solidity/libsolidity/analysis/ConstantEvaluator.cpp

201 lines
5.9 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* @author Christian <c@ethdev.com>
* @date 2015
* Evaluator for types of constant expressions.
*/
#include <libsolidity/analysis/ConstantEvaluator.h>
#include <libsolidity/ast/AST.h>
#include <libsolidity/ast/TypeProvider.h>
#include <liblangutil/ErrorReporter.h>
#include <libsolutil/Common.h>
using namespace solidity;
using namespace solidity::frontend;
using namespace solidity::langutil;
using std::optional;
using std::nullopt;
using std::string;
void ConstantEvaluator::endVisit(UnaryOperation const& _operation)
{
if (auto const sub = result(_operation.subExpression()); sub.has_value())
{
auto const res = sub.value().type->unaryOperatorResult(_operation.getOperator());
if (auto const rationalType = dynamic_cast<RationalNumberType const*>(res.get()))
{
auto const subType = sub.value().type;
if (subType && subType->category() == Type::Category::Integer)
{
rational const frac = rationalType->value();
bigint const num = frac.numerator() / frac.denominator();
setValue(_operation, rational(num, 1));
}
else
setValue(_operation, rationalType->value());
}
}
}
void ConstantEvaluator::endVisit(BinaryOperation const& _operation)
{
auto left = value(_operation.leftExpression());
auto right = value(_operation.rightExpression());
if (left && right)
{
TypePointer const commonType = TypeProvider::rationalNumber(*left)->binaryOperatorResult(
_operation.getOperator(),
TypeProvider::rationalNumber(*right)
);
auto const leftType = result(_operation.leftExpression()).value().type;
auto const rightType = result(_operation.rightExpression()).value().type;
if (!commonType)
m_errorReporter.fatalTypeError(
6020_error,
_operation.location(),
"Operator " +
string(TokenTraits::toString(_operation.getOperator())) +
" not compatible with types " +
leftType->toString() +
" and " +
rightType->toString()
);
if (auto const rationalCommonType = dynamic_cast<RationalNumberType const*>(commonType))
{
if (leftType && leftType->category() == Type::Category::Integer &&
rightType && rightType->category() == Type::Category::Integer)
{
rational const frac = rationalCommonType->value();
bigint const num = frac.numerator() / frac.denominator();
setValue(_operation, rational(num, 1));
}
else
setValue(_operation, rationalCommonType->value());
}
// other types, such as BoolType are currently impossible to get, and in the old
// code, have been ignored, too.
// When we want to widen the constexpr support in Solidity, then we
// need to touch here, too.
}
}
void ConstantEvaluator::endVisit(Literal const& _literal)
{
auto const literalType = TypeProvider::forLiteral(_literal);
if (auto const p = dynamic_cast<RationalNumberType const*>(literalType))
setResult(_literal, TypedValue{literalType, p->value()});
}
bool ConstantEvaluator::evaluated(ASTNode const& _node) const noexcept
{
return m_evaluations.count(&_node) != 0;
}
void ConstantEvaluator::endVisit(Identifier const& _identifier)
{
VariableDeclaration const* variableDeclaration = dynamic_cast<VariableDeclaration const*>(_identifier.annotation().referencedDeclaration);
if (!variableDeclaration)
return;
if (!variableDeclaration->isConstant())
return;
ASTPointer<Expression> const& value = variableDeclaration->value();
if (!value)
return;
else if (!evaluated(*value))
{
if (m_depth > 32)
m_errorReporter.fatalTypeError(5210_error, _identifier.location(), "Cyclic constant definition (or maximum recursion depth exhausted).");
evaluate(*value);
}
// Link LHS's identifier to the evaluation result of the RHS expression.
if (auto const resultOpt = result(*value); resultOpt.has_value())
setResult(_identifier, TypedValue{variableDeclaration->annotation().type, resultOpt.value().value});
}
void ConstantEvaluator::endVisit(TupleExpression const& _tuple) // TODO: do we actually ever need this code path here?
{
if (!_tuple.isInlineArray() && _tuple.components().size() == 1)
if (auto v = value(*_tuple.components().front()); v.has_value())
setValue(_tuple, v.value());
}
void ConstantEvaluator::setResult(ASTNode const& _node, optional<ConstantEvaluator::TypedValue> _result)
{
if (_result.has_value())
{
auto const type = _result.value().type;
auto const value = _result.value().value;
m_evaluations[&_node] = {type, value};
}
}
optional<ConstantEvaluator::TypedValue> ConstantEvaluator::result(ASTNode const& _node)
{
if (auto p = m_evaluations.find(&_node); p != m_evaluations.end())
return {p->second};
return nullopt;
}
TypePointer ConstantEvaluator::type(ASTNode const& _node)
{
if (auto p = m_evaluations.find(&_node); p != m_evaluations.end())
return p->second.type;
return nullptr;
}
optional<rational> ConstantEvaluator::value(ASTNode const& _node)
{
if (auto p = m_evaluations.find(&_node); p != m_evaluations.end())
return p->second.value;
return nullopt;
}
std::optional<rational> ConstantEvaluator::evaluate(langutil::ErrorReporter& _errorReporter, Expression const& _expr)
{
EvaluationMap evaluations;
ConstantEvaluator evaluator(_errorReporter, evaluations);
return evaluator.evaluate(_expr);
}
std::optional<rational> ConstantEvaluator::evaluate(Expression const& _expr)
{
m_depth++;
ScopeGuard _([&]() { m_depth--; });
_expr.accept(*this);
return value(_expr);
}