solidity/libyul/optimiser/FullInliner.cpp
Jun Zhang c2362c3362
Purge using namespace std from libyul/optimiser
Signed-off-by: Jun Zhang <jun@junz.org>
2023-08-28 21:14:56 +08:00

374 lines
12 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* Optimiser component that performs function inlining for arbitrary functions.
*/
#include <libyul/optimiser/FullInliner.h>
#include <libyul/optimiser/ASTCopier.h>
#include <libyul/optimiser/CallGraphGenerator.h>
#include <libyul/optimiser/FunctionCallFinder.h>
#include <libyul/optimiser/NameCollector.h>
#include <libyul/optimiser/Metrics.h>
#include <libyul/optimiser/SSAValueTracker.h>
#include <libyul/optimiser/Semantics.h>
#include <libyul/optimiser/CallGraphGenerator.h>
#include <libyul/backends/evm/EVMDialect.h>
#include <libyul/Exceptions.h>
#include <libyul/AST.h>
#include <libyul/Dialect.h>
#include <libsolutil/CommonData.h>
#include <libsolutil/Visitor.h>
#include <range/v3/action/remove.hpp>
#include <range/v3/view/reverse.hpp>
#include <range/v3/view/zip.hpp>
using namespace solidity;
using namespace solidity::yul;
void FullInliner::run(OptimiserStepContext& _context, Block& _ast)
{
FullInliner inliner{_ast, _context.dispenser, _context.dialect};
inliner.run(Pass::InlineTiny);
inliner.run(Pass::InlineRest);
}
FullInliner::FullInliner(Block& _ast, NameDispenser& _dispenser, Dialect const& _dialect):
m_ast(_ast),
m_recursiveFunctions(CallGraphGenerator::callGraph(_ast).recursiveFunctions()),
m_nameDispenser(_dispenser),
m_dialect(_dialect)
{
// Determine constants
SSAValueTracker tracker;
tracker(m_ast);
for (auto const& ssaValue: tracker.values())
if (ssaValue.second && std::holds_alternative<Literal>(*ssaValue.second))
m_constants.emplace(ssaValue.first);
// Store size of global statements.
m_functionSizes[YulString{}] = CodeSize::codeSize(_ast);
std::map<YulString, size_t> references = ReferencesCounter::countReferences(m_ast);
for (auto& statement: m_ast.statements)
{
if (!std::holds_alternative<FunctionDefinition>(statement))
continue;
FunctionDefinition& fun = std::get<FunctionDefinition>(statement);
m_functions[fun.name] = &fun;
if (LeaveFinder::containsLeave(fun))
m_noInlineFunctions.insert(fun.name);
// Always inline functions that are only called once.
if (references[fun.name] == 1)
m_singleUse.emplace(fun.name);
updateCodeSize(fun);
}
// Check for memory guard.
std::vector<FunctionCall*> memoryGuardCalls = FunctionCallFinder::run(
_ast,
"memoryguard"_yulstring
);
// We will perform less aggressive inlining, if no ``memoryguard`` call is found.
if (!memoryGuardCalls.empty())
m_hasMemoryGuard = true;
}
void FullInliner::run(Pass _pass)
{
m_pass = _pass;
// Note that the order of inlining can result in very different code.
// Since AST IDs and thus function names depend on whether or not a contract
// is compiled together with other source files, a change in AST IDs
// should have as little an impact as possible. This is the case
// if we handle inlining in source (and thus, for the IR generator,
// function name) order.
// We use stable_sort below to keep the inlining order of two functions
// with the same depth.
std::map<YulString, size_t> depths = callDepths();
std::vector<FunctionDefinition*> functions;
for (auto& statement: m_ast.statements)
if (std::holds_alternative<FunctionDefinition>(statement))
functions.emplace_back(&std::get<FunctionDefinition>(statement));
std::stable_sort(functions.begin(), functions.end(), [depths](
FunctionDefinition const* _a,
FunctionDefinition const* _b
) {
return depths.at(_a->name) < depths.at(_b->name);
});
for (FunctionDefinition* fun: functions)
{
handleBlock(fun->name, fun->body);
updateCodeSize(*fun);
}
for (auto& statement: m_ast.statements)
if (std::holds_alternative<Block>(statement))
handleBlock({}, std::get<Block>(statement));
}
std::map<YulString, size_t> FullInliner::callDepths() const
{
CallGraph cg = CallGraphGenerator::callGraph(m_ast);
cg.functionCalls.erase(""_yulstring);
// Remove calls to builtin functions.
for (auto& call: cg.functionCalls)
for (auto it = call.second.begin(); it != call.second.end();)
if (m_dialect.builtin(*it))
it = call.second.erase(it);
else
++it;
std::map<YulString, size_t> depths;
size_t currentDepth = 0;
while (true)
{
std::vector<YulString> removed;
for (auto it = cg.functionCalls.begin(); it != cg.functionCalls.end();)
{
auto const& [fun, callees] = *it;
if (callees.empty())
{
removed.emplace_back(fun);
depths[fun] = currentDepth;
it = cg.functionCalls.erase(it);
}
else
++it;
}
for (auto& call: cg.functionCalls)
for (YulString toBeRemoved: removed)
ranges::actions::remove(call.second, toBeRemoved);
currentDepth++;
if (removed.empty())
break;
}
// Only recursive functions left here.
for (auto const& fun: cg.functionCalls)
depths[fun.first] = currentDepth;
return depths;
}
bool FullInliner::shallInline(FunctionCall const& _funCall, YulString _callSite)
{
// No recursive inlining
if (_funCall.functionName.name == _callSite)
return false;
FunctionDefinition* calledFunction = function(_funCall.functionName.name);
if (!calledFunction)
return false;
if (m_noInlineFunctions.count(_funCall.functionName.name) || recursive(*calledFunction))
return false;
// No inlining of calls where argument expressions may have side-effects.
// To avoid running into this, make sure that ExpressionSplitter runs before FullInliner.
for (auto const& argument: _funCall.arguments)
if (!std::holds_alternative<Literal>(argument) && !std::holds_alternative<Identifier>(argument))
return false;
// Inline really, really tiny functions
size_t size = m_functionSizes.at(calledFunction->name);
if (size <= 1)
return true;
// In the first pass, only inline tiny functions.
if (m_pass == Pass::InlineTiny)
return false;
bool aggressiveInlining = true;
if (
EVMDialect const* evmDialect = dynamic_cast<EVMDialect const*>(&m_dialect);
!evmDialect || !evmDialect->providesObjectAccess() || evmDialect->evmVersion() <= langutil::EVMVersion::homestead()
)
// No aggressive inlining with the old code transform.
aggressiveInlining = false;
// No aggressive inlining, if we cannot perform stack-to-memory.
if (!m_hasMemoryGuard || m_recursiveFunctions.count(_callSite))
aggressiveInlining = false;
if (!aggressiveInlining && m_functionSizes.at(_callSite) > 45)
return false;
if (m_singleUse.count(calledFunction->name))
return true;
// Constant arguments might provide a means for further optimization, so they cause a bonus.
bool constantArg = false;
for (auto const& argument: _funCall.arguments)
if (std::holds_alternative<Literal>(argument) || (
std::holds_alternative<Identifier>(argument) &&
m_constants.count(std::get<Identifier>(argument).name)
))
{
constantArg = true;
break;
}
return (size < (aggressiveInlining ? 8u : 6u) || (constantArg && size < (aggressiveInlining ? 16u : 12u)));
}
void FullInliner::tentativelyUpdateCodeSize(YulString _function, YulString _callSite)
{
m_functionSizes.at(_callSite) += m_functionSizes.at(_function);
}
void FullInliner::updateCodeSize(FunctionDefinition const& _fun)
{
m_functionSizes[_fun.name] = CodeSize::codeSize(_fun.body);
}
void FullInliner::handleBlock(YulString _currentFunctionName, Block& _block)
{
InlineModifier{*this, m_nameDispenser, _currentFunctionName, m_dialect}(_block);
}
bool FullInliner::recursive(FunctionDefinition const& _fun) const
{
std::map<YulString, size_t> references = ReferencesCounter::countReferences(_fun);
return references[_fun.name] > 0;
}
void InlineModifier::operator()(Block& _block)
{
std::function<std::optional<std::vector<Statement>>(Statement&)> f = [&](Statement& _statement) -> std::optional<std::vector<Statement>> {
visit(_statement);
return tryInlineStatement(_statement);
};
util::iterateReplacing(_block.statements, f);
}
std::optional<std::vector<Statement>> InlineModifier::tryInlineStatement(Statement& _statement)
{
// Only inline for expression statements, assignments and variable declarations.
Expression* e = std::visit(util::GenericVisitor{
util::VisitorFallback<Expression*>{},
[](ExpressionStatement& _s) { return &_s.expression; },
[](Assignment& _s) { return _s.value.get(); },
[](VariableDeclaration& _s) { return _s.value.get(); }
}, _statement);
if (e)
{
// Only inline direct function calls.
FunctionCall* funCall = std::visit(util::GenericVisitor{
util::VisitorFallback<FunctionCall*>{},
[](FunctionCall& _e) { return &_e; }
}, *e);
if (funCall && m_driver.shallInline(*funCall, m_currentFunction))
return performInline(_statement, *funCall);
}
return {};
}
std::vector<Statement> InlineModifier::performInline(Statement& _statement, FunctionCall& _funCall)
{
std::vector<Statement> newStatements;
std::map<YulString, YulString> variableReplacements;
FunctionDefinition* function = m_driver.function(_funCall.functionName.name);
assertThrow(!!function, OptimizerException, "Attempt to inline invalid function.");
m_driver.tentativelyUpdateCodeSize(function->name, m_currentFunction);
// helper function to create a new variable that is supposed to model
// an existing variable.
auto newVariable = [&](TypedName const& _existingVariable, Expression* _value) {
YulString newName = m_nameDispenser.newName(_existingVariable.name);
variableReplacements[_existingVariable.name] = newName;
VariableDeclaration varDecl{_funCall.debugData, {{_funCall.debugData, newName, _existingVariable.type}}, {}};
if (_value)
varDecl.value = std::make_unique<Expression>(std::move(*_value));
else
varDecl.value = std::make_unique<Expression>(m_dialect.zeroLiteralForType(varDecl.variables.front().type));
newStatements.emplace_back(std::move(varDecl));
};
for (auto&& [parameter, argument]: ranges::views::zip(function->parameters, _funCall.arguments) | ranges::views::reverse)
newVariable(parameter, &argument);
for (auto const& var: function->returnVariables)
newVariable(var, nullptr);
Statement newBody = BodyCopier(m_nameDispenser, variableReplacements)(function->body);
newStatements += std::move(std::get<Block>(newBody).statements);
std::visit(util::GenericVisitor{
util::VisitorFallback<>{},
[&](Assignment& _assignment)
{
for (size_t i = 0; i < _assignment.variableNames.size(); ++i)
newStatements.emplace_back(Assignment{
_assignment.debugData,
{_assignment.variableNames[i]},
std::make_unique<Expression>(Identifier{
_assignment.debugData,
variableReplacements.at(function->returnVariables[i].name)
})
});
},
[&](VariableDeclaration& _varDecl)
{
for (size_t i = 0; i < _varDecl.variables.size(); ++i)
newStatements.emplace_back(VariableDeclaration{
_varDecl.debugData,
{std::move(_varDecl.variables[i])},
std::make_unique<Expression>(Identifier{
_varDecl.debugData,
variableReplacements.at(function->returnVariables[i].name)
})
});
}
// nothing to be done for expression statement
}, _statement);
return newStatements;
}
Statement BodyCopier::operator()(VariableDeclaration const& _varDecl)
{
for (auto const& var: _varDecl.variables)
m_variableReplacements[var.name] = m_nameDispenser.newName(var.name);
return ASTCopier::operator()(_varDecl);
}
Statement BodyCopier::operator()(FunctionDefinition const&)
{
assertThrow(false, OptimizerException, "Function hoisting has to be done before function inlining.");
return {};
}
YulString BodyCopier::translateIdentifier(YulString _name)
{
if (m_variableReplacements.count(_name))
return m_variableReplacements.at(_name);
else
return _name;
}