solidity/libsolidity/formal/Predicate.cpp
2021-07-14 15:12:10 +02:00

540 lines
17 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <libsolidity/formal/Predicate.h>
#include <libsolidity/formal/SMTEncoder.h>
#include <liblangutil/CharStreamProvider.h>
#include <liblangutil/CharStream.h>
#include <libsolidity/ast/AST.h>
#include <libsolidity/ast/TypeProvider.h>
#include <boost/algorithm/string/join.hpp>
#include <range/v3/view.hpp>
#include <utility>
using namespace std;
using namespace solidity;
using namespace solidity::smtutil;
using namespace solidity::frontend;
using namespace solidity::frontend::smt;
map<string, Predicate> Predicate::m_predicates;
Predicate const* Predicate::create(
SortPointer _sort,
string _name,
PredicateType _type,
EncodingContext& _context,
ASTNode const* _node,
ContractDefinition const* _contractContext,
vector<ScopeOpener const*> _scopeStack
)
{
smt::SymbolicFunctionVariable predicate{_sort, move(_name), _context};
string functorName = predicate.currentName();
solAssert(!m_predicates.count(functorName), "");
return &m_predicates.emplace(
std::piecewise_construct,
std::forward_as_tuple(functorName),
std::forward_as_tuple(move(predicate), _type, _node, _contractContext, move(_scopeStack))
).first->second;
}
Predicate::Predicate(
smt::SymbolicFunctionVariable&& _predicate,
PredicateType _type,
ASTNode const* _node,
ContractDefinition const* _contractContext,
vector<ScopeOpener const*> _scopeStack
):
m_predicate(move(_predicate)),
m_type(_type),
m_node(_node),
m_contractContext(_contractContext),
m_scopeStack(_scopeStack)
{
}
Predicate const* Predicate::predicate(string const& _name)
{
return &m_predicates.at(_name);
}
void Predicate::reset()
{
m_predicates.clear();
}
smtutil::Expression Predicate::operator()(vector<smtutil::Expression> const& _args) const
{
return m_predicate(_args);
}
smtutil::Expression Predicate::functor() const
{
return m_predicate.currentFunctionValue();
}
smtutil::Expression Predicate::functor(unsigned _idx) const
{
return m_predicate.functionValueAtIndex(_idx);
}
void Predicate::newFunctor()
{
m_predicate.increaseIndex();
}
ASTNode const* Predicate::programNode() const
{
return m_node;
}
ContractDefinition const* Predicate::contextContract() const
{
return m_contractContext;
}
ContractDefinition const* Predicate::programContract() const
{
if (auto const* contract = dynamic_cast<ContractDefinition const*>(m_node))
if (!contract->constructor())
return contract;
return nullptr;
}
FunctionDefinition const* Predicate::programFunction() const
{
if (auto const* contract = dynamic_cast<ContractDefinition const*>(m_node))
{
if (contract->constructor())
return contract->constructor();
return nullptr;
}
if (auto const* fun = dynamic_cast<FunctionDefinition const*>(m_node))
return fun;
return nullptr;
}
FunctionCall const* Predicate::programFunctionCall() const
{
return dynamic_cast<FunctionCall const*>(m_node);
}
optional<vector<VariableDeclaration const*>> Predicate::stateVariables() const
{
if (m_contractContext)
return SMTEncoder::stateVariablesIncludingInheritedAndPrivate(*m_contractContext);
return nullopt;
}
bool Predicate::isSummary() const
{
return isFunctionSummary() ||
isInternalCall() ||
isExternalCallTrusted() ||
isExternalCallUntrusted() ||
isConstructorSummary();
}
bool Predicate::isFunctionSummary() const
{
return m_type == PredicateType::FunctionSummary;
}
bool Predicate::isFunctionBlock() const
{
return m_type == PredicateType::FunctionBlock;
}
bool Predicate::isFunctionErrorBlock() const
{
return m_type == PredicateType::FunctionErrorBlock;
}
bool Predicate::isInternalCall() const
{
return m_type == PredicateType::InternalCall;
}
bool Predicate::isExternalCallTrusted() const
{
return m_type == PredicateType::ExternalCallTrusted;
}
bool Predicate::isExternalCallUntrusted() const
{
return m_type == PredicateType::ExternalCallUntrusted;
}
bool Predicate::isConstructorSummary() const
{
return m_type == PredicateType::ConstructorSummary;
}
bool Predicate::isInterface() const
{
return m_type == PredicateType::Interface;
}
string Predicate::formatSummaryCall(
vector<smtutil::Expression> const& _args,
langutil::CharStreamProvider const& _charStreamProvider
) const
{
solAssert(isSummary(), "");
if (auto funCall = programFunctionCall())
{
if (funCall->location().hasText())
return string(_charStreamProvider.charStream(*funCall->location().sourceName).text(funCall->location()));
else
return {};
}
/// The signature of a function summary predicate is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockChainState, preStateVars, preInputVars, postBlockchainState, postStateVars, postInputVars, outputVars).
/// Here we are interested in preInputVars to format the function call,
/// and in txData to retrieve `msg.value`.
string value;
if (auto v = readTxVars(_args.at(4)).at("msg.value"))
{
bigint x(*v);
if (x > 0)
value = "{ value: " + *v + " }";
}
if (auto contract = programContract())
return contract->name() + ".constructor()" + value;
auto stateVars = stateVariables();
solAssert(stateVars.has_value(), "");
auto const* fun = programFunction();
solAssert(fun, "");
auto first = _args.begin() + 6 + static_cast<int>(stateVars->size());
auto last = first + static_cast<int>(fun->parameters().size());
solAssert(first >= _args.begin() && first <= _args.end(), "");
solAssert(last >= _args.begin() && last <= _args.end(), "");
auto inTypes = FunctionType(*fun).parameterTypes();
vector<optional<string>> functionArgsCex = formatExpressions(vector<smtutil::Expression>(first, last), inTypes);
vector<string> functionArgs;
auto const& params = fun->parameters();
solAssert(params.size() == functionArgsCex.size(), "");
for (unsigned i = 0; i < params.size(); ++i)
if (params.at(i) && functionArgsCex.at(i))
functionArgs.emplace_back(*functionArgsCex.at(i));
else
functionArgs.emplace_back(params[i]->name());
string fName = fun->isConstructor() ? "constructor" :
fun->isFallback() ? "fallback" :
fun->isReceive() ? "receive" :
fun->name();
string prefix;
if (fun->isFree())
prefix = !fun->sourceUnitName().empty() ? (fun->sourceUnitName() + ":") : "";
else
{
solAssert(fun->annotation().contract, "");
prefix = fun->annotation().contract->name() + ".";
}
return prefix + fName + "(" + boost::algorithm::join(functionArgs, ", ") + ")" + value;
}
vector<optional<string>> Predicate::summaryStateValues(vector<smtutil::Expression> const& _args) const
{
/// The signature of a function summary predicate is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockchainState, preStateVars, preInputVars, postBlockchainState, postStateVars, postInputVars, outputVars).
/// The signature of the summary predicate of a contract without constructor is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockchainState, postBlockchainState, preStateVars, postStateVars).
/// Here we are interested in postStateVars.
auto stateVars = stateVariables();
solAssert(stateVars.has_value(), "");
vector<smtutil::Expression>::const_iterator stateFirst;
vector<smtutil::Expression>::const_iterator stateLast;
if (auto const* function = programFunction())
{
stateFirst = _args.begin() + 6 + static_cast<int>(stateVars->size()) + static_cast<int>(function->parameters().size()) + 1;
stateLast = stateFirst + static_cast<int>(stateVars->size());
}
else if (programContract())
{
stateFirst = _args.begin() + 7 + static_cast<int>(stateVars->size());
stateLast = stateFirst + static_cast<int>(stateVars->size());
}
else
solAssert(false, "");
solAssert(stateFirst >= _args.begin() && stateFirst <= _args.end(), "");
solAssert(stateLast >= _args.begin() && stateLast <= _args.end(), "");
vector<smtutil::Expression> stateArgs(stateFirst, stateLast);
solAssert(stateArgs.size() == stateVars->size(), "");
auto stateTypes = applyMap(*stateVars, [&](auto const& _var) { return _var->type(); });
return formatExpressions(stateArgs, stateTypes);
}
vector<optional<string>> Predicate::summaryPostInputValues(vector<smtutil::Expression> const& _args) const
{
/// The signature of a function summary predicate is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockchainState, preStateVars, preInputVars, postBlockchainState, postStateVars, postInputVars, outputVars).
/// Here we are interested in postInputVars.
auto const* function = programFunction();
solAssert(function, "");
auto stateVars = stateVariables();
solAssert(stateVars.has_value(), "");
auto const& inParams = function->parameters();
auto first = _args.begin() + 6 + static_cast<int>(stateVars->size()) * 2 + static_cast<int>(inParams.size()) + 1;
auto last = first + static_cast<int>(inParams.size());
solAssert(first >= _args.begin() && first <= _args.end(), "");
solAssert(last >= _args.begin() && last <= _args.end(), "");
vector<smtutil::Expression> inValues(first, last);
solAssert(inValues.size() == inParams.size(), "");
auto inTypes = FunctionType(*function).parameterTypes();
return formatExpressions(inValues, inTypes);
}
vector<optional<string>> Predicate::summaryPostOutputValues(vector<smtutil::Expression> const& _args) const
{
/// The signature of a function summary predicate is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockchainState, preStateVars, preInputVars, postBlockchainState, postStateVars, postInputVars, outputVars).
/// Here we are interested in outputVars.
auto const* function = programFunction();
solAssert(function, "");
auto stateVars = stateVariables();
solAssert(stateVars.has_value(), "");
auto const& inParams = function->parameters();
auto first = _args.begin() + 6 + static_cast<int>(stateVars->size()) * 2 + static_cast<int>(inParams.size()) * 2 + 1;
solAssert(first >= _args.begin() && first <= _args.end(), "");
vector<smtutil::Expression> outValues(first, _args.end());
solAssert(outValues.size() == function->returnParameters().size(), "");
auto outTypes = FunctionType(*function).returnParameterTypes();
return formatExpressions(outValues, outTypes);
}
pair<vector<optional<string>>, vector<VariableDeclaration const*>> Predicate::localVariableValues(vector<smtutil::Expression> const& _args) const
{
/// The signature of a local block predicate is:
/// block(error, this, abiFunctions, cryptoFunctions, txData, preBlockchainState, preStateVars, preInputVars, postBlockchainState, postStateVars, postInputVars, outputVars, localVars).
/// Here we are interested in localVars.
auto const* function = programFunction();
solAssert(function, "");
auto const& localVars = SMTEncoder::localVariablesIncludingModifiers(*function, m_contractContext);
auto first = _args.end() - static_cast<int>(localVars.size());
vector<smtutil::Expression> outValues(first, _args.end());
auto mask = applyMap(
localVars,
[this](auto _var) {
auto varScope = dynamic_cast<ScopeOpener const*>(_var->scope());
return find(begin(m_scopeStack), end(m_scopeStack), varScope) != end(m_scopeStack);
}
);
auto localVarsInScope = util::filter(localVars, mask);
auto outValuesInScope = util::filter(outValues, mask);
auto outTypes = applyMap(localVarsInScope, [](auto _var) { return _var->type(); });
return {formatExpressions(outValuesInScope, outTypes), localVarsInScope};
}
vector<optional<string>> Predicate::formatExpressions(vector<smtutil::Expression> const& _exprs, vector<Type const*> const& _types) const
{
solAssert(_exprs.size() == _types.size(), "");
vector<optional<string>> strExprs;
for (unsigned i = 0; i < _exprs.size(); ++i)
strExprs.push_back(expressionToString(_exprs.at(i), _types.at(i)));
return strExprs;
}
optional<string> Predicate::expressionToString(smtutil::Expression const& _expr, Type const* _type) const
{
if (smt::isNumber(*_type))
{
solAssert(_expr.sort->kind == Kind::Int, "");
solAssert(_expr.arguments.empty(), "");
// TODO assert that _expr.name is a number.
return _expr.name;
}
if (smt::isBool(*_type))
{
solAssert(_expr.sort->kind == Kind::Bool, "");
solAssert(_expr.arguments.empty(), "");
solAssert(_expr.name == "true" || _expr.name == "false", "");
return _expr.name;
}
if (smt::isFunction(*_type))
{
solAssert(_expr.arguments.empty(), "");
return _expr.name;
}
if (smt::isArray(*_type))
{
auto const& arrayType = dynamic_cast<ArrayType const&>(*_type);
if (_expr.name != "tuple_constructor")
return {};
auto const& tupleSort = dynamic_cast<TupleSort const&>(*_expr.sort);
solAssert(tupleSort.components.size() == 2, "");
unsigned long length;
try
{
length = stoul(_expr.arguments.at(1).name);
}
catch(out_of_range const&)
{
return {};
}
catch(invalid_argument const&)
{
return {};
}
// Limit this counterexample size to 1k.
// Some OSs give you "unlimited" memory through swap and other virtual memory,
// so purely relying on bad_alloc being thrown is not a good idea.
// In that case, the array allocation might cause OOM and the program is killed.
if (length >= 1024)
return {};
try
{
vector<string> array(length);
if (!fillArray(_expr.arguments.at(0), array, arrayType))
return {};
return "[" + boost::algorithm::join(array, ", ") + "]";
}
catch (bad_alloc const&)
{
// Solver gave a concrete array but length is too large.
}
}
if (smt::isNonRecursiveStruct(*_type))
{
auto const& structType = dynamic_cast<StructType const&>(*_type);
solAssert(_expr.name == "tuple_constructor", "");
auto const& tupleSort = dynamic_cast<TupleSort const&>(*_expr.sort);
auto members = structType.structDefinition().members();
solAssert(tupleSort.components.size() == members.size(), "");
solAssert(_expr.arguments.size() == members.size(), "");
vector<string> elements;
for (unsigned i = 0; i < members.size(); ++i)
{
optional<string> elementStr = expressionToString(_expr.arguments.at(i), members[i]->type());
elements.push_back(members[i]->name() + (elementStr.has_value() ? ": " + elementStr.value() : ""));
}
return "{" + boost::algorithm::join(elements, ", ") + "}";
}
return {};
}
bool Predicate::fillArray(smtutil::Expression const& _expr, vector<string>& _array, ArrayType const& _type) const
{
// Base case
if (_expr.name == "const_array")
{
auto length = _array.size();
optional<string> elemStr = expressionToString(_expr.arguments.at(1), _type.baseType());
if (!elemStr)
return false;
_array.clear();
_array.resize(length, *elemStr);
return true;
}
// Recursive case.
if (_expr.name == "store")
{
if (!fillArray(_expr.arguments.at(0), _array, _type))
return false;
optional<string> indexStr = expressionToString(_expr.arguments.at(1), TypeProvider::uint256());
if (!indexStr)
return false;
// Sometimes the solver assigns huge lengths that are not related,
// we should catch and ignore those.
unsigned long index;
try
{
index = stoul(*indexStr);
}
catch (out_of_range const&)
{
return true;
}
catch (invalid_argument const&)
{
return true;
}
optional<string> elemStr = expressionToString(_expr.arguments.at(2), _type.baseType());
if (!elemStr)
return false;
if (index < _array.size())
_array.at(index) = *elemStr;
return true;
}
// Special base case, not supported yet.
if (_expr.name.rfind("(_ as-array") == 0)
{
// Z3 expression representing reinterpretation of a different term as an array
return false;
}
solAssert(false, "");
}
map<string, optional<string>> Predicate::readTxVars(smtutil::Expression const& _tx) const
{
map<string, Type const*> const txVars{
{"block.chainid", TypeProvider::uint256()},
{"block.coinbase", TypeProvider::address()},
{"block.difficulty", TypeProvider::uint256()},
{"block.gaslimit", TypeProvider::uint256()},
{"block.number", TypeProvider::uint256()},
{"block.timestamp", TypeProvider::uint256()},
{"blockhash", TypeProvider::array(DataLocation::Memory, TypeProvider::uint256())},
{"msg.data", TypeProvider::bytesMemory()},
{"msg.sender", TypeProvider::address()},
{"msg.sig", TypeProvider::uint256()},
{"msg.value", TypeProvider::uint256()},
{"tx.gasprice", TypeProvider::uint256()},
{"tx.origin", TypeProvider::address()}
};
map<string, optional<string>> vars;
for (auto&& [i, v]: txVars | ranges::views::enumerate)
vars.emplace(v.first, expressionToString(_tx.arguments.at(i), v.second));
return vars;
}