction::POP;
|
|
}
|
|
|
|
void CompilerUtils::memoryCopy32()
|
|
{
|
|
// Stack here: size target source
|
|
|
|
m_context.appendInlineAssembly(R"(
|
|
{
|
|
for { let i := 0 } lt(i, len) { i := add(i, 32) } {
|
|
mstore(add(dst, i), mload(add(src, i)))
|
|
}
|
|
}
|
|
)",
|
|
{ "len", "dst", "src" }
|
|
);
|
|
m_context << Instruction::POP << Instruction::POP << Instruction::POP;
|
|
}
|
|
|
|
void CompilerUtils::memoryCopy()
|
|
{
|
|
// Stack here: size target source
|
|
|
|
m_context.appendInlineAssembly(R"(
|
|
{
|
|
// copy 32 bytes at once
|
|
for
|
|
{}
|
|
iszero(lt(len, 32))
|
|
{
|
|
dst := add(dst, 32)
|
|
src := add(src, 32)
|
|
len := sub(len, 32)
|
|
}
|
|
{ mstore(dst, mload(src)) }
|
|
|
|
// copy the remainder (0 < len < 32)
|
|
let mask := sub(exp(256, sub(32, len)), 1)
|
|
let srcpart := and(mload(src), not(mask))
|
|
let dstpart := and(mload(dst), mask)
|
|
mstore(dst, or(srcpart, dstpart))
|
|
}
|
|
)",
|
|
{ "len", "dst", "src" }
|
|
);
|
|
m_context << Instruction::POP << Instruction::POP << Instruction::POP;
|
|
}
|
|
|
|
void CompilerUtils::splitExternalFunctionType(bool _leftAligned)
|
|
{
|
|
// We have to split the left-aligned <address><function identifier> into two stack slots:
|
|
// address (right aligned), function identifier (right aligned)
|
|
if (_leftAligned)
|
|
{
|
|
m_context << Instruction::DUP1;
|
|
rightShiftNumberOnStack(64 + 32);
|
|
// <input> <address>
|
|
m_context << Instruction::SWAP1;
|
|
rightShiftNumberOnStack(64);
|
|
}
|
|
else
|
|
{
|
|
m_context << Instruction::DUP1;
|
|
rightShiftNumberOnStack(32);
|
|
m_context << ((u256(1) << 160) - 1) << Instruction::AND << Instruction::SWAP1;
|
|
}
|
|
m_context << u256(0xffffffffUL) << Instruction::AND;
|
|
}
|
|
|
|
void CompilerUtils::combineExternalFunctionType(bool _leftAligned)
|
|
{
|
|
// <address> <function_id>
|
|
m_context << u256(0xffffffffUL) << Instruction::AND << Instruction::SWAP1;
|
|
if (!_leftAligned)
|
|
m_context << ((u256(1) << 160) - 1) << Instruction::AND;
|
|
leftShiftNumberOnStack(32);
|
|
m_context << Instruction::OR;
|
|
if (_leftAligned)
|
|
leftShiftNumberOnStack(64);
|
|
}
|
|
|
|
void CompilerUtils::pushCombinedFunctionEntryLabel(Declaration const& _function, bool _runtimeOnly)
|
|
{
|
|
m_context << m_context.functionEntryLabel(_function).pushTag();
|
|
// If there is a runtime context, we have to merge both labels into the same
|
|
// stack slot in case we store it in storage.
|
|
if (CompilerContext* rtc = m_context.runtimeContext())
|
|
{
|
|
leftShiftNumberOnStack(32);
|
|
if (_runtimeOnly)
|
|
m_context <<
|
|
rtc->functionEntryLabel(_function).toSubAssemblyTag(m_context.runtimeSub()) <<
|
|
Instruction::OR;
|
|
}
|
|
}
|
|
|
|
void CompilerUtils::convertType(
|
|
Type const& _typeOnStack,
|
|
Type const& _targetType,
|
|
bool _cleanupNeeded,
|
|
bool _chopSignBits,
|
|
bool _asPartOfArgumentDecoding
|
|
)
|
|
{
|
|
// For a type extension, we need to remove all higher-order bits that we might have ignored in
|
|
// previous operations.
|
|
// @todo: store in the AST whether the operand might have "dirty" higher order bits
|
|
|
|
if (_typeOnStack == _targetType && !_cleanupNeeded)
|
|
return;
|
|
Type::Category stackTypeCategory = _typeOnStack.category();
|
|
Type::Category targetTypeCategory = _targetType.category();
|
|
|
|
bool enumOverflowCheckPending = (targetTypeCategory == Type::Category::Enum || stackTypeCategory == Type::Category::Enum);
|
|
bool chopSignBitsPending = _chopSignBits && targetTypeCategory == Type::Category::Integer;
|
|
if (chopSignBitsPending)
|
|
{
|
|
const IntegerType& targetIntegerType = dynamic_cast<const IntegerType &>(_targetType);
|
|
chopSignBitsPending = targetIntegerType.isSigned();
|
|
}
|
|
|
|
switch (stackTypeCategory)
|
|
{
|
|
case Type::Category::FixedBytes:
|
|
{
|
|
FixedBytesType const& typeOnStack = dynamic_cast<FixedBytesType const&>(_typeOnStack);
|
|
if (targetTypeCategory == Type::Category::Integer)
|
|
{
|
|
// conversion from bytes to integer. no need to clean the high bit
|
|
// only to shift right because of opposite alignment
|
|
IntegerType const& targetIntegerType = dynamic_cast<IntegerType const&>(_targetType);
|
|
rightShiftNumberOnStack(256 - typeOnStack.numBytes() * 8);
|
|
if (targetIntegerType.numBits() < typeOnStack.numBytes() * 8)
|
|
convertType(IntegerType(typeOnStack.numBytes() * 8), _targetType, _cleanupNeeded);
|
|
}
|
|
else
|
|
{
|
|
// clear for conversion to longer bytes
|
|
solAssert(targetTypeCategory == Type::Category::FixedBytes, "Invalid type conversion requested.");
|
|
FixedBytesType const& targetType = dynamic_cast<FixedBytesType const&>(_targetType);
|
|
if (typeOnStack.numBytes() == 0 || targetType.numBytes() == 0)
|
|
m_context << Instruction::POP << u256(0);
|
|
else if (targetType.numBytes() > typeOnStack.numBytes() || _cleanupNeeded)
|
|
{
|
|
unsigned bytes = min(typeOnStack.numBytes(), targetType.numBytes());
|
|
m_context << ((u256(1) << (256 - bytes * 8)) - 1);
|
|
m_context << Instruction::NOT << Instruction::AND;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Type::Category::Enum:
|
|
solAssert(_targetType == _typeOnStack || targetTypeCategory == Type::Category::Integer, "");
|
|
if (enumOverflowCheckPending)
|
|
{
|
|
EnumType const& enumType = dynamic_cast<decltype(enumType)>(_typeOnStack);
|
|
solAssert(enumType.numberOfMembers() > 0, "empty enum should have caused a parser error.");
|
|
m_context << u256(enumType.numberOfMembers() - 1) << Instruction::DUP2 << Instruction::GT;
|
|
if (_asPartOfArgumentDecoding)
|
|
// TODO: error message?
|
|
m_context.appendConditionalRevert();
|
|
else
|
|
m_context.appendConditionalInvalid();
|
|
enumOverflowCheckPending = false;
|
|
}
|
|
break;
|
|
case Type::Category::FixedPoint:
|
|
solUnimplemented("Not yet implemented - FixedPointType.");
|
|
case Type::Category::Integer:
|
|
case Type::Category::Contract:
|
|
case Type::Category::RationalNumber:
|
|
if (targetTypeCategory == Type::Category::FixedBytes)
|
|
{
|
|
solAssert(stackTypeCategory == Type::Category::Integer || stackTypeCategory == Type::Category::RationalNumber,
|
|
"Invalid conversion to FixedBytesType requested.");
|
|
// conversion from bytes to string. no need to clean the high bit
|
|
// only to shift left because of opposite alignment
|
|
FixedBytesType const& targetBytesType = dynamic_cast<FixedBytesType const&>(_targetType);
|
|
if (auto typeOnStack = dynamic_cast<IntegerType const*>(&_typeOnStack))
|
|
if (targetBytesType.numBytes() * 8 > typeOnStack->numBits())
|
|
cleanHigherOrderBits(*typeOnStack);
|
|
leftShiftNumberOnStack(256 - targetBytesType.numBytes() * 8);
|
|
}
|
|
else if (targetTypeCategory == Type::Category::Enum)
|
|
{
|
|
solAssert(_typeOnStack.mobileType(), "");
|
|
// just clean
|
|
convertType(_typeOnStack, *_typeOnStack.mobileType(), true);
|
|
EnumType const& enumType = dynamic_cast<decltype(enumType)>(_targetType);
|
|
solAssert(enumType.numberOfMembers() > 0, "empty enum should have caused a parser error.");
|
|
m_context << u256(enumType.numberOfMembers() - 1) << Instruction::DUP2 << Instruction::GT;
|
|
m_context.appendConditionalInvalid();
|
|
enumOverflowCheckPending = false;
|
|
}
|
|
else if (targetTypeCategory == Type::Category::FixedPoint)
|
|
{
|
|
solAssert(
|
|
stackTypeCategory == Type::Category::Integer ||
|
|
stackTypeCategory == Type::Category::RationalNumber ||
|
|
stackTypeCategory == Type::Category::FixedPoint,
|
|
"Invalid conversion to FixedMxNType requested."
|
|
);
|
|
//shift all integer bits onto the left side of the fixed type
|
|
FixedPointType const& targetFixedPointType = dynamic_cast<FixedPointType const&>(_targetType);
|
|
if (auto typeOnStack = dynamic_cast<IntegerType const*>(&_typeOnStack))
|
|
if (targetFixedPointType.numBits() > typeOnStack->numBits())
|
|
cleanHigherOrderBits(*typeOnStack);
|
|
solUnimplemented("Not yet implemented - FixedPointType.");
|
|
}
|
|
else
|
|
{
|
|
solAssert(targetTypeCategory == Type::Category::Integer || targetTypeCategory == Type::Category::Contract, "");
|
|
IntegerType addressType(160, IntegerType::Modifier::Address);
|
|
IntegerType const& targetType = targetTypeCategory == Type::Category::Integer
|
|
? dynamic_cast<IntegerType const&>(_targetType) : addressType;
|
|
if (stackTypeCategory == Type::Category::RationalNumber)
|
|
{
|
|
RationalNumberType const& constType = dynamic_cast<RationalNumberType const&>(_typeOnStack);
|
|
// We know that the stack is clean, we only have to clean for a narrowing conversion
|
|
// where cleanup is forced.
|
|
solUnimplementedAssert(!constType.isFractional(), "Not yet implemented - FixedPointType.");
|
|
if (targetType.numBits() < constType.integerType()->numBits() && _cleanupNeeded)
|
|
cleanHigherOrderBits(targetType);
|
|
}
|
|
else
|
|
{
|
|
IntegerType const& typeOnStack = stackTypeCategory == Type::Category::Integer
|
|
? dynamic_cast<IntegerType const&>(_typeOnStack) : addressType;
|
|
// Widening: clean up according to source type width
|
|
// Non-widening and force: clean up according to target type bits
|
|
if (targetType.numBits() > typeOnStack.numBits())
|
|
cleanHigherOrderBits(typeOnStack);
|
|
else if (_cleanupNeeded)
|
|
cleanHigherOrderBits(targetType);
|
|
if (chopSignBitsPending)
|
|
{
|
|
if (typeOnStack.numBits() < 256)
|
|
m_context
|
|
<< ((u256(1) << typeOnStack.numBits()) - 1)
|
|
<< Instruction::AND;
|
|
chopSignBitsPending = false;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Type::Category::StringLiteral:
|
|
{
|
|
auto const& literalType = dynamic_cast<StringLiteralType const&>(_typeOnStack);
|
|
string const& value = literalType.value();
|
|
bytesConstRef data(value);
|
|
if (targetTypeCategory == Type::Category::FixedBytes)
|
|
{
|
|
unsigned const numBytes = dynamic_cast<FixedBytesType const&>(_targetType).numBytes();
|
|
solAssert(data.size() <= 32, "");
|
|
m_context << (h256::Arith(h256(data, h256::AlignLeft)) & (~(u256(-1) >> (8 * numBytes))));
|
|
}
|
|
else if (targetTypeCategory == Type::Category::Array)
|
|
{
|
|
auto const& arrayType = dynamic_cast<ArrayType const&>(_targetType);
|
|
solAssert(arrayType.isByteArray(), "");
|
|
u256 storageSize(32 + ((data.size() + 31) / 32) * 32);
|
|
m_context << storageSize;
|
|
allocateMemory();
|
|
// stack: mempos
|
|
m_context << Instruction::DUP1 << u256(data.size());
|
|
storeInMemoryDynamic(IntegerType(256));
|
|
// stack: mempos datapos
|
|
storeStringData(data);
|
|
}
|
|
else
|
|
solAssert(
|
|
false,
|
|
"Invalid conversion from string literal to " + _targetType.toString(false) + " requested."
|
|
);
|
|
break;
|
|
}
|
|
case Type::Category::Array:
|
|
{
|
|
solAssert(targetTypeCategory == stackTypeCategory, "");
|
|
ArrayType const& typeOnStack = dynamic_cast<ArrayType const&>(_typeOnStack);
|
|
ArrayType const& targetType = dynamic_cast<ArrayType const&>(_targetType);
|
|
switch (targetType.location())
|
|
{
|
|
case DataLocation::Storage:
|
|
// Other cases are done explicitly in LValue::storeValue, and only possible by assignment.
|
|
solAssert(
|
|
(targetType.isPointer() || (typeOnStack.isByteArray() && targetType.isByteArray())) &&
|
|
typeOnStack.location() == DataLocation::Storage,
|
|
"Invalid conversion to storage type."
|
|
);
|
|
break;
|
|
case DataLocation::Memory:
|
|
{
|
|
// Copy the array to a free position in memory, unless it is already in memory.
|
|
if (typeOnStack.location() != DataLocation::Memory)
|
|
{
|
|
// stack: <source ref> (variably sized)
|
|
unsigned stackSize = typeOnStack.sizeOnStack();
|
|
ArrayUtils(m_context).retrieveLength(typeOnStack);
|
|
|
|
// allocate memory
|
|
// stack: <source ref> (variably sized) <length>
|
|
m_context << Instruction::DUP1;
|
|
ArrayUtils(m_context).convertLengthToSize(targetType, true);
|
|
// stack: <source ref> (variably sized) <length> <size>
|
|
if (targetType.isDynamicallySized())
|
|
m_context << u256(0x20) << Instruction::ADD;
|
|
allocateMemory();
|
|
// stack: <source ref> (variably sized) <length> <mem start>
|
|
m_context << Instruction::DUP1;
|
|
moveIntoStack(2 + stackSize);
|
|
if (targetType.isDynamicallySized())
|
|
{
|
|
m_context << Instruction::DUP2;
|
|
storeInMemoryDynamic(IntegerType(256));
|
|
}
|
|
// stack: <mem start> <source ref> (variably sized) <length> <mem data pos>
|
|
if (targetType.baseType()->isValueType())
|
|
{
|
|
solAssert(typeOnStack.baseType()->isValueType(), "");
|
|
copyToStackTop(2 + stackSize, stackSize);
|
|
ArrayUtils(m_context).copyArrayToMemory(typeOnStack);
|
|
}
|
|
else
|
|
{
|
|
m_context << u256(0) << Instruction::SWAP1;
|
|
// stack: <mem start> <source ref> (variably sized) <length> <counter> <mem data pos>
|
|
auto repeat = m_context.newTag();
|
|
m_context << repeat;
|
|
m_context << Instruction::DUP3 << Instruction::DUP3;
|
|
m_context << Instruction::LT << Instruction::ISZERO;
|
|
auto loopEnd = m_context.appendConditionalJump();
|
|
copyToStackTop(3 + stackSize, stackSize);
|
|
copyToStackTop(2 + stackSize, 1);
|
|
ArrayUtils(m_context).accessIndex(typeOnStack, false);
|
|
if (typeOnStack.location() == DataLocation::Storage)
|
|
StorageItem(m_context, *typeOnStack.baseType()).retrieveValue(SourceLocation(), true);
|
|
convertType(*typeOnStack.baseType(), *targetType.baseType(), _cleanupNeeded);
|
|
storeInMemoryDynamic(*targetType.baseType(), true);
|
|
m_context << Instruction::SWAP1 << u256(1) << Instruction::ADD;
|
|
m_context << Instruction::SWAP1;
|
|
m_context.appendJumpTo(repeat);
|
|
m_context << loopEnd;
|
|
m_context << Instruction::POP;
|
|
}
|
|
// stack: <mem start> <source ref> (variably sized) <length> <mem data pos updated>
|
|
popStackSlots(2 + stackSize);
|
|
// Stack: <mem start>
|
|
}
|
|
break;
|
|
}
|
|
case DataLocation::CallData:
|
|
solAssert(
|
|
targetType.isByteArray() &&
|
|
typeOnStack.isByteArray() &&
|
|
typeOnStack.location() == DataLocation::CallData,
|
|
"Invalid conversion to calldata type.");
|
|
break;
|
|
default:
|
|
solAssert(
|
|
false,
|
|
"Invalid type conversion " +
|
|
_typeOnStack.toString(false) +
|
|
" to " +
|
|
_targetType.toString(false) +
|
|
" requested."
|
|
);
|
|
}
|
|
break;
|
|
}
|
|
case Type::Category::Struct:
|
|
{
|
|
solAssert(targetTypeCategory == stackTypeCategory, "");
|
|
auto& targetType = dynamic_cast<StructType const&>(_targetType);
|
|
auto& typeOnStack = dynamic_cast<StructType const&>(_typeOnStack);
|
|
solAssert(
|
|
targetType.location() != DataLocation::CallData &&
|
|
typeOnStack.location() != DataLocation::CallData
|
|
, "");
|
|
switch (targetType.location())
|
|
{
|
|
case DataLocation::Storage:
|
|
// Other cases are done explicitly in LValue::storeValue, and only possible by assignment.
|
|
solAssert(
|
|
targetType.isPointer() &&
|
|
typeOnStack.location() == DataLocation::Storage,
|
|
"Invalid conversion to storage type."
|
|
);
|
|
break;
|
|
case DataLocation::Memory:
|
|
// Copy the array to a free position in memory, unless it is already in memory.
|
|
if (typeOnStack.location() != DataLocation::Memory)
|
|
{
|
|
solAssert(typeOnStack.location() == DataLocation::Storage, "");
|
|
// stack: <source ref>
|
|
m_context << typeOnStack.memorySize();
|
|
allocateMemory();
|
|
m_context << Instruction::SWAP1 << Instruction::DUP2;
|
|
// stack: <memory ptr> <source ref> <memory ptr>
|
|
for (auto const& member: typeOnStack.members(nullptr))
|
|
{
|
|
if (!member.type->canLiveOutsideStorage())
|
|
continue;
|
|
pair<u256, unsigned> const& offsets = typeOnStack.storageOffsetsOfMember(member.name);
|
|
m_context << offsets.first << Instruction::DUP3 << Instruction::ADD;
|
|
m_context << u256(offsets.second);
|
|
StorageItem(m_context, *member.type).retrieveValue(SourceLocation(), true);
|
|
TypePointer targetMemberType = targetType.memberType(member.name);
|
|
solAssert(!!targetMemberType, "Member not found in target type.");
|
|
convertType(*member.type, *targetMemberType, true);
|
|
storeInMemoryDynamic(*targetMemberType, true);
|
|
}
|
|
m_context << Instruction::POP << Instruction::POP;
|
|
}
|
|
break;
|
|
case DataLocation::CallData:
|
|
solAssert(false, "Invalid type conversion target location CallData.");
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case Type::Category::Tuple:
|
|
{
|
|
TupleType const& sourceTuple = dynamic_cast<TupleType const&>(_typeOnStack);
|
|
TupleType const& targetTuple = dynamic_cast<TupleType const&>(_targetType);
|
|
// fillRight: remove excess values at right side, !fillRight: remove eccess values at left side
|
|
bool fillRight = !targetTuple.components().empty() && (
|
|
!targetTuple.components().back() ||
|
|
targetTuple.components().front()
|
|
);
|
|
unsigned depth = sourceTuple.sizeOnStack();
|
|
for (size_t i = 0; i < sourceTuple.components().size(); ++i)
|
|
{
|
|
TypePointer sourceType = sourceTuple.components()[i];
|
|
TypePointer targetType;
|
|
if (fillRight && i < targetTuple.components().size())
|
|
targetType = targetTuple.components()[i];
|
|
else if (!fillRight && targetTuple.components().size() + i >= sourceTuple.components().size())
|
|
targetType = targetTuple.components()[targetTuple.components().size() - (sourceTuple.components().size() - i)];
|
|
if (!sourceType)
|
|
{
|
|
solAssert(!targetType, "");
|
|
continue;
|
|
}
|
|
unsigned sourceSize = sourceType->sizeOnStack();
|
|
unsigned targetSize = targetType ? targetType->sizeOnStack() : 0;
|
|
if (!targetType || *sourceType != *targetType || _cleanupNeeded)
|
|
{
|
|
if (targetType)
|
|
{
|
|
if (sourceSize > 0)
|
|
copyToStackTop(depth, sourceSize);
|
|
convertType(*sourceType, *targetType, _cleanupNeeded);
|
|
}
|
|
if (sourceSize > 0 || targetSize > 0)
|
|
{
|
|
// Move it back into its place.
|
|
for (unsigned j = 0; j < min(sourceSize, targetSize); ++j)
|
|
m_context <<
|
|
swapInstruction(depth + targetSize - sourceSize) <<
|
|
Instruction::POP;
|
|
// Value shrank
|
|
for (unsigned j = targetSize; j < sourceSize; ++j)
|
|
{
|
|
moveToStackTop(depth - 1, 1);
|
|
m_context << Instruction::POP;
|
|
}
|
|
// Value grew
|
|
if (targetSize > sourceSize)
|
|
moveIntoStack(depth + targetSize - sourceSize - 1, targetSize - sourceSize);
|
|
}
|
|
}
|
|
depth -= sourceSize;
|
|
}
|
|
break;
|
|
}
|
|
case Type::Category::Bool:
|
|
solAssert(_targetType == _typeOnStack, "Invalid conversion for bool.");
|
|
if (_cleanupNeeded)
|
|
m_context << Instruction::ISZERO << Instruction::ISZERO;
|
|
break;
|
|
default:
|
|
if (stackTypeCategory == Type::Category::Function && targetTypeCategory == Type::Category::Integer)
|
|
{
|
|
IntegerType const& targetType = dynamic_cast<IntegerType const&>(_targetType);
|
|
solAssert(targetType.isAddress(), "Function type can only be converted to address.");
|
|
FunctionType const& typeOnStack = dynamic_cast<FunctionType const&>(_typeOnStack);
|
|
solAssert(typeOnStack.kind() == FunctionType::Kind::External, "Only external function type can be converted.");
|
|
|
|
// stack: <address> <function_id>
|
|
m_context << Instruction::POP;
|
|
}
|
|
else
|
|
{
|
|
// All other types should not be convertible to non-equal types.
|
|
solAssert(_typeOnStack == _targetType, "Invalid type conversion requested.");
|
|
if (_cleanupNeeded && _targetType.canBeStored() && _targetType.storageBytes() < 32)
|
|
m_context
|
|
<< ((u256(1) << (8 * _targetType.storageBytes())) - 1)
|
|
<< Instruction::AND;
|
|
}
|
|
break;
|
|
}
|
|
|
|
solAssert(!enumOverflowCheckPending, "enum overflow checking missing.");
|
|
solAssert(!chopSignBitsPending, "forgot to chop the sign bits.");
|
|
}
|
|
|
|
void CompilerUtils::pushZeroValue(Type const& _type)
|
|
{
|
|
if (auto const* funType = dynamic_cast<FunctionType const*>(&_type))
|
|
{
|
|
if (funType->kind() == FunctionType::Kind::Internal)
|
|
{
|
|
m_context << m_context.lowLevelFunctionTag("$invalidFunction", 0, 0, [](CompilerContext& _context) {
|
|
_context.appendInvalid();
|
|
});
|
|
return;
|
|
}
|
|
}
|
|
auto const* referenceType = dynamic_cast<ReferenceType const*>(&_type);
|
|
if (!referenceType || referenceType->location() == DataLocation::Storage)
|
|
{
|
|
for (size_t i = 0; i < _type.sizeOnStack(); ++i)
|
|
m_context << u256(0);
|
|
return;
|
|
}
|
|
solAssert(referenceType->location() == DataLocation::Memory, "");
|
|
if (auto arrayType = dynamic_cast<ArrayType const*>(&_type))
|
|
if (arrayType->isDynamicallySized())
|
|
{
|
|
// Push a memory location that is (hopefully) always zero.
|
|
pushZeroPointer();
|
|
return;
|
|
}
|
|
|
|
TypePointer type = _type.shared_from_this();
|
|
m_context.callLowLevelFunction(
|
|
"$pushZeroValue_" + referenceType->identifier(),
|
|
0,
|
|
1,
|
|
[type](CompilerContext& _context) {
|
|
CompilerUtils utils(_context);
|
|
_context << u256(max(32u, type->calldataEncodedSize()));
|
|
utils.allocateMemory();
|
|
_context << Instruction::DUP1;
|
|
|
|
if (auto structType = dynamic_cast<StructType const*>(type.get()))
|
|
for (auto const& member: structType->members(nullptr))
|
|
{
|
|
utils.pushZeroValue(*member.type);
|
|
utils.storeInMemoryDynamic(*member.type);
|
|
}
|
|
else if (auto arrayType = dynamic_cast<ArrayType const*>(type.get()))
|
|
{
|
|
solAssert(!arrayType->isDynamicallySized(), "");
|
|
if (arrayType->length() > 0)
|
|
{
|
|
_context << arrayType->length() << Instruction::SWAP1;
|
|
// stack: items_to_do memory_pos
|
|
utils.zeroInitialiseMemoryArray(*arrayType);
|
|
// stack: updated_memory_pos
|
|
}
|
|
}
|
|
else
|
|
solAssert(false, "Requested initialisation for unknown type: " + type->toString());
|
|
|
|
// remove the updated memory pointer
|
|
_context << Instruction::POP;
|
|
}
|
|
);
|
|
}
|
|
|
|
void CompilerUtils::pushZeroPointer()
|
|
{
|
|
m_context << u256(zeroPointer);
|
|
}
|
|
|
|
void CompilerUtils::moveToStackVariable(VariableDeclaration const& _variable)
|
|
{
|
|
unsigned const stackPosition = m_context.baseToCurrentStackOffset(m_context.baseStackOffsetOfVariable(_variable));
|
|
unsigned const size = _variable.annotation().type->sizeOnStack();
|
|
solAssert(stackPosition >= size, "Variable size and position mismatch.");
|
|
// move variable starting from its top end in the stack
|
|
if (stackPosition - size + 1 > 16)
|
|
BOOST_THROW_EXCEPTION(
|
|
CompilerError() <<
|
|
errinfo_sourceLocation(_variable.location()) <<
|
|
errinfo_comment("Stack too deep, try removing local variables.")
|
|
);
|
|
for (unsigned i = 0; i < size; ++i)
|
|
m_context << swapInstruction(stackPosition - size + 1) << Instruction::POP;
|
|
}
|
|
|
|
void CompilerUtils::copyToStackTop(unsigned _stackDepth, unsigned _itemSize)
|
|
{
|
|
solAssert(_stackDepth <= 16, "Stack too deep, try removing local variables.");
|
|
for (unsigned i = 0; i < _itemSize; ++i)
|
|
m_context << dupInstruction(_stackDepth);
|
|
}
|
|
|
|
void CompilerUtils::moveToStackTop(unsigned _stackDepth, unsigned _itemSize)
|
|
{
|
|
moveIntoStack(_itemSize, _stackDepth);
|
|
}
|
|
|
|
void CompilerUtils::moveIntoStack(unsigned _stackDepth, unsigned _itemSize)
|
|
{
|
|
if (_stackDepth <= _itemSize)
|
|
for (unsigned i = 0; i < _stackDepth; ++i)
|
|
rotateStackDown(_stackDepth + _itemSize);
|
|
else
|
|
for (unsigned i = 0; i < _itemSize; ++i)
|
|
rotateStackUp(_stackDepth + _itemSize);
|
|
}
|
|
|
|
void CompilerUtils::rotateStackUp(unsigned _items)
|
|
{
|
|
solAssert(_items - 1 <= 16, "Stack too deep, try removing local variables.");
|
|
for (unsigned i = 1; i < _items; ++i)
|
|
m_context << swapInstruction(_items - i);
|
|
}
|
|
|
|
void CompilerUtils::rotateStackDown(unsigned _items)
|
|
{
|
|
solAssert(_items - 1 <= 16, "Stack too deep, try removing local variables.");
|
|
for (unsigned i = 1; i < _items; ++i)
|
|
m_context << swapInstruction(i);
|
|
}
|
|
|
|
void CompilerUtils::popStackElement(Type const& _type)
|
|
{
|
|
popStackSlots(_type.sizeOnStack());
|
|
}
|
|
|
|
void CompilerUtils::popStackSlots(size_t _amount)
|
|
{
|
|
for (size_t i = 0; i < _amount; ++i)
|
|
m_context << Instruction::POP;
|
|
}
|
|
|
|
unsigned CompilerUtils::sizeOnStack(vector<shared_ptr<Type const>> const& _variableTypes)
|
|
{
|
|
unsigned size = 0;
|
|
for (shared_ptr<Type const> const& type: _variableTypes)
|
|
size += type->sizeOnStack();
|
|
return size;
|
|
}
|
|
|
|
void CompilerUtils::computeHashStatic()
|
|
{
|
|
storeInMemory(0);
|
|
m_context << u256(32) << u256(0) << Instruction::KECCAK256;
|
|
}
|
|
|
|
void CompilerUtils::storeStringData(bytesConstRef _data)
|
|
{
|
|
//@todo provide both alternatives to the optimiser
|
|
// stack: mempos
|
|
if (_data.size() <= 128)
|
|
{
|
|
for (unsigned i = 0; i < _data.size(); i += 32)
|
|
{
|
|
m_context << h256::Arith(h256(_data.cropped(i), h256::AlignLeft));
|
|
storeInMemoryDynamic(IntegerType(256));
|
|
}
|
|
m_context << Instruction::POP;
|
|
}
|
|
else
|
|
{
|
|
// stack: mempos mempos_data
|
|
m_context.appendData(_data.toBytes());
|
|
m_context << u256(_data.size()) << Instruction::SWAP2;
|
|
m_context << Instruction::CODECOPY;
|
|
}
|
|
}
|
|
|
|
unsigned CompilerUtils::loadFromMemoryHelper(Type const& _type, bool _fromCalldata, bool _padToWords)
|
|
{
|
|
unsigned numBytes = _type.calldataEncodedSize(_padToWords);
|
|
bool isExternalFunctionType = false;
|
|
if (auto const* funType = dynamic_cast<FunctionType const*>(&_type))
|
|
if (funType->kind() == FunctionType::Kind::External)
|
|
isExternalFunctionType = true;
|
|
if (numBytes == 0)
|
|
{
|
|
m_context << Instruction::POP << u256(0);
|
|
return numBytes;
|
|
}
|
|
solAssert(numBytes <= 32, "Static memory load of more than 32 bytes requested.");
|
|
m_context << (_fromCalldata ? Instruction::CALLDATALOAD : Instruction::MLOAD);
|
|
if (isExternalFunctionType)
|
|
splitExternalFunctionType(true);
|
|
else if (numBytes != 32)
|
|
{
|
|
bool leftAligned = _type.category() == Type::Category::FixedBytes;
|
|
// add leading or trailing zeros by dividing/multiplying depending on alignment
|
|
int shiftFactor = (32 - numBytes) * 8;
|
|
rightShiftNumberOnStack(shiftFactor);
|
|
if (leftAligned)
|
|
leftShiftNumberOnStack(shiftFactor);
|
|
}
|
|
if (_fromCalldata)
|
|
convertType(_type, _type, true, false, true);
|
|
|
|
return numBytes;
|
|
}
|
|
|
|
void CompilerUtils::cleanHigherOrderBits(IntegerType const& _typeOnStack)
|
|
{
|
|
if (_typeOnStack.numBits() == 256)
|
|
return;
|
|
else if (_typeOnStack.isSigned())
|
|
m_context << u256(_typeOnStack.numBits() / 8 - 1) << Instruction::SIGNEXTEND;
|
|
else
|
|
m_context << ((u256(1) << _typeOnStack.numBits()) - 1) << Instruction::AND;
|
|
}
|
|
|
|
void CompilerUtils::leftShiftNumberOnStack(unsigned _bits)
|
|
{
|
|
solAssert(_bits < 256, "");
|
|
if (m_context.evmVersion().hasBitwiseShifting())
|
|
m_context << _bits << Instruction::SHL;
|
|
else
|
|
m_context << (u256(1) << _bits) << Instruction::MUL;
|
|
}
|
|
|
|
void CompilerUtils::rightShiftNumberOnStack(unsigned _bits)
|
|
{
|
|
solAssert(_bits < 256, "");
|
|
// NOTE: If we add signed right shift, SAR rounds differently than SDIV
|
|
if (m_context.evmVersion().hasBitwiseShifting())
|
|
m_context << _bits << Instruction::SHR;
|
|
else
|
|
m_context << (u256(1) << _bits) << Instruction::SWAP1 << Instruction::DIV;
|
|
}
|
|
|
|
unsigned CompilerUtils::prepareMemoryStore(Type const& _type, bool _padToWords)
|
|
{
|
|
unsigned numBytes = _type.calldataEncodedSize(_padToWords);
|
|
bool leftAligned = _type.category() == Type::Category::FixedBytes;
|
|
if (numBytes == 0)
|
|
m_context << Instruction::POP;
|
|
else
|
|
{
|
|
solAssert(numBytes <= 32, "Memory store of more than 32 bytes requested.");
|
|
convertType(_type, _type, true);
|
|
if (numBytes != 32 && !leftAligned && !_padToWords)
|
|
// shift the value accordingly before storing
|
|
leftShiftNumberOnStack((32 - numBytes) * 8);
|
|
}
|
|
return numBytes;
|
|
}
|
|
|
|
}
|
|
}
|