solidity/libsolidity/codegen/ir/IRGeneratorForStatements.cpp
2019-07-09 18:25:07 +02:00

1361 lines
43 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Component that translates Solidity code into Yul at statement level and below.
*/
#include <libsolidity/codegen/ir/IRGeneratorForStatements.h>
#include <libsolidity/codegen/ABIFunctions.h>
#include <libsolidity/codegen/ir/IRGenerationContext.h>
#include <libsolidity/codegen/ir/IRLValue.h>
#include <libsolidity/codegen/YulUtilFunctions.h>
#include <libsolidity/codegen/ABIFunctions.h>
#include <libsolidity/codegen/CompilerUtils.h>
#include <libsolidity/ast/TypeProvider.h>
#include <libevmasm/GasMeter.h>
#include <libyul/AsmPrinter.h>
#include <libyul/AsmData.h>
#include <libyul/Dialect.h>
#include <libyul/optimiser/ASTCopier.h>
#include <libdevcore/Whiskers.h>
#include <libdevcore/StringUtils.h>
#include <libdevcore/Whiskers.h>
#include <libdevcore/Keccak256.h>
using namespace std;
using namespace dev;
using namespace dev::solidity;
namespace
{
struct CopyTranslate: public yul::ASTCopier
{
using ExternalRefsMap = std::map<yul::Identifier const*, InlineAssemblyAnnotation::ExternalIdentifierInfo>;
CopyTranslate(yul::Dialect const& _dialect, IRGenerationContext& _context, ExternalRefsMap const& _references):
m_dialect(_dialect), m_context(_context), m_references(_references) {}
using ASTCopier::operator();
yul::Expression operator()(yul::Identifier const& _identifier) override
{
if (m_references.count(&_identifier))
{
auto const& reference = m_references.at(&_identifier);
auto const varDecl = dynamic_cast<VariableDeclaration const*>(reference.declaration);
solUnimplementedAssert(varDecl, "");
if (reference.isOffset || reference.isSlot)
{
solAssert(reference.isOffset != reference.isSlot, "");
pair<u256, unsigned> slot_offset = m_context.storageLocationOfVariable(*varDecl);
string const value = reference.isSlot ?
slot_offset.first.str() :
to_string(slot_offset.second);
return yul::Literal{
_identifier.location,
yul::LiteralKind::Number,
yul::YulString{value},
yul::YulString{"uint256"}
};
}
}
return ASTCopier::operator()(_identifier);
}
yul::YulString translateIdentifier(yul::YulString _name) override
{
// Strictly, the dialect used by inline assembly (m_dialect) could be different
// from the Yul dialect we are compiling to. So we are assuming here that the builtin
// functions are identical. This should not be a problem for now since everything
// is EVM anyway.
if (m_dialect.builtin(_name))
return _name;
else
return yul::YulString{"usr$" + _name.str()};
}
yul::Identifier translate(yul::Identifier const& _identifier) override
{
if (!m_references.count(&_identifier))
return ASTCopier::translate(_identifier);
auto const& reference = m_references.at(&_identifier);
auto const varDecl = dynamic_cast<VariableDeclaration const*>(reference.declaration);
solUnimplementedAssert(varDecl, "");
solAssert(
reference.isOffset == false && reference.isSlot == false,
"Should not be called for offset/slot"
);
return yul::Identifier{
_identifier.location,
yul::YulString{m_context.localVariableName(*varDecl)}
};
}
private:
yul::Dialect const& m_dialect;
IRGenerationContext& m_context;
ExternalRefsMap const& m_references;
};
}
string IRGeneratorForStatements::code() const
{
solAssert(!m_currentLValue, "LValue not reset!");
return m_code.str();
}
void IRGeneratorForStatements::endVisit(VariableDeclarationStatement const& _varDeclStatement)
{
for (auto const& decl: _varDeclStatement.declarations())
if (decl)
m_context.addLocalVariable(*decl);
if (Expression const* expression = _varDeclStatement.initialValue())
{
solUnimplementedAssert(_varDeclStatement.declarations().size() == 1, "");
VariableDeclaration const& varDecl = *_varDeclStatement.declarations().front();
m_code <<
"let " <<
m_context.localVariableName(varDecl) <<
" := " <<
expressionAsType(*expression, *varDecl.type()) <<
"\n";
}
else
for (auto const& decl: _varDeclStatement.declarations())
if (decl)
m_code << "let " << m_context.localVariableName(*decl) << "\n";
}
bool IRGeneratorForStatements::visit(Assignment const& _assignment)
{
_assignment.rightHandSide().accept(*this);
Type const* intermediateType = type(_assignment.rightHandSide()).closestTemporaryType(
&type(_assignment.leftHandSide())
);
string value = m_context.newYulVariable();
m_code << "let " << value << " := " << expressionAsType(_assignment.rightHandSide(), *intermediateType) << "\n";
_assignment.leftHandSide().accept(*this);
solAssert(!!m_currentLValue, "LValue not retrieved.");
if (_assignment.assignmentOperator() != Token::Assign)
{
solAssert(type(_assignment.leftHandSide()) == *intermediateType, "");
solAssert(intermediateType->isValueType(), "Compound operators only available for value types.");
string leftIntermediate = m_context.newYulVariable();
m_code << "let " << leftIntermediate << " := " << m_currentLValue->retrieveValue() << "\n";
m_code << value << " := " << binaryOperation(
TokenTraits::AssignmentToBinaryOp(_assignment.assignmentOperator()),
*intermediateType,
leftIntermediate,
value
);
}
m_code << m_currentLValue->storeValue(value, *intermediateType);
m_currentLValue.reset();
defineExpression(_assignment) << value << "\n";
return false;
}
bool IRGeneratorForStatements::visit(TupleExpression const& _tuple)
{
if (_tuple.isInlineArray())
solUnimplementedAssert(false, "");
else
{
solUnimplementedAssert(!_tuple.annotation().lValueRequested, "");
solUnimplementedAssert(_tuple.components().size() == 1, "");
solAssert(_tuple.components().front(), "");
_tuple.components().front()->accept(*this);
defineExpression(_tuple) << m_context.variable(*_tuple.components().front()) << "\n";
}
return false;
}
bool IRGeneratorForStatements::visit(IfStatement const& _ifStatement)
{
_ifStatement.condition().accept(*this);
string condition = expressionAsType(_ifStatement.condition(), *TypeProvider::boolean());
if (_ifStatement.falseStatement())
{
m_code << "switch " << condition << "\n" "case 0 {\n";
_ifStatement.falseStatement()->accept(*this);
m_code << "}\n" "default {\n";
}
else
m_code << "if " << condition << " {\n";
_ifStatement.trueStatement().accept(*this);
m_code << "}\n";
return false;
}
bool IRGeneratorForStatements::visit(ForStatement const& _forStatement)
{
generateLoop(
_forStatement.body(),
_forStatement.condition(),
_forStatement.initializationExpression(),
_forStatement.loopExpression()
);
return false;
}
bool IRGeneratorForStatements::visit(WhileStatement const& _whileStatement)
{
generateLoop(
_whileStatement.body(),
&_whileStatement.condition(),
nullptr,
nullptr,
_whileStatement.isDoWhile()
);
return false;
}
bool IRGeneratorForStatements::visit(Continue const&)
{
m_code << "continue\n";
return false;
}
bool IRGeneratorForStatements::visit(Break const&)
{
m_code << "break\n";
return false;
}
void IRGeneratorForStatements::endVisit(Return const& _return)
{
if (Expression const* value = _return.expression())
{
solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer.");
vector<ASTPointer<VariableDeclaration>> const& returnParameters =
_return.annotation().functionReturnParameters->parameters();
TypePointers types;
for (auto const& retVariable: returnParameters)
types.push_back(retVariable->annotation().type);
// TODO support tuples
solUnimplementedAssert(types.size() == 1, "Multi-returns not implemented.");
m_code <<
m_context.localVariableName(*returnParameters.front()) <<
" := " <<
expressionAsType(*value, *types.front()) <<
"\n";
}
m_code << "return_flag := 0\n" << "break\n";
}
void IRGeneratorForStatements::endVisit(UnaryOperation const& _unaryOperation)
{
Type const& resultType = type(_unaryOperation);
Token const op = _unaryOperation.getOperator();
if (op == Token::Delete)
{
solAssert(!!m_currentLValue, "LValue not retrieved.");
m_code << m_currentLValue->setToZero();
m_currentLValue.reset();
}
else if (resultType.category() == Type::Category::RationalNumber)
{
defineExpression(_unaryOperation) <<
formatNumber(resultType.literalValue(nullptr)) <<
"\n";
}
else if (resultType.category() == Type::Category::Integer)
{
solAssert(resultType == type(_unaryOperation.subExpression()), "Result type doesn't match!");
if (op == Token::Inc || op == Token::Dec)
{
solAssert(!!m_currentLValue, "LValue not retrieved.");
string fetchValueExpr = m_currentLValue->retrieveValue();
string modifiedValue = m_context.newYulVariable();
string originalValue = m_context.newYulVariable();
m_code << "let " << originalValue << " := " << fetchValueExpr << "\n";
m_code <<
"let " <<
modifiedValue <<
" := " <<
(op == Token::Inc ?
m_utils.incrementCheckedFunction(resultType) :
m_utils.decrementCheckedFunction(resultType)
) <<
"(" <<
originalValue <<
")\n";
m_code << m_currentLValue->storeValue(modifiedValue, resultType);
m_currentLValue.reset();
defineExpression(_unaryOperation) <<
(_unaryOperation.isPrefixOperation() ? modifiedValue : originalValue) <<
"\n";
}
else if (op == Token::BitNot)
appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression());
else if (op == Token::Add)
// According to SyntaxChecker...
solAssert(false, "Use of unary + is disallowed.");
else if (op == Token::Sub)
{
IntegerType const& intType = *dynamic_cast<IntegerType const*>(&resultType);
defineExpression(_unaryOperation) <<
m_utils.negateNumberCheckedFunction(intType) <<
"(" <<
m_context.variable(_unaryOperation.subExpression()) <<
")\n";
}
else
solUnimplementedAssert(false, "Unary operator not yet implemented");
}
else if (resultType.category() == Type::Category::Bool)
{
solAssert(
_unaryOperation.getOperator() != Token::BitNot,
"Bitwise Negation can't be done on bool!"
);
appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression());
}
else
solUnimplementedAssert(false, "Unary operator not yet implemented");
}
bool IRGeneratorForStatements::visit(BinaryOperation const& _binOp)
{
solAssert(!!_binOp.annotation().commonType, "");
TypePointer commonType = _binOp.annotation().commonType;
langutil::Token op = _binOp.getOperator();
if (op == Token::And || op == Token::Or)
{
// This can short-circuit!
appendAndOrOperatorCode(_binOp);
return false;
}
_binOp.leftExpression().accept(*this);
_binOp.rightExpression().accept(*this);
if (commonType->category() == Type::Category::RationalNumber)
defineExpression(_binOp) <<
toCompactHexWithPrefix(commonType->literalValue(nullptr)) <<
"\n";
else if (TokenTraits::isCompareOp(op))
{
if (auto type = dynamic_cast<FunctionType const*>(commonType))
{
solAssert(op == Token::Equal || op == Token::NotEqual, "Invalid function pointer comparison!");
solAssert(type->kind() != FunctionType::Kind::External, "External function comparison not allowed!");
}
solAssert(commonType->isValueType(), "");
bool isSigned = false;
if (auto type = dynamic_cast<IntegerType const*>(commonType))
isSigned = type->isSigned();
string args =
expressionAsType(_binOp.leftExpression(), *commonType) +
", " +
expressionAsType(_binOp.rightExpression(), *commonType);
string expr;
if (op == Token::Equal)
expr = "eq(" + move(args) + ")";
else if (op == Token::NotEqual)
expr = "iszero(eq(" + move(args) + "))";
else if (op == Token::GreaterThanOrEqual)
expr = "iszero(" + string(isSigned ? "slt(" : "lt(") + move(args) + "))";
else if (op == Token::LessThanOrEqual)
expr = "iszero(" + string(isSigned ? "sgt(" : "gt(") + move(args) + "))";
else if (op == Token::GreaterThan)
expr = (isSigned ? "sgt(" : "gt(") + move(args) + ")";
else if (op == Token::LessThan)
expr = (isSigned ? "slt(" : "lt(") + move(args) + ")";
else
solAssert(false, "Unknown comparison operator.");
defineExpression(_binOp) << expr << "\n";
}
else
{
string left = expressionAsType(_binOp.leftExpression(), *commonType);
string right = expressionAsType(_binOp.rightExpression(), *commonType);
defineExpression(_binOp) << binaryOperation(_binOp.getOperator(), *commonType, left, right);
}
return false;
}
void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall)
{
solUnimplementedAssert(
_functionCall.annotation().kind == FunctionCallKind::FunctionCall ||
_functionCall.annotation().kind == FunctionCallKind::TypeConversion,
"This type of function call is not yet implemented"
);
Type const& funcType = type(_functionCall.expression());
if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
{
solAssert(funcType.category() == Type::Category::TypeType, "Expected category to be TypeType");
solAssert(_functionCall.arguments().size() == 1, "Expected one argument for type conversion");
defineExpression(_functionCall) <<
expressionAsType(*_functionCall.arguments().front(), type(_functionCall)) <<
"\n";
return;
}
FunctionTypePointer functionType = dynamic_cast<FunctionType const*>(&funcType);
TypePointers parameterTypes = functionType->parameterTypes();
vector<ASTPointer<Expression const>> const& callArguments = _functionCall.arguments();
vector<ASTPointer<ASTString>> const& callArgumentNames = _functionCall.names();
if (!functionType->takesArbitraryParameters())
solAssert(callArguments.size() == parameterTypes.size(), "");
vector<ASTPointer<Expression const>> arguments;
if (callArgumentNames.empty())
// normal arguments
arguments = callArguments;
else
// named arguments
for (auto const& parameterName: functionType->parameterNames())
{
auto const it = std::find_if(callArgumentNames.cbegin(), callArgumentNames.cend(), [&](ASTPointer<ASTString> const& _argName) {
return *_argName == parameterName;
});
solAssert(it != callArgumentNames.cend(), "");
arguments.push_back(callArguments[std::distance(callArgumentNames.begin(), it)]);
}
solUnimplementedAssert(!functionType->bound(), "");
switch (functionType->kind())
{
case FunctionType::Kind::Internal:
{
vector<string> args;
for (unsigned i = 0; i < arguments.size(); ++i)
if (functionType->takesArbitraryParameters())
args.emplace_back(m_context.variable(*arguments[i]));
else
args.emplace_back(expressionAsType(*arguments[i], *parameterTypes[i]));
if (auto identifier = dynamic_cast<Identifier const*>(&_functionCall.expression()))
{
solAssert(!functionType->bound(), "");
if (auto functionDef = dynamic_cast<FunctionDefinition const*>(identifier->annotation().referencedDeclaration))
{
defineExpression(_functionCall) <<
m_context.virtualFunctionName(*functionDef) <<
"(" <<
joinHumanReadable(args) <<
")\n";
return;
}
}
args = vector<string>{m_context.variable(_functionCall.expression())} + args;
defineExpression(_functionCall) <<
m_context.internalDispatch(functionType->parameterTypes().size(), functionType->returnParameterTypes().size()) <<
"(" <<
joinHumanReadable(args) <<
")\n";
break;
}
case FunctionType::Kind::External:
case FunctionType::Kind::DelegateCall:
case FunctionType::Kind::BareCall:
case FunctionType::Kind::BareDelegateCall:
case FunctionType::Kind::BareStaticCall:
appendExternalFunctionCall(_functionCall, arguments);
break;
case FunctionType::Kind::BareCallCode:
solAssert(false, "Callcode has been removed.");
case FunctionType::Kind::Event:
{
auto const& event = dynamic_cast<EventDefinition const&>(functionType->declaration());
TypePointers paramTypes = functionType->parameterTypes();
ABIFunctions abi(m_context.evmVersion(), m_context.functionCollector());
vector<string> indexedArgs;
string nonIndexedArgs;
TypePointers nonIndexedArgTypes;
TypePointers nonIndexedParamTypes;
if (!event.isAnonymous())
{
indexedArgs.emplace_back(m_context.newYulVariable());
string signature = formatNumber(u256(h256::Arith(dev::keccak256(functionType->externalSignature()))));
m_code << "let " << indexedArgs.back() << " := " << signature << "\n";
}
for (size_t i = 0; i < event.parameters().size(); ++i)
{
Expression const& arg = *arguments[i];
if (event.parameters()[i]->isIndexed())
{
string value;
indexedArgs.emplace_back(m_context.newYulVariable());
if (auto const& referenceType = dynamic_cast<ReferenceType const*>(paramTypes[i]))
value =
m_utils.packedHashFunction({arg.annotation().type}, {referenceType}) +
"(" +
m_context.variable(arg) +
")";
else
value = expressionAsType(arg, *paramTypes[i]);
m_code << "let " << indexedArgs.back() << " := " << value << "\n";
}
else
{
string vars = m_context.variable(arg);
if (!vars.empty())
// In reverse because abi_encode expects it like that.
nonIndexedArgs = ", " + move(vars) + nonIndexedArgs;
nonIndexedArgTypes.push_back(arg.annotation().type);
nonIndexedParamTypes.push_back(paramTypes[i]);
}
}
solAssert(indexedArgs.size() <= 4, "Too many indexed arguments.");
Whiskers templ(R"({
let <pos> := mload(<freeMemoryPointer>)
let <end> := <encode>(<pos> <nonIndexedArgs>)
<log>(<pos>, sub(<end>, <pos>) <indexedArgs>)
})");
templ("pos", m_context.newYulVariable());
templ("end", m_context.newYulVariable());
templ("freeMemoryPointer", to_string(CompilerUtils::freeMemoryPointer));
templ("encode", abi.tupleEncoder(nonIndexedArgTypes, nonIndexedParamTypes));
templ("nonIndexedArgs", nonIndexedArgs);
templ("log", "log" + to_string(indexedArgs.size()));
templ("indexedArgs", joinHumanReadablePrefixed(indexedArgs));
m_code << templ.render();
break;
}
case FunctionType::Kind::Assert:
case FunctionType::Kind::Require:
{
solAssert(arguments.size() > 0, "Expected at least one parameter for require/assert");
solAssert(arguments.size() <= 2, "Expected no more than two parameters for require/assert");
Type const* messageArgumentType = arguments.size() > 1 ? arguments[1]->annotation().type : nullptr;
string requireOrAssertFunction = m_utils.requireOrAssertFunction(
functionType->kind() == FunctionType::Kind::Assert,
messageArgumentType
);
m_code << move(requireOrAssertFunction) << "(" << m_context.variable(*arguments[0]);
if (messageArgumentType && messageArgumentType->sizeOnStack() > 0)
m_code << ", " << m_context.variable(*arguments[1]);
m_code << ")\n";
break;
}
// Array creation using new
case FunctionType::Kind::ObjectCreation:
{
ArrayType const& arrayType = dynamic_cast<ArrayType const&>(*_functionCall.annotation().type);
solAssert(arguments.size() == 1, "");
defineExpression(_functionCall) <<
m_utils.allocateMemoryArrayFunction(arrayType) <<
"(" <<
expressionAsType(*arguments[0], *TypeProvider::uint256()) <<
")\n";
break;
}
case FunctionType::Kind::KECCAK256:
{
solAssert(arguments.size() == 1, "");
ArrayType const* arrayType = TypeProvider::bytesMemory();
string const& array = m_context.newYulVariable();
m_code << "let " << array << " := " << expressionAsType(*arguments[0], *arrayType) << "\n";
defineExpression(_functionCall) <<
"keccak256(" <<
m_utils.arrayDataAreaFunction(*arrayType) << "(" <<
array <<
"), " <<
m_utils.arrayLengthFunction(*arrayType) <<
"(" <<
array <<
"))\n";
break;
}
default:
solUnimplemented("FunctionKind " + toString(static_cast<int>(functionType->kind())) + " not yet implemented");
}
}
void IRGeneratorForStatements::endVisit(MemberAccess const& _memberAccess)
{
ASTString const& member = _memberAccess.memberName();
if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type))
if (funType->bound())
{
solUnimplementedAssert(false, "");
}
switch (_memberAccess.expression().annotation().type->category())
{
case Type::Category::Contract:
{
ContractType const& type = dynamic_cast<ContractType const&>(*_memberAccess.expression().annotation().type);
if (type.isSuper())
{
solUnimplementedAssert(false, "");
}
// ordinary contract type
else if (Declaration const* declaration = _memberAccess.annotation().referencedDeclaration)
{
u256 identifier;
if (auto const* variable = dynamic_cast<VariableDeclaration const*>(declaration))
identifier = FunctionType(*variable).externalIdentifier();
else if (auto const* function = dynamic_cast<FunctionDefinition const*>(declaration))
identifier = FunctionType(*function).externalIdentifier();
else
solAssert(false, "Contract member is neither variable nor function.");
defineExpressionPart(_memberAccess, 1) << expressionAsType(
_memberAccess.expression(),
type.isPayable() ? *TypeProvider::payableAddress() : *TypeProvider::address()
) << "\n";
defineExpressionPart(_memberAccess, 2) << formatNumber(identifier) << "\n";
}
else
solAssert(false, "Invalid member access in contract");
break;
}
case Type::Category::Integer:
{
solAssert(false, "Invalid member access to integer");
break;
}
case Type::Category::Address:
{
if (member == "balance")
defineExpression(_memberAccess) <<
"balance(" <<
expressionAsType(_memberAccess.expression(), *TypeProvider::address()) <<
")\n";
else if (set<string>{"send", "transfer"}.count(member))
{
solAssert(dynamic_cast<AddressType const&>(*_memberAccess.expression().annotation().type).stateMutability() == StateMutability::Payable, "");
defineExpression(_memberAccess) <<
expressionAsType(_memberAccess.expression(), *TypeProvider::payableAddress()) <<
"\n";
}
else if (set<string>{"call", "callcode", "delegatecall", "staticcall"}.count(member))
defineExpression(_memberAccess) <<
expressionAsType(_memberAccess.expression(), *TypeProvider::address()) <<
"\n";
else
solAssert(false, "Invalid member access to address");
break;
}
case Type::Category::Function:
if (member == "selector")
{
solUnimplementedAssert(false, "");
}
else
solAssert(
!!_memberAccess.expression().annotation().type->memberType(member),
"Invalid member access to function."
);
break;
case Type::Category::Magic:
// we can ignore the kind of magic and only look at the name of the member
if (member == "coinbase")
defineExpression(_memberAccess) << "coinbase()\n";
else if (member == "timestamp")
defineExpression(_memberAccess) << "timestamp()\n";
else if (member == "difficulty")
defineExpression(_memberAccess) << "difficulty()\n";
else if (member == "number")
defineExpression(_memberAccess) << "number()\n";
else if (member == "gaslimit")
defineExpression(_memberAccess) << "gaslimit()\n";
else if (member == "sender")
defineExpression(_memberAccess) << "caller()\n";
else if (member == "value")
defineExpression(_memberAccess) << "callvalue()\n";
else if (member == "origin")
defineExpression(_memberAccess) << "origin()\n";
else if (member == "gasprice")
defineExpression(_memberAccess) << "gasprice()\n";
else if (member == "data")
solUnimplementedAssert(false, "");
else if (member == "sig")
defineExpression(_memberAccess) <<
"and(calldataload(0), " <<
formatNumber(u256(0xffffffff) << (256 - 32)) <<
")\n";
else if (member == "gas")
solAssert(false, "Gas has been removed.");
else if (member == "blockhash")
solAssert(false, "Blockhash has been removed.");
else if (member == "creationCode" || member == "runtimeCode")
{
solUnimplementedAssert(false, "");
}
else if (member == "name")
{
solUnimplementedAssert(false, "");
}
else if (set<string>{"encode", "encodePacked", "encodeWithSelector", "encodeWithSignature", "decode"}.count(member))
{
// no-op
}
else
solAssert(false, "Unknown magic member.");
break;
case Type::Category::Struct:
{
solUnimplementedAssert(false, "");
}
case Type::Category::Enum:
{
EnumType const& type = dynamic_cast<EnumType const&>(*_memberAccess.expression().annotation().type);
defineExpression(_memberAccess) << to_string(type.memberValue(_memberAccess.memberName())) << "\n";
break;
}
case Type::Category::Array:
{
auto const& type = dynamic_cast<ArrayType const&>(*_memberAccess.expression().annotation().type);
solAssert(member == "length", "");
if (!type.isDynamicallySized())
defineExpression(_memberAccess) << type.length() << "\n";
else
switch (type.location())
{
case DataLocation::CallData:
solUnimplementedAssert(false, "");
//m_context << Instruction::SWAP1 << Instruction::POP;
break;
case DataLocation::Storage:
setLValue(_memberAccess, make_unique<IRStorageArrayLength>(
m_context,
m_context.variable(_memberAccess.expression()),
*_memberAccess.annotation().type,
type
));
break;
case DataLocation::Memory:
defineExpression(_memberAccess) <<
"mload(" <<
m_context.variable(_memberAccess.expression()) <<
")\n";
break;
}
break;
}
case Type::Category::FixedBytes:
{
auto const& type = dynamic_cast<FixedBytesType const&>(*_memberAccess.expression().annotation().type);
if (member == "length")
defineExpression(_memberAccess) << to_string(type.numBytes());
else
solAssert(false, "Illegal fixed bytes member.");
break;
}
default:
solAssert(false, "Member access to unknown type.");
}
}
bool IRGeneratorForStatements::visit(InlineAssembly const& _inlineAsm)
{
CopyTranslate bodyCopier{_inlineAsm.dialect(), m_context, _inlineAsm.annotation().externalReferences};
yul::Statement modified = bodyCopier(_inlineAsm.operations());
solAssert(modified.type() == typeid(yul::Block), "");
m_code << yul::AsmPrinter()(boost::get<yul::Block>(std::move(modified))) << "\n";
return false;
}
void IRGeneratorForStatements::endVisit(IndexAccess const& _indexAccess)
{
Type const& baseType = *_indexAccess.baseExpression().annotation().type;
if (baseType.category() == Type::Category::Mapping)
{
solAssert(_indexAccess.indexExpression(), "Index expression expected.");
MappingType const& mappingType = dynamic_cast<MappingType const&>(baseType);
Type const& keyType = *_indexAccess.indexExpression()->annotation().type;
solAssert(keyType.sizeOnStack() <= 1, "");
string slot = m_context.newYulVariable();
Whiskers templ("let <slot> := <indexAccess>(<base> <key>)\n");
templ("slot", slot);
templ("indexAccess", m_utils.mappingIndexAccessFunction(mappingType, keyType));
templ("base", m_context.variable(_indexAccess.baseExpression()));
if (keyType.sizeOnStack() == 0)
templ("key", "");
else
templ("key", ", " + m_context.variable(*_indexAccess.indexExpression()));
m_code << templ.render();
setLValue(_indexAccess, make_unique<IRStorageItem>(
m_context,
slot,
0,
*_indexAccess.annotation().type
));
}
else if (baseType.category() == Type::Category::Array)
{
ArrayType const& arrayType = dynamic_cast<ArrayType const&>(baseType);
solAssert(_indexAccess.indexExpression(), "Index expression expected.");
switch (arrayType.location())
{
case DataLocation::Storage:
{
string slot = m_context.newYulVariable();
string offset = m_context.newYulVariable();
m_code << Whiskers(R"(
let <slot>, <offset> := <indexFunc>(<array>, <index>)
)")
("slot", slot)
("offset", offset)
("indexFunc", m_utils.storageArrayIndexAccessFunction(arrayType))
("array", m_context.variable(_indexAccess.baseExpression()))
("index", m_context.variable(*_indexAccess.indexExpression()))
.render();
setLValue(_indexAccess, make_unique<IRStorageItem>(
m_context,
slot,
offset,
*_indexAccess.annotation().type
));
break;
}
case DataLocation::Memory:
{
string const memAddress =
m_utils.memoryArrayIndexAccessFunction(arrayType) +
"(" +
m_context.variable(_indexAccess.baseExpression()) +
", " +
expressionAsType(*_indexAccess.indexExpression(), *TypeProvider::uint256()) +
")";
setLValue(_indexAccess, make_unique<IRMemoryItem>(
m_context,
memAddress,
false,
*arrayType.baseType()
));
break;
}
case DataLocation::CallData:
{
solUnimplemented("calldata not yet implemented!");
}
}
}
else if (baseType.category() == Type::Category::FixedBytes)
solUnimplementedAssert(false, "");
else if (baseType.category() == Type::Category::TypeType)
{
solAssert(baseType.sizeOnStack() == 0, "");
solAssert(_indexAccess.annotation().type->sizeOnStack() == 0, "");
// no-op - this seems to be a lone array type (`structType[];`)
}
else
solAssert(false, "Index access only allowed for mappings or arrays.");
}
void IRGeneratorForStatements::endVisit(Identifier const& _identifier)
{
Declaration const* declaration = _identifier.annotation().referencedDeclaration;
if (MagicVariableDeclaration const* magicVar = dynamic_cast<MagicVariableDeclaration const*>(declaration))
{
switch (magicVar->type()->category())
{
case Type::Category::Contract:
if (dynamic_cast<ContractType const&>(*magicVar->type()).isSuper())
solAssert(_identifier.name() == "super", "");
else
{
solAssert(_identifier.name() == "this", "");
defineExpression(_identifier) << "address()\n";
}
break;
case Type::Category::Integer:
solAssert(_identifier.name() == "now", "");
defineExpression(_identifier) << "timestamp()\n";
break;
default:
break;
}
return;
}
else if (FunctionDefinition const* functionDef = dynamic_cast<FunctionDefinition const*>(declaration))
defineExpression(_identifier) << to_string(m_context.virtualFunction(*functionDef).id()) << "\n";
else if (VariableDeclaration const* varDecl = dynamic_cast<VariableDeclaration const*>(declaration))
{
// TODO for the constant case, we have to be careful:
// If the value is visited twice, `defineExpression` is called twice on
// the same expression.
solUnimplementedAssert(!varDecl->isConstant(), "");
unique_ptr<IRLValue> lvalue;
if (m_context.isLocalVariable(*varDecl))
lvalue = make_unique<IRLocalVariable>(m_context, *varDecl);
else if (m_context.isStateVariable(*varDecl))
lvalue = make_unique<IRStorageItem>(m_context, *varDecl);
else
solAssert(false, "Invalid variable kind.");
setLValue(_identifier, move(lvalue));
}
else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
{
solUnimplementedAssert(!contract->isLibrary(), "Libraries not yet supported.");
}
else if (dynamic_cast<EventDefinition const*>(declaration))
{
// no-op
}
else if (dynamic_cast<EnumDefinition const*>(declaration))
{
// no-op
}
else if (dynamic_cast<StructDefinition const*>(declaration))
{
// no-op
}
else
{
solAssert(false, "Identifier type not expected in expression context.");
}
}
bool IRGeneratorForStatements::visit(Literal const& _literal)
{
Type const& literalType = type(_literal);
switch (literalType.category())
{
case Type::Category::RationalNumber:
case Type::Category::Bool:
case Type::Category::Address:
defineExpression(_literal) << toCompactHexWithPrefix(literalType.literalValue(&_literal)) << "\n";
break;
case Type::Category::StringLiteral:
break; // will be done during conversion
default:
solUnimplemented("Only integer, boolean and string literals implemented for now.");
}
return false;
}
void IRGeneratorForStatements::appendExternalFunctionCall(
FunctionCall const& _functionCall,
vector<ASTPointer<Expression const>> const& _arguments
)
{
FunctionType const& funType = dynamic_cast<FunctionType const&>(type(_functionCall.expression()));
solAssert(
funType.takesArbitraryParameters() ||
_arguments.size() == funType.parameterTypes().size(), ""
);
solUnimplementedAssert(!funType.bound(), "");
FunctionType::Kind funKind = funType.kind();
solAssert(funKind != FunctionType::Kind::BareStaticCall || m_context.evmVersion().hasStaticCall(), "");
solAssert(funKind != FunctionType::Kind::BareCallCode, "Callcode has been removed.");
bool returnSuccessConditionAndReturndata = funKind == FunctionType::Kind::BareCall || funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::BareStaticCall;
bool isDelegateCall = funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::DelegateCall;
bool useStaticCall = funKind == FunctionType::Kind::BareStaticCall || (funType.stateMutability() <= StateMutability::View && m_context.evmVersion().hasStaticCall());
bool haveReturndatacopy = m_context.evmVersion().supportsReturndata();
unsigned retSize = 0;
bool dynamicReturnSize = false;
TypePointers returnTypes;
if (!returnSuccessConditionAndReturndata)
{
if (haveReturndatacopy)
returnTypes = funType.returnParameterTypes();
else
returnTypes = funType.returnParameterTypesWithoutDynamicTypes();
for (auto const& retType: returnTypes)
if (retType->isDynamicallyEncoded())
{
solAssert(haveReturndatacopy, "");
dynamicReturnSize = true;
retSize = 0;
break;
}
else if (retType->decodingType())
retSize += retType->decodingType()->calldataEncodedSize();
else
retSize += retType->calldataEncodedSize();
}
TypePointers argumentTypes;
string argumentString;
for (auto const& arg: _arguments)
{
argumentTypes.emplace_back(&type(*arg));
string var = m_context.variable(*arg);
if (!var.empty())
argumentString += ", " + move(var);
}
solUnimplementedAssert(funKind != FunctionType::Kind::ECRecover, "");
if (!m_context.evmVersion().canOverchargeGasForCall())
{
// Touch the end of the output area so that we do not pay for memory resize during the call
// (which we would have to subtract from the gas left)
// We could also just use MLOAD; POP right before the gas calculation, but the optimizer
// would remove that, so we use MSTORE here.
if (!funType.gasSet() && retSize > 0)
m_code << "mstore(add(" << fetchFreeMem() << ", " << to_string(retSize) << "), 0)\n";
}
ABIFunctions abi(m_context.evmVersion(), m_context.functionCollector());
solUnimplementedAssert(!funType.isBareCall(), "");
Whiskers templ(R"(
<?checkExistence>
if iszero(extcodesize(<address>)) { revert(0, 0) }
</checkExistence>
let <pos> := <freeMem>
mstore(<pos>, <shl28>(<funId>))
let <end> := <encodeArgs>(add(<pos>, 4) <argumentString>)
let <result> := <call>(<gas>, <address>, <value>, <pos>, sub(<end>, <pos>), <pos>, <retSize>)
if iszero(<result>) { <forwardingRevert> }
<?dynamicReturnSize>
returndatacopy(<pos>, 0, returndatasize())
</dynamicReturnSize>
<allocate>
mstore(<freeMem>, add(<pos>, and(add(<retSize>, 0x1f), not(0x1f))))
<?returns> let <retvars> := </returns> <abiDecode>(<pos>, <retSize>)
)");
templ("pos", m_context.newYulVariable());
templ("end", m_context.newYulVariable());
templ("result", m_context.newYulVariable());
templ("freeMem", fetchFreeMem());
templ("shl28", m_utils.shiftLeftFunction(8 * (32 - 4)));
templ("funId", m_context.variablePart(_functionCall.expression(), 2));
// If the function takes arbitrary parameters or is a bare call, copy dynamic length data in place.
// Move arguments to memory, will not update the free memory pointer (but will update the memory
// pointer on the stack).
bool encodeInPlace = funType.takesArbitraryParameters() || funType.isBareCall();
if (funType.kind() == FunctionType::Kind::ECRecover)
// This would be the only combination of padding and in-place encoding,
// but all parameters of ecrecover are value types anyway.
encodeInPlace = false;
bool encodeForLibraryCall = funKind == FunctionType::Kind::DelegateCall;
solUnimplementedAssert(!encodeInPlace, "");
solUnimplementedAssert(!funType.padArguments(), "");
templ("encodeArgs", abi.tupleEncoder(argumentTypes, funType.parameterTypes(), encodeForLibraryCall));
templ("argumentString", argumentString);
// Output data will replace input data, unless we have ECRecover (then, output
// area will be 32 bytes just before input area).
templ("retSize", to_string(retSize));
solUnimplementedAssert(funKind != FunctionType::Kind::ECRecover, "");
if (isDelegateCall)
solAssert(!funType.valueSet(), "Value set for delegatecall");
else if (useStaticCall)
solAssert(!funType.valueSet(), "Value set for staticcall");
else if (funType.valueSet())
templ("value", m_context.variablePart(_functionCall.expression(), 4));
else
templ("value", "0");
// Check that the target contract exists (has code) for non-low-level calls.
bool checkExistence = (funKind == FunctionType::Kind::External || funKind == FunctionType::Kind::DelegateCall);
templ("checkExistence", checkExistence);
if (funType.gasSet())
templ("gas", m_context.variablePart(_functionCall.expression(), 3));
else if (m_context.evmVersion().canOverchargeGasForCall())
// Send all gas (requires tangerine whistle EVM)
templ("gas", "gas()");
else
{
// send all gas except the amount needed to execute "SUB" and "CALL"
// @todo this retains too much gas for now, needs to be fine-tuned.
u256 gasNeededByCaller = eth::GasCosts::callGas(m_context.evmVersion()) + 10;
if (funType.valueSet())
gasNeededByCaller += eth::GasCosts::callValueTransferGas;
if (!checkExistence)
gasNeededByCaller += eth::GasCosts::callNewAccountGas; // we never know
templ("gas", "sub(gas(), " + formatNumber(gasNeededByCaller) + ")");
}
// Order is important here, STATICCALL might overlap with DELEGATECALL.
if (isDelegateCall)
templ("call", "delegatecall");
else if (useStaticCall)
templ("call", "staticcall");
else
templ("call", "call");
templ("forwardingRevert", m_utils.forwardingRevertFunction());
solUnimplementedAssert(!returnSuccessConditionAndReturndata, "");
solUnimplementedAssert(funKind != FunctionType::Kind::RIPEMD160, "");
solUnimplementedAssert(funKind != FunctionType::Kind::ECRecover, "");
templ("dynamicReturnSize", dynamicReturnSize);
// Always use the actual return length, and not our calculated expected length, if returndatacopy is supported.
// This ensures it can catch badly formatted input from external calls.
if (haveReturndatacopy)
templ("returnSize", "returndatasize()");
else
templ("returnSize", to_string(retSize));
templ("abiDecode", abi.tupleDecoder(returnTypes, true));
templ("returns", !returnTypes.empty());
templ("retVars", m_context.variable(_functionCall));
}
string IRGeneratorForStatements::fetchFreeMem() const
{
return "mload(" + to_string(CompilerUtils::freeMemoryPointer) + ")";
}
string IRGeneratorForStatements::expressionAsType(Expression const& _expression, Type const& _to)
{
Type const& from = type(_expression);
if (from.sizeOnStack() == 0)
{
solAssert(from != _to, "");
return m_utils.conversionFunction(from, _to) + "()";
}
else
{
string varName = m_context.variable(_expression);
if (from == _to)
return varName;
else
return m_utils.conversionFunction(from, _to) + "(" + std::move(varName) + ")";
}
}
ostream& IRGeneratorForStatements::defineExpression(Expression const& _expression)
{
string vars = m_context.variable(_expression);
if (!vars.empty())
m_code << "let " << move(vars) << " := ";
return m_code;
}
ostream& IRGeneratorForStatements::defineExpressionPart(Expression const& _expression, size_t _part)
{
return m_code << "let " << m_context.variablePart(_expression, _part) << " := ";
}
void IRGeneratorForStatements::appendSimpleUnaryOperation(UnaryOperation const& _operation, Expression const& _expr)
{
string func;
if (_operation.getOperator() == Token::Not)
func = "iszero";
else if (_operation.getOperator() == Token::BitNot)
func = "not";
else
solAssert(false, "Invalid Token!");
defineExpression(_operation) <<
m_utils.cleanupFunction(type(_expr)) <<
"(" <<
func <<
"(" <<
m_context.variable(_expr) <<
")" <<
")\n";
}
string IRGeneratorForStatements::binaryOperation(
langutil::Token _operator,
Type const& _type,
string const& _left,
string const& _right
)
{
if (IntegerType const* type = dynamic_cast<IntegerType const*>(&_type))
{
string fun;
// TODO: Implement all operations for signed and unsigned types.
switch (_operator)
{
case Token::Add:
fun = m_utils.overflowCheckedIntAddFunction(*type);
break;
case Token::Sub:
fun = m_utils.overflowCheckedIntSubFunction(*type);
break;
case Token::Mul:
fun = m_utils.overflowCheckedIntMulFunction(*type);
break;
case Token::Div:
fun = m_utils.overflowCheckedIntDivFunction(*type);
break;
case Token::Mod:
fun = m_utils.checkedIntModFunction(*type);
break;
default:
break;
}
solUnimplementedAssert(!fun.empty(), "");
return fun + "(" + _left + ", " + _right + ")\n";
}
else
solUnimplementedAssert(false, "");
return {};
}
void IRGeneratorForStatements::appendAndOrOperatorCode(BinaryOperation const& _binOp)
{
langutil::Token const op = _binOp.getOperator();
solAssert(op == Token::Or || op == Token::And, "");
_binOp.leftExpression().accept(*this);
string value = m_context.variable(_binOp);
m_code << "let " << value << " := " << m_context.variable(_binOp.leftExpression()) << "\n";
if (op == Token::Or)
m_code << "if iszero(" << value << ") {\n";
else
m_code << "if " << value << " {\n";
_binOp.rightExpression().accept(*this);
m_code << value << " := " + m_context.variable(_binOp.rightExpression()) << "\n";
m_code << "}\n";
}
void IRGeneratorForStatements::setLValue(Expression const& _expression, unique_ptr<IRLValue> _lvalue)
{
solAssert(!m_currentLValue, "");
if (_expression.annotation().lValueRequested)
// Do not define the expression, so it cannot be used as value.
m_currentLValue = std::move(_lvalue);
else
defineExpression(_expression) << _lvalue->retrieveValue() << "\n";
}
void IRGeneratorForStatements::generateLoop(
Statement const& _body,
Expression const* _conditionExpression,
Statement const* _initExpression,
ExpressionStatement const* _loopExpression,
bool _isDoWhile
)
{
string firstRun;
if (_isDoWhile)
{
solAssert(_conditionExpression, "Expected condition for doWhile");
firstRun = m_context.newYulVariable();
m_code << "let " << firstRun << " := 1\n";
}
m_code << "for {\n";
if (_initExpression)
_initExpression->accept(*this);
m_code << "} return_flag {\n";
if (_loopExpression)
_loopExpression->accept(*this);
m_code << "}\n";
m_code << "{\n";
if (_conditionExpression)
{
if (_isDoWhile)
m_code << "if iszero(" << firstRun << ") {\n";
_conditionExpression->accept(*this);
m_code <<
"if iszero(" <<
expressionAsType(*_conditionExpression, *TypeProvider::boolean()) <<
") { break }\n";
if (_isDoWhile)
m_code << "}\n" << firstRun << " := 0\n";
}
_body.accept(*this);
m_code << "}\n";
// Bubble up the return condition.
m_code << "if iszero(return_flag) { break }\n";
}
Type const& IRGeneratorForStatements::type(Expression const& _expression)
{
solAssert(_expression.annotation().type, "Type of expression not set.");
return *_expression.annotation().type;
}