mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
78ca2801d8
Fix tab Update docs/types.rst Co-Authored-By: ChrisChinchilla <chriswhward@gmail.com> Update docs/types.rst Co-Authored-By: ChrisChinchilla <chriswhward@gmail.com>
270 lines
11 KiB
ReStructuredText
270 lines
11 KiB
ReStructuredText
###########################
|
||
Frequently Asked Questions
|
||
###########################
|
||
|
||
This list was originally compiled by `fivedogit <mailto:fivedogit@gmail.com>`_.
|
||
|
||
|
||
***************
|
||
Basic Questions
|
||
***************
|
||
|
||
What is the transaction "payload"?
|
||
==================================
|
||
|
||
This is just the bytecode "data" sent along with the request.
|
||
|
||
|
||
Create a contract that can be killed and return funds
|
||
=====================================================
|
||
|
||
First, a word of warning: Killing contracts sounds like a good idea, because "cleaning up"
|
||
is always good, but as seen above, it does not really clean up. Furthermore,
|
||
if Ether is sent to removed contracts, the Ether will be forever lost.
|
||
|
||
If you want to deactivate your contracts, it is preferable to **disable** them by changing some
|
||
internal state which causes all functions to throw. This will make it impossible
|
||
to use the contract and ether sent to the contract will be returned automatically.
|
||
|
||
Now to answering the question: Inside a constructor, ``msg.sender`` is the
|
||
creator. Save it. Then ``selfdestruct(creator);`` to kill and return funds.
|
||
|
||
`example <https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/05_greeter.sol>`_
|
||
|
||
Note that if you ``import "mortal"`` at the top of your contracts and declare
|
||
``contract SomeContract is mortal { ...`` and compile with a compiler that already
|
||
has it (which includes `Remix <https://remix.ethereum.org/>`_), then
|
||
``kill()`` is taken care of for you. Once a contract is "mortal", then you can
|
||
``contractname.kill.sendTransaction({from:eth.coinbase})``, just the same as my
|
||
examples.
|
||
|
||
If I return an ``enum``, I only get integer values in web3.js. How to get the named values?
|
||
===========================================================================================
|
||
|
||
Enums are not supported by the ABI, they are just supported by Solidity.
|
||
You have to do the mapping yourself for now, we might provide some help
|
||
later.
|
||
|
||
Can state variables be initialized in-line?
|
||
===========================================
|
||
|
||
Yes, this is possible for all types (even for structs). However, for arrays it
|
||
should be noted that you must declare them as static memory arrays.
|
||
|
||
Examples::
|
||
|
||
pragma solidity >=0.4.0 <0.6.0;
|
||
|
||
contract C {
|
||
struct S {
|
||
uint a;
|
||
uint b;
|
||
}
|
||
|
||
S public x = S(1, 2);
|
||
string name = "Ada";
|
||
string[4] adaArr = ["This", "is", "an", "array"];
|
||
}
|
||
|
||
contract D {
|
||
C c = new C();
|
||
}
|
||
|
||
How do structs work?
|
||
====================
|
||
|
||
See `struct_and_for_loop_tester.sol <https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/65_struct_and_for_loop_tester.sol>`_.
|
||
|
||
What are some examples of basic string manipulation (``substring``, ``indexOf``, ``charAt``, etc)?
|
||
==================================================================================================
|
||
|
||
There are some string utility functions at `stringUtils.sol <https://github.com/ethereum/dapp-bin/blob/master/library/stringUtils.sol>`_
|
||
which will be extended in the future. In addition, Arachnid has written `solidity-stringutils <https://github.com/Arachnid/solidity-stringutils>`_.
|
||
|
||
For now, if you want to modify a string (even when you only want to know its length),
|
||
you should always convert it to a ``bytes`` first::
|
||
|
||
pragma solidity >=0.4.0 <0.6.0;
|
||
|
||
contract C {
|
||
string s;
|
||
|
||
function append(byte c) public {
|
||
bytes(s).push(c);
|
||
}
|
||
|
||
function set(uint i, byte c) public {
|
||
bytes(s)[i] = c;
|
||
}
|
||
}
|
||
|
||
|
||
Can I concatenate two strings?
|
||
==============================
|
||
|
||
Yes, you can use ``abi.encodePacked``::
|
||
|
||
pragma solidity >=0.4.0 <0.6.0;
|
||
|
||
library ConcatHelper {
|
||
function concat(bytes memory a, bytes memory b)
|
||
internal pure returns (bytes memory) {
|
||
return abi.encodePacked(a, b);
|
||
}
|
||
}
|
||
|
||
|
||
Why is the low-level function ``.call()`` less favorable than instantiating a contract with a variable (``ContractB b;``) and executing its functions (``b.doSomething();``)?
|
||
=============================================================================================================================================================================
|
||
|
||
If you use actual functions, the compiler will tell you if the types
|
||
or your arguments do not match, if the function does not exist
|
||
or is not visible and it will do the packing of the
|
||
arguments for you.
|
||
|
||
See `ping.sol <https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_ping.sol>`_ and
|
||
`pong.sol <https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_pong.sol>`_.
|
||
|
||
Are comments included with deployed contracts and do they increase deployment gas?
|
||
==================================================================================
|
||
|
||
No, everything that is not needed for execution is removed during compilation.
|
||
This includes, among others, comments, variable names and type names.
|
||
|
||
What happens if you send ether along with a function call to a contract?
|
||
========================================================================
|
||
|
||
It gets added to the total balance of the contract, just like when you send ether when creating a contract.
|
||
You can only send ether along to a function that has the ``payable`` modifier,
|
||
otherwise an exception is thrown.
|
||
|
||
******************
|
||
Advanced Questions
|
||
******************
|
||
|
||
How do you get a random number in a contract? (Implement a self-returning gambling contract.)
|
||
=============================================================================================
|
||
|
||
Getting randomness right is often the crucial part in a crypto project and
|
||
most failures result from bad random number generators.
|
||
|
||
If you do not want it to be safe, you build something similar to the `coin flipper <https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/35_coin_flipper.sol>`_
|
||
but otherwise, rather use a contract that supplies randomness, like the `RANDAO <https://github.com/randao/randao>`_.
|
||
|
||
Get return value from non-constant function from another contract
|
||
=================================================================
|
||
|
||
The key point is that the calling contract needs to know about the function it intends to call.
|
||
|
||
See `ping.sol <https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_ping.sol>`_
|
||
and `pong.sol <https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_pong.sol>`_.
|
||
|
||
How do you create 2-dimensional arrays?
|
||
=======================================
|
||
|
||
See `2D_array.sol <https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/55_2D_array.sol>`_.
|
||
|
||
Note that filling a 10x10 square of ``uint8`` + contract creation took more than ``800,000``
|
||
gas at the time of this writing. 17x17 took ``2,000,000`` gas. With the limit at
|
||
3.14 million... well, there’s a pretty low ceiling for what you can create right
|
||
now.
|
||
|
||
Note that merely "creating" the array is free, the costs are in filling it.
|
||
|
||
Note2: Optimizing storage access can pull the gas costs down considerably, because
|
||
32 ``uint8`` values can be stored in a single slot. The problem is that these optimizations
|
||
currently do not work across loops and also have a problem with bounds checking.
|
||
You might get much better results in the future, though.
|
||
|
||
How do I initialize a contract with only a specific amount of wei?
|
||
==================================================================
|
||
|
||
Currently the approach is a little ugly, but there is little that can be done to improve it.
|
||
In the case of a ``contract A`` calling a new instance of ``contract B``, parentheses have to be used around
|
||
``new B`` because ``B.value`` would refer to a member of ``B`` called ``value``.
|
||
You will need to make sure that you have both contracts aware of each other's presence and that ``contract B`` has a ``payable`` constructor.
|
||
In this example::
|
||
|
||
pragma solidity >0.4.99 <0.6.0;
|
||
|
||
contract B {
|
||
constructor() public payable {}
|
||
}
|
||
|
||
contract A {
|
||
B child;
|
||
|
||
function test() public {
|
||
child = (new B).value(10)(); //construct a new B with 10 wei
|
||
}
|
||
}
|
||
|
||
Can a contract pass an array (static size) or string or ``bytes`` (dynamic size) to another contract?
|
||
=====================================================================================================
|
||
|
||
Sure. Take care that if you cross the memory / storage boundary,
|
||
independent copies will be created::
|
||
|
||
pragma solidity >=0.4.16 <0.6.0;
|
||
|
||
contract C {
|
||
uint[20] x;
|
||
|
||
function f() public {
|
||
g(x);
|
||
h(x);
|
||
}
|
||
|
||
function g(uint[20] memory y) internal pure {
|
||
y[2] = 3;
|
||
}
|
||
|
||
function h(uint[20] storage y) internal {
|
||
y[3] = 4;
|
||
}
|
||
}
|
||
|
||
The call to ``g(x)`` will not have an effect on ``x`` because it needs
|
||
to create an independent copy of the storage value in memory.
|
||
On the other hand, ``h(x)`` successfully modifies ``x`` because only
|
||
a reference and not a copy is passed.
|
||
|
||
What does the following strange check do in the Custom Token contract?
|
||
======================================================================
|
||
|
||
::
|
||
|
||
require((balanceOf[_to] + _value) >= balanceOf[_to]);
|
||
|
||
Integers in Solidity (and most other machine-related programming languages) are restricted to a certain range.
|
||
For ``uint256``, this is ``0`` up to ``2**256 - 1``. If the result of some operation on those numbers
|
||
does not fit inside this range, it is truncated. These truncations can have
|
||
`serious consequences <https://en.bitcoin.it/wiki/Value_overflow_incident>`_, so code like the one
|
||
above is necessary to avoid certain attacks.
|
||
|
||
|
||
Why are explicit conversions between fixed-size bytes types and integer types failing?
|
||
======================================================================================
|
||
|
||
Since version 0.5.0 explicit conversions between fixed-size byte arrays and integers are only allowed,
|
||
if both types have the same size. This prevents unexpected behaviour when truncating or padding.
|
||
Such conversions are still possible, but intermediate casts are required that make the desired
|
||
truncation and padding convention explicit. See :ref:`types-conversion-elementary-types` for a full
|
||
explanation and examples.
|
||
|
||
|
||
Why can number literals not be converted to fixed-size bytes types?
|
||
===================================================================
|
||
|
||
Since version 0.5.0 only hexadecimal number literals can be converted to fixed-size bytes
|
||
types and only if the number of hex digits matches the size of the type. See :ref:`types-conversion-literals`
|
||
for a full explanation and examples.
|
||
|
||
|
||
|
||
More Questions?
|
||
===============
|
||
|
||
If you have more questions or your question is not answered here, please talk to us on
|
||
`gitter <https://gitter.im/ethereum/solidity>`_ or file an `issue <https://github.com/ethereum/solidity/issues>`_.
|