mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
466 lines
17 KiB
C++
466 lines
17 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
// SPDX-License-Identifier: GPL-3.0
|
|
/**
|
|
* Stack layout generator for Yul to EVM code generation.
|
|
*/
|
|
|
|
#include <libyul/backends/evm/StackLayoutGenerator.h>
|
|
|
|
#include <libyul/backends/evm/StackHelpers.h>
|
|
|
|
#include <libsolutil/Algorithms.h>
|
|
#include <libsolutil/cxx20.h>
|
|
#include <libsolutil/Permutations.h>
|
|
#include <libsolutil/Visitor.h>
|
|
|
|
#include <range/v3/algorithm/any_of.hpp>
|
|
#include <range/v3/range/conversion.hpp>
|
|
#include <range/v3/view/all.hpp>
|
|
#include <range/v3/view/drop.hpp>
|
|
#include <range/v3/view/drop_last.hpp>
|
|
#include <range/v3/view/filter.hpp>
|
|
#include <range/v3/view/map.hpp>
|
|
#include <range/v3/view/reverse.hpp>
|
|
#include <range/v3/view/take.hpp>
|
|
#include <range/v3/view/transform.hpp>
|
|
|
|
using namespace solidity;
|
|
using namespace solidity::yul;
|
|
using namespace std;
|
|
|
|
StackLayoutGenerator::StackLayoutGenerator(StackLayout& _layout): m_layout(_layout)
|
|
{
|
|
}
|
|
|
|
namespace
|
|
{
|
|
struct PreviousSlot { size_t slot; };
|
|
|
|
// TODO: Rewrite this as custom algorithm matching createStackLayout exactly and make it work
|
|
// for all cases, including duplicates and removals of slots that can be generated on the fly, etc.
|
|
// After that the util::permute* functions can be removed.
|
|
Stack createIdealLayout(Stack const& _post, vector<variant<PreviousSlot, set<unsigned>>> layout)
|
|
{
|
|
util::permuteDup(static_cast<unsigned>(layout.size()), [&](unsigned _i) -> set<unsigned> {
|
|
// For call return values the target position is known.
|
|
if (set<unsigned>* pos = get_if<set<unsigned>>(&layout.at(_i)))
|
|
return *pos;
|
|
// Previous arguments can stay where they are.
|
|
return {_i};
|
|
}, [&](unsigned _i) {
|
|
std::swap(layout.back(), layout.at(layout.size() - _i - 1));
|
|
}, [&](unsigned _i) {
|
|
auto positions = get_if<set<unsigned>>(&layout.at(layout.size() - _i));
|
|
yulAssert(positions, "");
|
|
if (positions->count(static_cast<unsigned>(layout.size())))
|
|
{
|
|
positions->erase(static_cast<unsigned>(layout.size()));
|
|
layout.emplace_back(set<unsigned>{static_cast<unsigned>(layout.size())});
|
|
}
|
|
else
|
|
{
|
|
optional<unsigned> duppingOffset;
|
|
for (unsigned pos: *positions)
|
|
{
|
|
if (pos != layout.size() - _i)
|
|
{
|
|
duppingOffset = pos;
|
|
break;
|
|
}
|
|
}
|
|
yulAssert(duppingOffset, "");
|
|
positions->erase(*duppingOffset);
|
|
layout.emplace_back(set<unsigned>{*duppingOffset});
|
|
}
|
|
}, [&]() {
|
|
yulAssert(false, "");
|
|
}, [&]() {
|
|
layout.pop_back();
|
|
});
|
|
|
|
// Now we can construct the ideal layout before the operation.
|
|
// "layout" has the declared variables in the desired position and
|
|
// for any PreviousSlot{x}, x yields the ideal place of the slot before the declaration.
|
|
vector<optional<StackSlot>> idealLayout(_post.size(), nullopt);
|
|
for (auto const& [slot, idealPosition]: ranges::zip_view(_post, layout))
|
|
if (PreviousSlot* previousSlot = std::get_if<PreviousSlot>(&idealPosition))
|
|
idealLayout.at(previousSlot->slot) = slot;
|
|
|
|
while (!idealLayout.empty() && !idealLayout.back())
|
|
idealLayout.pop_back();
|
|
|
|
return idealLayout | ranges::views::transform([](optional<StackSlot> s) {
|
|
yulAssert(s, "");
|
|
return *s;
|
|
}) | ranges::to<Stack>;
|
|
}
|
|
}
|
|
|
|
Stack StackLayoutGenerator::propagateStackThroughOperation(Stack _exitStack, CFG::Operation const& _operation)
|
|
{
|
|
Stack& stack = _exitStack;
|
|
|
|
vector<set<unsigned>> targetPositions(_operation.output.size(), set<unsigned>{});
|
|
size_t numToKeep = 0;
|
|
for (size_t idx: ranges::views::iota(0u, targetPositions.size()))
|
|
for (unsigned offset: findAllOffsets(stack, _operation.output.at(idx)))
|
|
{
|
|
targetPositions[idx].emplace(offset);
|
|
++numToKeep;
|
|
}
|
|
|
|
auto layout = ranges::views::iota(0u, stack.size() - numToKeep) |
|
|
ranges::views::transform([](size_t _index) { return PreviousSlot{_index}; }) |
|
|
ranges::to<vector<variant<PreviousSlot, set<unsigned>>>>;
|
|
// The call produces values with known target positions.
|
|
layout += targetPositions;
|
|
|
|
stack = createIdealLayout(stack, layout);
|
|
|
|
if (auto const* assignment = get_if<CFG::Assignment>(&_operation.operation))
|
|
for (auto& stackSlot: stack)
|
|
if (auto const* varSlot = get_if<VariableSlot>(&stackSlot))
|
|
if (util::findOffset(assignment->variables, *varSlot))
|
|
stackSlot = JunkSlot{};
|
|
|
|
for (StackSlot const& input: _operation.input)
|
|
stack.emplace_back(input);
|
|
|
|
m_layout.operationEntryLayout[&_operation] = stack;
|
|
|
|
// TODO: We will potentially accumulate a lot of return labels here.
|
|
// Removing them naively has huge implications on both code size and runtime gas cost (both positive and negative):
|
|
// cxx20::erase_if(*m_stack, [](StackSlot const& _slot) { return holds_alternative<FunctionCallReturnLabelSlot>(_slot); });
|
|
// Consider removing them properly while accounting for the induced backwards stack shuffling.
|
|
|
|
// Remove anything from the stack top that can be freely generated or dupped from deeper on the stack.
|
|
while (!stack.empty() && (
|
|
canBeFreelyGenerated(stack.back()) ||
|
|
util::findOffset(stack | ranges::views::drop_last(1), stack.back())
|
|
))
|
|
stack.pop_back();
|
|
|
|
// TODO: suboptimal. Should account for induced stack shuffling.
|
|
// TODO: consider if we want this kind of compression at all, resp. whether stack.size() > 12 is a good condition.
|
|
if (stack.size() > 12)
|
|
stack = stack | ranges::views::enumerate | ranges::views::filter(util::mapTuple([&](size_t _index, StackSlot const& _slot) {
|
|
// Filter out slots that can be freely generated or are already present on the stack.
|
|
return !canBeFreelyGenerated(_slot) && !util::findOffset(stack | ranges::views::take(_index), _slot);
|
|
})) | ranges::views::values | ranges::to<Stack>;
|
|
return stack;
|
|
}
|
|
|
|
Stack StackLayoutGenerator::propagateStackThroughBlock(Stack _exitStack, CFG::BasicBlock const& _block)
|
|
{
|
|
Stack stack = std::move(_exitStack);
|
|
for (auto& operation: _block.operations | ranges::views::reverse)
|
|
stack = propagateStackThroughOperation(stack, operation);
|
|
return stack;
|
|
}
|
|
|
|
void StackLayoutGenerator::processEntryPoint(CFG::BasicBlock const& _entry)
|
|
{
|
|
std::list<CFG::BasicBlock const*> toVisit{&_entry};
|
|
std::set<CFG::BasicBlock const*> visited;
|
|
|
|
while (!toVisit.empty())
|
|
{
|
|
// TODO: calculate backwardsJumps only once.
|
|
std::list<std::pair<CFG::BasicBlock const*, CFG::BasicBlock const*>> backwardsJumps;
|
|
while (!toVisit.empty())
|
|
{
|
|
CFG::BasicBlock const *block = *toVisit.begin();
|
|
toVisit.pop_front();
|
|
|
|
if (visited.count(block))
|
|
continue;
|
|
|
|
if (std::optional<Stack> exitLayout = std::visit(util::GenericVisitor{
|
|
[&](CFG::BasicBlock::MainExit const&) -> std::optional<Stack>
|
|
{
|
|
visited.emplace(block);
|
|
return Stack{};
|
|
},
|
|
[&](CFG::BasicBlock::Jump const& _jump) -> std::optional<Stack>
|
|
{
|
|
if (_jump.backwards)
|
|
{
|
|
visited.emplace(block);
|
|
backwardsJumps.emplace_back(block, _jump.target);
|
|
if (auto* info = util::valueOrNullptr(m_layout.blockInfos, _jump.target))
|
|
return info->entryLayout;
|
|
return Stack{};
|
|
}
|
|
if (visited.count(_jump.target))
|
|
{
|
|
visited.emplace(block);
|
|
return m_layout.blockInfos.at(_jump.target).entryLayout;
|
|
}
|
|
toVisit.emplace_front(_jump.target);
|
|
return nullopt;
|
|
},
|
|
[&](CFG::BasicBlock::ConditionalJump const& _conditionalJump) -> std::optional<Stack>
|
|
{
|
|
bool zeroVisited = visited.count(_conditionalJump.zero);
|
|
bool nonZeroVisited = visited.count(_conditionalJump.nonZero);
|
|
if (zeroVisited && nonZeroVisited)
|
|
{
|
|
Stack stack = combineStack(
|
|
m_layout.blockInfos.at(_conditionalJump.zero).entryLayout,
|
|
m_layout.blockInfos.at(_conditionalJump.nonZero).entryLayout
|
|
);
|
|
stack.emplace_back(_conditionalJump.condition);
|
|
visited.emplace(block);
|
|
return stack;
|
|
}
|
|
if (!zeroVisited)
|
|
toVisit.emplace_front(_conditionalJump.zero);
|
|
if (!nonZeroVisited)
|
|
toVisit.emplace_front(_conditionalJump.nonZero);
|
|
return nullopt;
|
|
},
|
|
[&](CFG::BasicBlock::FunctionReturn const& _functionReturn) -> std::optional<Stack>
|
|
{
|
|
visited.emplace(block);
|
|
yulAssert(_functionReturn.info, "");
|
|
Stack stack = _functionReturn.info->returnVariables | ranges::views::transform([](auto const& _varSlot){
|
|
return StackSlot{_varSlot};
|
|
}) | ranges::to<Stack>;
|
|
stack.emplace_back(FunctionReturnLabelSlot{});
|
|
return stack;
|
|
},
|
|
[&](CFG::BasicBlock::Terminated const&) -> std::optional<Stack>
|
|
{
|
|
visited.emplace(block);
|
|
return Stack{};
|
|
},
|
|
}, block->exit))
|
|
{
|
|
// We can skip the visit, if we have seen this precise exit layout already last time.
|
|
// Note: if the entire graph is revisited in the backwards jump check below, doing
|
|
// this seems to break things; not sure why.
|
|
// Note: since I don't quite understand why doing this can break things, I comment
|
|
// it out for now, since not aborting in those cases should always be safe.
|
|
// if (auto* previousInfo = util::valueOrNullptr(m_layout.blockInfos, block))
|
|
// if (previousInfo->exitLayout == *exitLayout)
|
|
// continue;
|
|
auto& info = m_layout.blockInfos[block];
|
|
info.exitLayout = *exitLayout;
|
|
info.entryLayout = propagateStackThroughBlock(info.exitLayout, *block);
|
|
|
|
for (auto entry: block->entries)
|
|
toVisit.emplace_back(entry);
|
|
}
|
|
else
|
|
continue;
|
|
}
|
|
|
|
for (auto [block, target]: backwardsJumps)
|
|
if (ranges::any_of(
|
|
m_layout.blockInfos[target].entryLayout,
|
|
[exitLayout = m_layout.blockInfos[block].exitLayout](StackSlot const& _slot) {
|
|
return !util::findOffset(exitLayout, _slot);
|
|
}
|
|
))
|
|
{
|
|
// This block jumps backwards, but does not provide all slots required by the jump target on exit.
|
|
// Therefore we need to visit the subgraph between ``target`` and ``block`` again.
|
|
// In particular we can visit backwards starting from ``block`` and mark all entries to-be-visited-
|
|
// again until we hit ``target``.
|
|
toVisit.emplace_front(block);
|
|
// Since we are likely to change the entry layout of ``target``, we also visit its entries again.
|
|
for (CFG::BasicBlock const* entry: target->entries)
|
|
visited.erase(entry);
|
|
util::BreadthFirstSearch<CFG::BasicBlock const*>{{block}}.run(
|
|
[&visited, target = target](CFG::BasicBlock const* _block, auto _addChild) {
|
|
visited.erase(_block);
|
|
if (_block == target)
|
|
return;
|
|
for (auto const* entry: _block->entries)
|
|
_addChild(entry);
|
|
}
|
|
);
|
|
// TODO: while the above is enough, the layout of ``target`` might change in the process.
|
|
// While the shuffled layout for ``target`` will be compatible, it can be worthwhile propagating
|
|
// it further up once more.
|
|
// This would mean not stopping at _block == target above or even doing visited.clear() here, revisiting the entire graph.
|
|
// This is a tradeoff between the runtime of this process and the optimality of the result.
|
|
// Also note that while visiting the entire graph again *can* be helpful, it can also be detrimental.
|
|
// Also note that for some reason using visited.clear() is incompatible with skipping the revisit
|
|
// of already seen exit layouts above, I'm not sure yet why.
|
|
}
|
|
}
|
|
|
|
stitchConditionalJumps(_entry);
|
|
fixStackTooDeep(_entry);
|
|
}
|
|
|
|
Stack StackLayoutGenerator::combineStack(Stack const& _stack1, Stack const& _stack2)
|
|
{
|
|
if (_stack1.empty())
|
|
return _stack2;
|
|
if (_stack2.empty())
|
|
return _stack1;
|
|
|
|
// TODO: there is probably a better way than brute-forcing. This has n! complexity or worse, so
|
|
// we can't keep it like this.
|
|
|
|
Stack commonPrefix;
|
|
for (auto&& [slot1, slot2]: ranges::zip_view(_stack1, _stack2))
|
|
{
|
|
if (!(slot1 == slot2))
|
|
break;
|
|
commonPrefix.emplace_back(slot1);
|
|
}
|
|
Stack stack1Tail = _stack1 | ranges::views::drop(commonPrefix.size()) | ranges::to<Stack>;
|
|
Stack stack2Tail = _stack2 | ranges::views::drop(commonPrefix.size()) | ranges::to<Stack>;
|
|
|
|
Stack candidate;
|
|
for (auto slot: stack1Tail)
|
|
if (!util::findOffset(candidate, slot))
|
|
candidate.emplace_back(slot);
|
|
for (auto slot: stack2Tail)
|
|
if (!util::findOffset(candidate, slot))
|
|
candidate.emplace_back(slot);
|
|
cxx20::erase_if(candidate, [](StackSlot const& slot) {
|
|
return holds_alternative<LiteralSlot>(slot) || holds_alternative<FunctionCallReturnLabelSlot>(slot);
|
|
});
|
|
|
|
std::map<size_t, Stack> sortedCandidates;
|
|
|
|
// TODO: surprisingly this works for rather comparably large candidate size, but we should probably
|
|
// set up some limit, since this will quickly explode otherwise.
|
|
// Ideally we would then have a better fallback mechanism - although returning any naive union of both stacks
|
|
// like ``candidate`` itself may just be fine.
|
|
// if (candidate.size() > 8)
|
|
// return candidate;
|
|
|
|
auto evaluate = [&](Stack const& _candidate) -> size_t {
|
|
size_t numOps = 0;
|
|
Stack testStack = _candidate;
|
|
auto swap = [&](unsigned _swapDepth) { ++numOps; if (_swapDepth > 16) numOps += 1000; };
|
|
auto dup = [&](unsigned _dupDepth) { ++numOps; if (_dupDepth > 16) numOps += 1000; };
|
|
auto push = [&](StackSlot const& _slot) {
|
|
if (!canBeFreelyGenerated(_slot))
|
|
{
|
|
auto offsetInPrefix = util::findOffset(commonPrefix, _slot);
|
|
yulAssert(offsetInPrefix, "");
|
|
// Effectively this is a dup.
|
|
++numOps;
|
|
// TODO: Verify that this is correct. The idea is to penalize dupping stuff up that's too deep in
|
|
// the prefix at this point.
|
|
if (commonPrefix.size() + testStack.size() - *offsetInPrefix > 16)
|
|
numOps += 1000;
|
|
}
|
|
};
|
|
createStackLayout(testStack, stack1Tail, swap, dup, push, [&](){} );
|
|
testStack = _candidate;
|
|
createStackLayout(testStack, stack2Tail, swap, dup, push, [&](){});
|
|
return numOps;
|
|
};
|
|
|
|
// See https://en.wikipedia.org/wiki/Heap's_algorithm
|
|
size_t n = candidate.size();
|
|
sortedCandidates.insert(std::make_pair(evaluate(candidate), candidate));
|
|
std::vector<size_t> c(n, 0);
|
|
size_t i = 1;
|
|
while (i < n)
|
|
{
|
|
if (c[i] < i)
|
|
{
|
|
if (i & 1)
|
|
std::swap(candidate.front(), candidate[i]);
|
|
else
|
|
std::swap(candidate[c[i]], candidate[i]);
|
|
sortedCandidates.insert(std::make_pair(evaluate(candidate), candidate));
|
|
++c[i];
|
|
++i;
|
|
}
|
|
else
|
|
{
|
|
c[i] = 0;
|
|
++i;
|
|
}
|
|
}
|
|
|
|
return commonPrefix + sortedCandidates.begin()->second;
|
|
}
|
|
|
|
void StackLayoutGenerator::stitchConditionalJumps(CFG::BasicBlock const& _block)
|
|
{
|
|
util::BreadthFirstSearch<CFG::BasicBlock const*> breadthFirstSearch{{&_block}};
|
|
breadthFirstSearch.run([&](CFG::BasicBlock const* _block, auto _addChild) {
|
|
auto& info = m_layout.blockInfos.at(_block);
|
|
std::visit(util::GenericVisitor{
|
|
[&](CFG::BasicBlock::MainExit const&) {},
|
|
[&](CFG::BasicBlock::Jump const& _jump)
|
|
{
|
|
if (!_jump.backwards)
|
|
_addChild(_jump.target);
|
|
},
|
|
[&](CFG::BasicBlock::ConditionalJump const& _conditionalJump)
|
|
{
|
|
auto& zeroTargetInfo = m_layout.blockInfos.at(_conditionalJump.zero);
|
|
auto& nonZeroTargetInfo = m_layout.blockInfos.at(_conditionalJump.nonZero);
|
|
Stack exitLayout = info.exitLayout;
|
|
|
|
// The last block must have produced the condition at the stack top.
|
|
yulAssert(!exitLayout.empty(), "");
|
|
yulAssert(exitLayout.back() == _conditionalJump.condition, "");
|
|
// The condition is consumed by the jump.
|
|
exitLayout.pop_back();
|
|
|
|
auto fixJumpTargetEntry = [&](Stack const& _originalEntryLayout) -> Stack {
|
|
Stack newEntryLayout = exitLayout;
|
|
// Whatever the block being jumped to does not actually require, can be marked as junk.
|
|
for (auto& slot: newEntryLayout)
|
|
if (!util::findOffset(_originalEntryLayout, slot))
|
|
slot = JunkSlot{};
|
|
// Make sure everything the block being jumped to requires is actually present or can be generated.
|
|
for (auto const& slot: _originalEntryLayout)
|
|
yulAssert(canBeFreelyGenerated(slot) || util::findOffset(newEntryLayout, slot), "");
|
|
return newEntryLayout;
|
|
};
|
|
zeroTargetInfo.entryLayout = fixJumpTargetEntry(zeroTargetInfo.entryLayout);
|
|
nonZeroTargetInfo.entryLayout = fixJumpTargetEntry(nonZeroTargetInfo.entryLayout);
|
|
_addChild(_conditionalJump.zero);
|
|
_addChild(_conditionalJump.nonZero);
|
|
},
|
|
[&](CFG::BasicBlock::FunctionReturn const&) {},
|
|
[&](CFG::BasicBlock::Terminated const&) { },
|
|
}, _block->exit);
|
|
});
|
|
}
|
|
|
|
void StackLayoutGenerator::fixStackTooDeep(CFG::BasicBlock const&)
|
|
{
|
|
// TODO
|
|
}
|
|
|
|
StackLayout StackLayoutGenerator::run(CFG const& _dfg)
|
|
{
|
|
StackLayout stackLayout;
|
|
StackLayoutGenerator stackLayoutGenerator{stackLayout};
|
|
|
|
stackLayoutGenerator.processEntryPoint(*_dfg.entry);
|
|
for (auto& functionInfo: _dfg.functionInfo | ranges::views::values)
|
|
stackLayoutGenerator.processEntryPoint(*functionInfo.entry);
|
|
|
|
return stackLayout;
|
|
}
|