solidity/libsolutil/LP.cpp
2022-08-24 15:54:22 +02:00

840 lines
25 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <libsolutil/LP.h>
#ifndef LPIncremental
#include <libsolutil/CommonData.h>
#include <libsolutil/CommonIO.h>
#include <libsolutil/StringUtils.h>
#include <libsolutil/LinearExpression.h>
#include <libsolutil/cxx20.h>
#include <liblangutil/Exceptions.h>
#include <range/v3/view/enumerate.hpp>
#include <range/v3/view/reverse.hpp>
#include <range/v3/view/transform.hpp>
#include <range/v3/view/filter.hpp>
#include <range/v3/view/tail.hpp>
#include <range/v3/view/iota.hpp>
#include <range/v3/algorithm/all_of.hpp>
#include <range/v3/algorithm/any_of.hpp>
#include <range/v3/algorithm/max.hpp>
#include <range/v3/algorithm/count_if.hpp>
#include <range/v3/iterator/operations.hpp>
#include <boost/range/algorithm_ext/erase.hpp>
#include <optional>
#include <stack>
//#define DEBUG
using namespace std;
using namespace solidity;
using namespace solidity::util;
using rational = boost::rational<bigint>;
//#define DEBUG
namespace
{
/// Disjunctively combined two vectors of bools.
inline std::vector<bool>& operator|=(std::vector<bool>& _x, std::vector<bool> const& _y)
{
solAssert(_x.size() == _y.size(), "");
for (size_t i = 0; i < _x.size(); ++i)
if (_y[i])
_x[i] = true;
return _x;
}
string toString(rational const& _x)
{
if (_x == bigint(1) << 256)
return "2**256";
else if (_x == (bigint(1) << 256) - 1)
return "2**256-1";
else if (_x.denominator() == 1)
return ::toString(_x.numerator());
else
return ::toString(_x.numerator()) + "/" + ::toString(_x.denominator());
}
/*
string reasonToString(ReasonSet const& _reasons, size_t _minSize)
{
auto reasonsAsStrings = _reasons | ranges::views::transform([](size_t _r) { return to_string(_r); });
string result = "[" + joinHumanReadable(reasonsAsStrings) + "]";
if (result.size() < _minSize)
result.resize(_minSize, ' ');
return result;
}
*/
}
bool Constraint::operator<(Constraint const& _other) const
{
if (kind != _other.kind)
return kind < _other.kind;
for (size_t i = 0; i < max(data.size(), _other.data.size()); ++i)
if (rational diff = data.get(i) - _other.data.get(i))
{
//cerr << "Exit after " << i << endl;
return diff < 0;
}
//cerr << "full traversal of " << max(data.size(), _other.data.size()) << endl;
return false;
}
bool Constraint::operator==(Constraint const& _other) const
{
if (kind != _other.kind)
return false;
for (size_t i = 0; i < max(data.size(), _other.data.size()); ++i)
if (data.get(i) != _other.data.get(i))
{
//cerr << "Exit after " << i << endl;
return false;
}
//cerr << "full traversal of " << max(data.size(), _other.data.size()) << endl;
return true;
}
string RationalWithDelta::toString() const
{
string result = ::toString(m_main);
if (m_delta)
result +=
(m_delta > 0 ? "+" : "-") +
(abs(m_delta) == 1 ? "" : ::toString(abs(m_delta))) +
"d";
return result;
}
void LPSolver::addConstraint(Constraint const& _constraint, optional<size_t> _reason)
{
// TODO at this point, we could also determine if it is a fixed variable.
// (maybe even taking the bounds on existing variables into account)
// If we do this, we have to take reasons into account properly!
set<size_t> touchedProblems;
for (auto const& [index, entry]: _constraint.data.enumerateTail())
if (entry)
if (m_subProblemsPerVariable.count(index))
touchedProblems.emplace(m_subProblemsPerVariable.at(index));
if (touchedProblems.empty())
{
//cerr << "Creating new sub problem." << endl;
// TODO we could find an empty spot for the pointer.
m_subProblems.emplace_back(make_shared<SubProblem>());
solAssert(!m_subProblems.back()->sealed);
touchedProblems.emplace(m_subProblems.size() - 1);
}
for (size_t problemToErase: touchedProblems | ranges::views::tail | ranges::views::reverse)
combineSubProblems(*touchedProblems.begin(), problemToErase);
addConstraintToSubProblem(*touchedProblems.begin(), _constraint, move(_reason));
//cerr << "Added constraint:\n" << toString() << endl;
}
#ifdef DEBUG
void LPSolver::setVariableName(size_t _variable, string _name)
{
// TODO it might be constly to do this before we know hich variables relate to which
SubProblem& p = unsealForVariable(_variable);
p.variables[p.varMapping.at(_variable)].name = move(_name);
}
#else
void LPSolver::setVariableName(size_t _variable, string)
{
unsealForVariable(_variable);
}
#endif
void LPSolver::addLowerBound(size_t _variable, RationalWithDelta _bound, optional<size_t> _reason)
{
SubProblem& p = unsealForVariable(_variable);
size_t innerIndex = p.varMapping.at(_variable);
Variable& var = p.variables[innerIndex];
if (!var.bounds.lower || *var.bounds.lower < _bound)
{
var.bounds.lower = move(_bound);
var.bounds.lowerReason = move(_reason);
p.variablesPotentiallyOutOfBounds.insert(innerIndex);
}
}
void LPSolver::addUpperBound(size_t _variable, RationalWithDelta _bound, optional<size_t> _reason)
{
SubProblem& p = unsealForVariable(_variable);
size_t innerIndex = p.varMapping.at(_variable);
Variable& var = p.variables[innerIndex];
if (!var.bounds.upper || *var.bounds.upper > _bound)
{
var.bounds.upper = move(_bound);
var.bounds.upperReason = move(_reason);
p.variablesPotentiallyOutOfBounds.insert(innerIndex);
}
}
pair<LPResult, ReasonSet> LPSolver::check()
{
for (auto&& [index, problem]: m_subProblems | ranges::views::enumerate)
if (problem)
problem->sealed = true;
for (auto&& [index, problem]: m_subProblems | ranges::views::enumerate)
{
if (!problem)
continue;
if (!problem->result)
problem->result = problem->check();
if (*problem->result == LPResult::Infeasible)
return {LPResult::Infeasible, problem->reasons};
}
//cerr << "Feasible:\n" << toString() << endl;
return {LPResult::Feasible, {}};
}
string LPSolver::toString() const
{
string result = "LP Solver state:\n";
for (auto const& problem: m_subProblems)
if (problem)
result += problem->toString();
return result;
}
map<string, rational> LPSolver::model() const
{
map<string, rational> result;
#ifdef DEBUG
for (auto const& problem: m_subProblems)
if (problem)
for (auto&& [outerIndex, innerIndex]: problem->varMapping)
// TODO assign proper value to "delta"
result[problem->variables[innerIndex].name] =
problem->variables[innerIndex].value.m_main +
problem->variables[innerIndex].value.m_delta / rational(100000);
#endif
return result;
}
LPSolver::SubProblem& LPSolver::unseal(size_t _problemIndex)
{
shared_ptr<SubProblem>& problem = m_subProblems[_problemIndex];
solAssert(problem);
if (problem->sealed)
problem = make_shared<SubProblem>(*problem);
problem->sealed = false;
problem->result = nullopt;
problem->reasons.clear();
return *problem;
}
LPSolver::SubProblem& LPSolver::unsealForVariable(size_t _outerIndex)
{
if (!m_subProblemsPerVariable.count(_outerIndex))
{
m_subProblems.emplace_back(make_shared<SubProblem>());
addOuterVariableToSubProblem(m_subProblems.size() - 1, _outerIndex);
}
return unseal(m_subProblemsPerVariable.at(_outerIndex));
}
void LPSolver::combineSubProblems(size_t _combineInto, size_t _combineFrom)
{
//cerr << "Combining\n" << m_subProblems.at(_combineFrom)->toString();
//cerr << "\ninto\n" << m_subProblems.at(_combineInto)->toString();
SubProblem& combineInto = unseal(_combineInto);
SubProblem& combineFrom = *m_subProblems[_combineFrom];
size_t varShift = combineInto.variables.size();
#ifdef SPARSE
size_t rowShift = combineInto.factors.rows();
for (size_t row = 0; row < combineFrom.factors.rows(); row++)
for (auto&& entry: combineFrom.factors.iterateRow(row))
combineInto.factors.entry(entry.row + rowShift, entry.col + varShift).value = move(entry.value);
#else
size_t rowShift = combineInto.factors.size();
size_t newRowLength = combineInto.variables.size() + combineFrom.variables.size();
for (LinearExpression& row: combineInto.factors)
row.resize(newRowLength);
for (LinearExpression const& row: combineFrom.factors)
{
LinearExpression shiftedRow;
shiftedRow.resize(newRowLength);
for (auto&& [index, f]: row.enumerate())
shiftedRow[varShift + index] = f;
combineInto.factors.emplace_back(move(shiftedRow));
}
#endif
combineInto.variables += combineFrom.variables;
for (auto const& index: combineFrom.variablesPotentiallyOutOfBounds)
combineInto.variablesPotentiallyOutOfBounds.insert(index + varShift);
for (auto&& [index, row]: combineFrom.basicVariables)
combineInto.basicVariables.emplace(index + varShift, row + rowShift);
for (auto&& [outerIndex, innerIndex]: combineFrom.varMapping)
combineInto.varMapping.emplace(outerIndex, innerIndex + varShift);
for (auto& item: m_subProblemsPerVariable)
if (item.second == _combineFrom)
item.second = _combineInto;
m_subProblems[_combineFrom].reset();
//cerr << "result: \n" << m_subProblems.at(_combineInto)->toString();
//cerr << "------------------------------\n";
}
// TODO move this function into the problem struct and make it erturn set of vaiables added
void LPSolver::addConstraintToSubProblem(
size_t _subProblem,
Constraint const& _constraint,
std::optional<size_t> _reason
)
{
// TODO opt:
// Add "fixed variables" at general state (above sub problems)
// replace all fixed variables in constraint by their values
// If constaint is direct constraint on variable, just add it to its bounds
// If constraint results in variable being fixed,
// then push that to the general state as 'fixed variables'
// Remove the variable from the subproblem (so we can more efficiently split)
// If we remove the var, it is a bit more tricky because we have to store the reason
// together with the var.
SubProblem& problem = unseal(_subProblem);
size_t numVariables = 0;
size_t latestVariableIndex = size_t(-1);
// Make all variables available and check if it is a simple bound on a variable.
for (auto const& [index, entry]: _constraint.data.enumerateTail())
if (entry)
{
latestVariableIndex = index;
numVariables++;
if (!problem.varMapping.count(index))
addOuterVariableToSubProblem(_subProblem, index);
}
if (numVariables == 1)
{
// Add this as direct bound.
// TODO we could avoid some of the steps by introducing an "addUpperBound"
// function on the subproblem.
rational factor = _constraint.data[latestVariableIndex];
RationalWithDelta bound = _constraint.data.front();
if (_constraint.kind == Constraint::LESS_THAN)
bound -= RationalWithDelta::delta();
bound /= factor;
if (factor > 0 || _constraint.kind == Constraint::EQUAL)
addUpperBound(latestVariableIndex, bound, move(_reason));
if (factor < 0 || _constraint.kind == Constraint::EQUAL)
addLowerBound(latestVariableIndex, bound, move(_reason));
return;
}
// Introduce the slack variable.
size_t slackIndex = addNewVariableToSubProblem(_subProblem);
// Name is only needed for printing
#ifdef DEBUG
problem.variables[slackIndex].name = "_s" + to_string(m_slackVariableCounter++);
#endif
#ifdef SPARSE
problem.basicVariables[slackIndex] = problem.factors.rows();
#else
problem.basicVariables[slackIndex] = problem.factors.size();
#endif
if (_constraint.kind == Constraint::EQUAL)
{
problem.variables[slackIndex].bounds.lower = _constraint.data[0];
problem.variables[slackIndex].bounds.lowerReason = _reason;
}
problem.variables[slackIndex].bounds.upper = _constraint.data[0];
problem.variables[slackIndex].bounds.upperReason = _reason;
if (_constraint.kind == Constraint::LESS_THAN)
*problem.variables[slackIndex].bounds.upper -= RationalWithDelta::delta();
// TODO it is a basic var, so we don't add it, unless we use this for basic vars.
//problem.variablesPotentiallyOutOfBounds.insert(slackIndex);
#ifdef SPARSE
// Compress the constraint, i.e. turn outer variable indices into
// inner variable indices.
RationalWithDelta valueForSlack;
size_t row = problem.factors.rows();
// First, handle the basic variables.
LinearExpression basicVarNullifier;
for (auto const& [outerIndex, entry]: _constraint.data.enumerateTail())
if (entry)
{
size_t innerIndex = problem.varMapping.at(outerIndex);
if (problem.basicVariables.count(innerIndex))
{
problem.factors.addMultipleOfRow(
problem.basicVariables[innerIndex],
row,
entry
);
problem.factors.remove(problem.factors.entry(row, innerIndex));
}
}
for (auto const& [outerIndex, entry]: _constraint.data.enumerateTail())
if (entry)
{
size_t innerIndex = problem.varMapping.at(outerIndex);
if (!problem.basicVariables.count(innerIndex))
{
SparseMatrix::Entry& e = problem.factors.entry(row, innerIndex);
e.value += entry;
if (!e.value)
problem.factors.remove(e);
}
valueForSlack += problem.variables[innerIndex].value * entry;
}
problem.factors.entry(row, slackIndex).value = -1;
problem.basicVariables[slackIndex] = row;
#else
// Compress the constraint, i.e. turn outer variable indices into
// inner variable indices.
RationalWithDelta valueForSlack;
LinearExpression compressedConstraint;
LinearExpression basicVarNullifier;
compressedConstraint.resize(problem.variables.size());
for (auto const& [outerIndex, entry]: _constraint.data.enumerateTail())
if (entry)
{
size_t innerIndex = problem.varMapping.at(outerIndex);
if (problem.basicVariables.count(innerIndex))
{
// We cannot add basic variables directly, so replace them by their row.
basicVarNullifier += entry * problem.factors.at(problem.basicVariables[innerIndex]);
basicVarNullifier[innerIndex] = {};
}
else
compressedConstraint[innerIndex] = entry;
valueForSlack += problem.variables[innerIndex].value * entry;
}
compressedConstraint += move(basicVarNullifier);
compressedConstraint[slackIndex] = -1;
problem.factors.emplace_back(move(compressedConstraint));
problem.basicVariables[slackIndex] = problem.factors.size() - 1;
#endif
problem.variables[slackIndex].value = valueForSlack;
}
void LPSolver::addOuterVariableToSubProblem(size_t _subProblem, size_t _outerIndex)
{
size_t index = addNewVariableToSubProblem(_subProblem);
unseal(_subProblem).varMapping.emplace(_outerIndex, index);
m_subProblemsPerVariable[_outerIndex] = _subProblem;
}
size_t LPSolver::addNewVariableToSubProblem(size_t _subProblem)
{
SubProblem& problem = unseal(_subProblem);
size_t index = problem.variables.size();
#ifndef SPARSE
for (LinearExpression& c: problem.factors)
c.resize(index + 1);
#endif
problem.variables.emplace_back();
return index;
}
LPResult LPSolver::SubProblem::check()
{
// TODO one third of the computing time (inclusive) in this function
// is spent on "operator<" - maybe we can cache "is in bounds" for variables
// and invalidate that in the update procedures.
#ifdef DEBUG
cerr << "checking..." << endl;
cerr << toString() << endl;
cerr << "----------------------------" << endl;
cerr << "fixing non-basic..." << endl;
#endif
// Adjust the assignments so we satisfy the bounds of the non-basic variables.
if (!correctNonbasic())
return LPResult::Infeasible;
// Now try to make the basic variables happy, pivoting if necessary.
#ifdef DEBUG
cerr << "fixed non-basic." << endl;
cerr << toString() << endl;
cerr << "----------------------------" << endl;
#endif
// TODO bound number of iterations
while (auto bvi = firstConflictingBasicVariable())
{
Variable const& basicVar = variables[*bvi];
#ifdef DEBUG
cerr << toString() << endl;
cerr << "Fixing basic " << basicVar.name << endl;
cerr << "----------------------------" << endl;
#endif
if (basicVar.bounds.lower && basicVar.bounds.upper)
solAssert(*basicVar.bounds.lower <= *basicVar.bounds.upper);
if (basicVar.bounds.lower && basicVar.value < *basicVar.bounds.lower)
{
if (auto replacementVar = firstReplacementVar(*bvi, true))
{
#ifdef DEBUG
cerr << "Replacing by " << variables[*replacementVar].name << endl;
cerr << "Setting basic var to to " << basicVar.bounds.lower->m_main << endl;
#endif
pivotAndUpdate(*bvi, *basicVar.bounds.lower, *replacementVar);
}
else
{
reasons = reasonsForUnsat(*bvi, true);
return LPResult::Infeasible;
}
}
else if (basicVar.bounds.upper && basicVar.value > *basicVar.bounds.upper)
{
if (auto replacementVar = firstReplacementVar(*bvi, false))
{
#ifdef DEBUG
cerr << "Replacing by " << variables[*replacementVar].name << endl;
#endif
pivotAndUpdate(*bvi, *basicVar.bounds.upper, *replacementVar);
}
else
{
reasons = reasonsForUnsat(*bvi, false);
return LPResult::Infeasible;
}
}
#ifdef DEBUG
cerr << "Fixed basic " << basicVar.name << endl;
cerr << toString() << endl;
#endif
}
return LPResult::Feasible;
}
string LPSolver::SubProblem::toString() const
{
auto varName = [&](size_t _i) {
#ifdef DEBUG
return variables[_i].name;
#else
return "x" + to_string(_i);
#endif
};
string resultString;
for (auto&& [i, v]: variables | ranges::views::enumerate)
{
if (v.bounds.lower)
resultString += v.bounds.lower->toString() + " <= ";
else
resultString += " ";
resultString += varName(i);
if (v.bounds.upper)
resultString += " <= " + v.bounds.upper->toString();
else
resultString += " ";
resultString += " := " + v.value.toString() + "\n";
}
#ifdef SPARSE
for (size_t rowIndex = 0; rowIndex < factors.rows(); rowIndex++)
#else
for (auto&& [rowIndex, row]: factors | ranges::views::enumerate)
#endif
{
string basicVarPrefix;
string rowString;
#ifdef SPARSE
for (auto&& entry: const_cast<SparseMatrix&>(factors).iterateRow(rowIndex))
{
rational const& f = entry.value;
solAssert(!!f);
size_t i = entry.col;
#else
for (auto&& [i, f]: row.enumerate())
{
#endif
if (basicVariables.count(i) && basicVariables.at(i) == rowIndex)
{
solAssert(f == -1);
solAssert(basicVarPrefix.empty());
basicVarPrefix = varName(i) + " = ";
}
else if (f != 0)
{
string joiner = f < 0 ? " - " : f > 0 && !rowString.empty() ? " + " : " ";
string factor = f == 1 || f == -1 ? "" : ::toString(abs(f)) + " ";
string var = varName(i);
rowString += joiner + factor + var;
}
}
resultString += basicVarPrefix + rowString + "\n";
}
if (result)
{
if (*result == LPResult::Feasible)
resultString += "result: feasible\n";
else
resultString += "result: infeasible\n";
}
else
resultString += "result: unknown\n";
return resultString + "----\n";
}
bool LPSolver::SubProblem::correctNonbasic()
{
set<size_t> toCorrect;
swap(toCorrect, variablesPotentiallyOutOfBounds);
for (size_t i: toCorrect)
{
Variable& var = variables.at(i);
if (var.bounds.lower && var.bounds.upper && *var.bounds.lower > *var.bounds.upper)
{
reasons.clear();
if (var.bounds.lowerReason)
reasons.insert(*var.bounds.lowerReason);
if (var.bounds.upperReason)
reasons.insert(*var.bounds.upperReason);
return false;
}
if (basicVariables.count(i))
{
variablesPotentiallyOutOfBounds.insert(i);
continue;
}
if (!var.bounds.lower && !var.bounds.upper)
continue;
if (var.bounds.lower && var.value < *var.bounds.lower)
update(i, *var.bounds.lower);
else if (var.bounds.upper && var.value > *var.bounds.upper)
update(i, *var.bounds.upper);
}
return true;
}
void LPSolver::SubProblem::update(size_t _varIndex, RationalWithDelta const& _value)
{
RationalWithDelta delta = _value - variables[_varIndex].value;
variables[_varIndex].value = _value;
#ifdef SPARSE
// TODO can we store that?
map<size_t, size_t> basicVarForRow = invertMap(basicVariables);
for (auto&& entry: factors.iterateColumn(_varIndex))
if (entry.value && basicVarForRow.count(entry.row))
{
size_t j = basicVarForRow[entry.row];
variables[j].value += delta * entry.value;
//variablesPotentiallyOutOfBounds.insert(j);
}
#else
for (auto&& [j, row]: basicVariables)
if (factors[row][_varIndex])
{
variables[j].value += delta * factors[row][_varIndex];
//variablesPotentiallyOutOfBounds.insert(j);
}
#endif
}
optional<size_t> LPSolver::SubProblem::firstConflictingBasicVariable() const
{
// TODO we could use "variablesPotentiallyOutOfBounds" here.
for (auto&& [i, row]: basicVariables)
{
Variable const& variable = variables[i];
if (
(variable.bounds.lower && variable.value < *variable.bounds.lower) ||
(variable.bounds.upper && variable.value > *variable.bounds.upper)
)
return i;
}
return nullopt;
}
optional<size_t> LPSolver::SubProblem::firstReplacementVar(
size_t _basicVarToReplace,
bool _increasing
) const
{
#ifdef SPARSE
for (auto&& entry: const_cast<SparseMatrix&>(factors).iterateRow(basicVariables.at(_basicVarToReplace)))
{
size_t i = entry.col;
rational const& factor = entry.value;
#else
LinearExpression const& basicVarEquation = factors[basicVariables.at(_basicVarToReplace)];
for (auto const& [i, factor]: basicVarEquation.enumerate())
{
#endif
if (i == _basicVarToReplace || !factor)
continue;
bool positive = factor > 0;
if (!_increasing)
positive = !positive;
Variable const& candidate = variables.at(i);
if (positive && (!candidate.bounds.upper || candidate.value < *candidate.bounds.upper))
return i;
if (!positive && (!candidate.bounds.lower || candidate.value > *candidate.bounds.lower))
return i;
}
return nullopt;
}
set<size_t> LPSolver::SubProblem::reasonsForUnsat(
size_t _basicVarToReplace,
bool _increasing
) const
{
set<size_t> r;
if (_increasing && variables[_basicVarToReplace].bounds.lowerReason)
r.insert(*variables[_basicVarToReplace].bounds.lowerReason);
else if (!_increasing && variables[_basicVarToReplace].bounds.upperReason)
r.insert(*variables[_basicVarToReplace].bounds.upperReason);
#ifdef SPARSE
for (auto&& entry: const_cast<SparseMatrix&>(factors).iterateRow(basicVariables.at(_basicVarToReplace)))
{
size_t i = entry.col;
rational const& factor = entry.value;
#else
LinearExpression const& basicVarEquation = factors[basicVariables.at(_basicVarToReplace)];
for (auto const& [i, factor]: basicVarEquation.enumerate())
{
#endif
if (i == _basicVarToReplace || !factor)
continue;
bool positive = factor > 0;
if (!_increasing)
positive = !positive;
Variable const& candidate = variables.at(i);
if (positive && candidate.bounds.upperReason)
r.insert(*candidate.bounds.upperReason);
if (!positive && candidate.bounds.lowerReason)
r.insert(*candidate.bounds.lowerReason);
}
return r;
}
void LPSolver::SubProblem::pivot(size_t _old, size_t _new)
{
// Transform pivotRow such that the coefficient for _new is -1
// Then use that to set all other coefficients for _new to zero.
size_t pivotRow = basicVariables[_old];
#ifdef SPARSE
rational pivot = factors.entry(pivotRow, _new).value;
solAssert(pivot != 0, "");
if (pivot != -1)
factors.multiplyRowByFactor(pivotRow, rational{-1} / pivot);
for (auto it = factors.iterateColumn(_new).begin(); it != factors.iterateColumn(_new).end(); )
{
SparseMatrix::Entry& entry = *it;
// Increment becasue "addMultipleOfRow" might invalidate the iterator
++it;
if (entry.row != pivotRow)
factors.addMultipleOfRow(pivotRow, entry.row, entry.value);
}
#else
LinearExpression& pivotRowData = factors[pivotRow];
rational pivot = pivotRowData[_new];
solAssert(pivot != 0, "");
if (pivot != -1)
pivotRowData /= -pivot;
solAssert(pivotRowData[_new] == rational(-1), "");
auto subtractMultipleOfPivotRow = [&](LinearExpression& _row) {
if (_row[_new] == 0)
return;
else if (_row[_new] == rational{1})
_row += pivotRowData;
else if (_row[_new] == rational{-1})
_row -= pivotRowData;
else
_row += _row[_new] * pivotRowData;
};
for (size_t i = 0; i < factors.size(); ++i)
if (i != pivotRow)
subtractMultipleOfPivotRow(factors[i]);
#endif
basicVariables.erase(_old);
basicVariables[_new] = pivotRow;
}
void LPSolver::SubProblem::pivotAndUpdate(
size_t _oldBasicVar,
RationalWithDelta const& _newValue,
size_t _newBasicVar
)
{
#ifdef SPARSE
RationalWithDelta theta = (_newValue - variables[_oldBasicVar].value) / factors.entry(basicVariables[_oldBasicVar], _newBasicVar).value;
#else
RationalWithDelta theta = (_newValue - variables[_oldBasicVar].value) / factors[basicVariables[_oldBasicVar]][_newBasicVar];
#endif
variables[_oldBasicVar].value = _newValue;
variables[_newBasicVar].value += theta;
#ifdef SPARSE
// TODO can we store that?
map<size_t, size_t> basicVarForRow = invertMap(basicVariables);
for (auto&& entry: factors.iterateColumn(_newBasicVar))
if (basicVarForRow.count(entry.row))
{
size_t i = basicVarForRow[entry.row];
if (i != _oldBasicVar)
variables[i].value += theta * entry.value;
}
#else
for (auto const& [i, row]: basicVariables)
if (i != _oldBasicVar && factors[row][_newBasicVar])
variables[i].value += theta * factors[row][_newBasicVar];
#endif
pivot(_oldBasicVar, _newBasicVar);
}
#endif