mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
558 lines
16 KiB
C++
558 lines
16 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
// SPDX-License-Identifier: GPL-3.0
|
|
/**
|
|
* Yul interpreter module that evaluates EVM instructions.
|
|
*/
|
|
|
|
#include <test/tools/yulInterpreter/EVMInstructionInterpreter.h>
|
|
|
|
#include <test/tools/yulInterpreter/Interpreter.h>
|
|
|
|
#include <libyul/backends/evm/EVMDialect.h>
|
|
#include <libyul/AST.h>
|
|
|
|
#include <libevmasm/Instruction.h>
|
|
#include <libevmasm/SemanticInformation.h>
|
|
|
|
#include <libsolutil/Keccak256.h>
|
|
#include <libsolutil/Numeric.h>
|
|
|
|
#include <limits>
|
|
|
|
using namespace std;
|
|
using namespace solidity;
|
|
using namespace solidity::evmasm;
|
|
using namespace solidity::yul;
|
|
using namespace solidity::yul::test;
|
|
|
|
using solidity::util::h160;
|
|
using solidity::util::h256;
|
|
using solidity::util::keccak256;
|
|
|
|
namespace
|
|
{
|
|
|
|
/// Reads 32 bytes from @a _data at position @a _offset bytes while
|
|
/// interpreting @a _data to be padded with an infinite number of zero
|
|
/// bytes beyond its end.
|
|
u256 readZeroExtended(bytes const& _data, u256 const& _offset)
|
|
{
|
|
if (_offset >= _data.size())
|
|
return 0;
|
|
else if (_offset + 32 <= _data.size())
|
|
return *reinterpret_cast<h256 const*>(_data.data() + static_cast<size_t>(_offset));
|
|
else
|
|
{
|
|
size_t off = static_cast<size_t>(_offset);
|
|
u256 val;
|
|
for (size_t i = 0; i < 32; ++i)
|
|
{
|
|
val <<= 8;
|
|
if (off + i < _data.size())
|
|
val += _data[off + i];
|
|
}
|
|
return val;
|
|
}
|
|
}
|
|
|
|
/// Copy @a _size bytes of @a _source at offset @a _sourceOffset to
|
|
/// @a _target at offset @a _targetOffset. Behaves as if @a _source would
|
|
/// continue with an infinite sequence of zero bytes beyond its end.
|
|
void copyZeroExtended(
|
|
map<u256, uint8_t>& _target, bytes const& _source,
|
|
size_t _targetOffset, size_t _sourceOffset, size_t _size
|
|
)
|
|
{
|
|
for (size_t i = 0; i < _size; ++i)
|
|
_target[_targetOffset + i] = _sourceOffset + i < _source.size() ? _source[_sourceOffset + i] : 0;
|
|
}
|
|
|
|
}
|
|
|
|
using u512 = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<512, 256, boost::multiprecision::unsigned_magnitude, boost::multiprecision::unchecked, void>>;
|
|
|
|
u256 EVMInstructionInterpreter::eval(
|
|
evmasm::Instruction _instruction,
|
|
vector<u256> const& _arguments
|
|
)
|
|
{
|
|
using namespace solidity::evmasm;
|
|
using evmasm::Instruction;
|
|
|
|
auto info = instructionInfo(_instruction);
|
|
yulAssert(static_cast<size_t>(info.args) == _arguments.size(), "");
|
|
|
|
auto const& arg = _arguments;
|
|
switch (_instruction)
|
|
{
|
|
case Instruction::STOP:
|
|
logTrace(_instruction);
|
|
BOOST_THROW_EXCEPTION(ExplicitlyTerminated());
|
|
// --------------- arithmetic ---------------
|
|
case Instruction::ADD:
|
|
return arg[0] + arg[1];
|
|
case Instruction::MUL:
|
|
return arg[0] * arg[1];
|
|
case Instruction::SUB:
|
|
return arg[0] - arg[1];
|
|
case Instruction::DIV:
|
|
return arg[1] == 0 ? 0 : arg[0] / arg[1];
|
|
case Instruction::SDIV:
|
|
return arg[1] == 0 ? 0 : s2u(u2s(arg[0]) / u2s(arg[1]));
|
|
case Instruction::MOD:
|
|
return arg[1] == 0 ? 0 : arg[0] % arg[1];
|
|
case Instruction::SMOD:
|
|
return arg[1] == 0 ? 0 : s2u(u2s(arg[0]) % u2s(arg[1]));
|
|
case Instruction::EXP:
|
|
return exp256(arg[0], arg[1]);
|
|
case Instruction::NOT:
|
|
return ~arg[0];
|
|
case Instruction::LT:
|
|
return arg[0] < arg[1] ? 1 : 0;
|
|
case Instruction::GT:
|
|
return arg[0] > arg[1] ? 1 : 0;
|
|
case Instruction::SLT:
|
|
return u2s(arg[0]) < u2s(arg[1]) ? 1 : 0;
|
|
case Instruction::SGT:
|
|
return u2s(arg[0]) > u2s(arg[1]) ? 1 : 0;
|
|
case Instruction::EQ:
|
|
return arg[0] == arg[1] ? 1 : 0;
|
|
case Instruction::ISZERO:
|
|
return arg[0] == 0 ? 1 : 0;
|
|
case Instruction::AND:
|
|
return arg[0] & arg[1];
|
|
case Instruction::OR:
|
|
return arg[0] | arg[1];
|
|
case Instruction::XOR:
|
|
return arg[0] ^ arg[1];
|
|
case Instruction::BYTE:
|
|
return arg[0] >= 32 ? 0 : (arg[1] >> unsigned(8 * (31 - arg[0]))) & 0xff;
|
|
case Instruction::SHL:
|
|
return arg[0] > 255 ? 0 : (arg[1] << unsigned(arg[0]));
|
|
case Instruction::SHR:
|
|
return arg[0] > 255 ? 0 : (arg[1] >> unsigned(arg[0]));
|
|
case Instruction::SAR:
|
|
{
|
|
static u256 const hibit = u256(1) << 255;
|
|
if (arg[0] >= 256)
|
|
return arg[1] & hibit ? u256(-1) : 0;
|
|
else
|
|
{
|
|
unsigned amount = unsigned(arg[0]);
|
|
u256 v = arg[1] >> amount;
|
|
if (arg[1] & hibit)
|
|
v |= u256(-1) << (256 - amount);
|
|
return v;
|
|
}
|
|
}
|
|
case Instruction::ADDMOD:
|
|
return arg[2] == 0 ? 0 : u256((u512(arg[0]) + u512(arg[1])) % arg[2]);
|
|
case Instruction::MULMOD:
|
|
return arg[2] == 0 ? 0 : u256((u512(arg[0]) * u512(arg[1])) % arg[2]);
|
|
case Instruction::SIGNEXTEND:
|
|
if (arg[0] >= 31)
|
|
return arg[1];
|
|
else
|
|
{
|
|
unsigned testBit = unsigned(arg[0]) * 8 + 7;
|
|
u256 ret = arg[1];
|
|
u256 mask = ((u256(1) << testBit) - 1);
|
|
if (boost::multiprecision::bit_test(ret, testBit))
|
|
ret |= ~mask;
|
|
else
|
|
ret &= mask;
|
|
return ret;
|
|
}
|
|
// --------------- blockchain stuff ---------------
|
|
case Instruction::KECCAK256:
|
|
{
|
|
if (!accessMemory(arg[0], arg[1]))
|
|
return u256("0x1234cafe1234cafe1234cafe") + arg[0];
|
|
uint64_t offset = uint64_t(arg[0] & uint64_t(-1));
|
|
uint64_t size = uint64_t(arg[1] & uint64_t(-1));
|
|
return u256(keccak256(readMemory(offset, size)));
|
|
}
|
|
case Instruction::ADDRESS:
|
|
return h256(m_state.address, h256::AlignRight);
|
|
case Instruction::BALANCE:
|
|
if (arg[0] == h256(m_state.address, h256::AlignRight))
|
|
return m_state.selfbalance;
|
|
else
|
|
return m_state.balance;
|
|
case Instruction::SELFBALANCE:
|
|
return m_state.selfbalance;
|
|
case Instruction::ORIGIN:
|
|
return h256(m_state.origin, h256::AlignRight);
|
|
case Instruction::CALLER:
|
|
return h256(m_state.caller, h256::AlignRight);
|
|
case Instruction::CALLVALUE:
|
|
return m_state.callvalue;
|
|
case Instruction::CALLDATALOAD:
|
|
return readZeroExtended(m_state.calldata, arg[0]);
|
|
case Instruction::CALLDATASIZE:
|
|
return m_state.calldata.size();
|
|
case Instruction::CALLDATACOPY:
|
|
logTrace(_instruction, arg);
|
|
if (accessMemory(arg[0], arg[2]))
|
|
copyZeroExtended(
|
|
m_state.memory, m_state.calldata,
|
|
size_t(arg[0]), size_t(arg[1]), size_t(arg[2])
|
|
);
|
|
return 0;
|
|
case Instruction::CODESIZE:
|
|
return m_state.code.size();
|
|
case Instruction::CODECOPY:
|
|
logTrace(_instruction, arg);
|
|
if (accessMemory(arg[0], arg[2]))
|
|
copyZeroExtended(
|
|
m_state.memory, m_state.code,
|
|
size_t(arg[0]), size_t(arg[1]), size_t(arg[2])
|
|
);
|
|
return 0;
|
|
case Instruction::GASPRICE:
|
|
return m_state.gasprice;
|
|
case Instruction::CHAINID:
|
|
return m_state.chainid;
|
|
case Instruction::BASEFEE:
|
|
return m_state.basefee;
|
|
case Instruction::EXTCODESIZE:
|
|
return u256(keccak256(h256(arg[0]))) & 0xffffff;
|
|
case Instruction::EXTCODEHASH:
|
|
return u256(keccak256(h256(arg[0] + 1)));
|
|
case Instruction::EXTCODECOPY:
|
|
logTrace(_instruction, arg);
|
|
if (accessMemory(arg[1], arg[3]))
|
|
// TODO this way extcodecopy and codecopy do the same thing.
|
|
copyZeroExtended(
|
|
m_state.memory, m_state.code,
|
|
size_t(arg[1]), size_t(arg[2]), size_t(arg[3])
|
|
);
|
|
return 0;
|
|
case Instruction::RETURNDATASIZE:
|
|
return m_state.returndata.size();
|
|
case Instruction::RETURNDATACOPY:
|
|
logTrace(_instruction, arg);
|
|
if (accessMemory(arg[0], arg[2]))
|
|
copyZeroExtended(
|
|
m_state.memory, m_state.returndata,
|
|
size_t(arg[0]), size_t(arg[1]), size_t(arg[2])
|
|
);
|
|
return 0;
|
|
case Instruction::BLOCKHASH:
|
|
if (arg[0] >= m_state.blockNumber || arg[0] + 256 < m_state.blockNumber)
|
|
return 0;
|
|
else
|
|
return 0xaaaaaaaa + (arg[0] - m_state.blockNumber - 256);
|
|
case Instruction::COINBASE:
|
|
return h256(m_state.coinbase, h256::AlignRight);
|
|
case Instruction::TIMESTAMP:
|
|
return m_state.timestamp;
|
|
case Instruction::NUMBER:
|
|
return m_state.blockNumber;
|
|
case Instruction::DIFFICULTY:
|
|
return m_state.difficulty;
|
|
case Instruction::GASLIMIT:
|
|
return m_state.gaslimit;
|
|
// --------------- memory / storage / logs ---------------
|
|
case Instruction::MLOAD:
|
|
accessMemory(arg[0], 0x20);
|
|
return readMemoryWord(arg[0]);
|
|
case Instruction::MSTORE:
|
|
accessMemory(arg[0], 0x20);
|
|
writeMemoryWord(arg[0], arg[1]);
|
|
return 0;
|
|
case Instruction::MSTORE8:
|
|
accessMemory(arg[0], 1);
|
|
m_state.memory[arg[0]] = uint8_t(arg[1] & 0xff);
|
|
return 0;
|
|
case Instruction::SLOAD:
|
|
return m_state.storage[h256(arg[0])];
|
|
case Instruction::SSTORE:
|
|
m_state.storage[h256(arg[0])] = h256(arg[1]);
|
|
return 0;
|
|
case Instruction::PC:
|
|
return 0x77;
|
|
case Instruction::MSIZE:
|
|
return m_state.msize;
|
|
case Instruction::GAS:
|
|
return 0x99;
|
|
case Instruction::LOG0:
|
|
accessMemory(arg[0], arg[1]);
|
|
logTrace(_instruction, arg);
|
|
return 0;
|
|
case Instruction::LOG1:
|
|
accessMemory(arg[0], arg[1]);
|
|
logTrace(_instruction, arg);
|
|
return 0;
|
|
case Instruction::LOG2:
|
|
accessMemory(arg[0], arg[1]);
|
|
logTrace(_instruction, arg);
|
|
return 0;
|
|
case Instruction::LOG3:
|
|
accessMemory(arg[0], arg[1]);
|
|
logTrace(_instruction, arg);
|
|
return 0;
|
|
case Instruction::LOG4:
|
|
accessMemory(arg[0], arg[1]);
|
|
logTrace(_instruction, arg);
|
|
return 0;
|
|
// --------------- calls ---------------
|
|
case Instruction::CREATE:
|
|
accessMemory(arg[1], arg[2]);
|
|
logTrace(_instruction, arg);
|
|
return (0xcccccc + arg[1]) & u256("0xffffffffffffffffffffffffffffffffffffffff");
|
|
case Instruction::CREATE2:
|
|
accessMemory(arg[1], arg[2]);
|
|
logTrace(_instruction, arg);
|
|
return (0xdddddd + arg[1]) & u256("0xffffffffffffffffffffffffffffffffffffffff");
|
|
case Instruction::CALL:
|
|
case Instruction::CALLCODE:
|
|
// TODO assign returndata
|
|
accessMemory(arg[3], arg[4]);
|
|
accessMemory(arg[5], arg[6]);
|
|
logTrace(_instruction, arg);
|
|
return arg[0] & 1;
|
|
case Instruction::DELEGATECALL:
|
|
case Instruction::STATICCALL:
|
|
accessMemory(arg[2], arg[3]);
|
|
accessMemory(arg[4], arg[5]);
|
|
logTrace(_instruction, arg);
|
|
return 0;
|
|
case Instruction::RETURN:
|
|
{
|
|
bytes data;
|
|
if (accessMemory(arg[0], arg[1]))
|
|
data = readMemory(arg[0], arg[1]);
|
|
logTrace(_instruction, arg, data);
|
|
BOOST_THROW_EXCEPTION(ExplicitlyTerminated());
|
|
}
|
|
case Instruction::REVERT:
|
|
accessMemory(arg[0], arg[1]);
|
|
logTrace(_instruction, arg);
|
|
m_state.storage.clear();
|
|
m_state.trace.clear();
|
|
BOOST_THROW_EXCEPTION(ExplicitlyTerminated());
|
|
case Instruction::INVALID:
|
|
logTrace(_instruction);
|
|
m_state.storage.clear();
|
|
m_state.trace.clear();
|
|
BOOST_THROW_EXCEPTION(ExplicitlyTerminated());
|
|
case Instruction::SELFDESTRUCT:
|
|
logTrace(_instruction, arg);
|
|
m_state.storage.clear();
|
|
m_state.trace.clear();
|
|
BOOST_THROW_EXCEPTION(ExplicitlyTerminated());
|
|
case Instruction::POP:
|
|
break;
|
|
// --------------- invalid in strict assembly ---------------
|
|
case Instruction::JUMP:
|
|
case Instruction::JUMPI:
|
|
case Instruction::JUMPDEST:
|
|
case Instruction::PUSH1:
|
|
case Instruction::PUSH2:
|
|
case Instruction::PUSH3:
|
|
case Instruction::PUSH4:
|
|
case Instruction::PUSH5:
|
|
case Instruction::PUSH6:
|
|
case Instruction::PUSH7:
|
|
case Instruction::PUSH8:
|
|
case Instruction::PUSH9:
|
|
case Instruction::PUSH10:
|
|
case Instruction::PUSH11:
|
|
case Instruction::PUSH12:
|
|
case Instruction::PUSH13:
|
|
case Instruction::PUSH14:
|
|
case Instruction::PUSH15:
|
|
case Instruction::PUSH16:
|
|
case Instruction::PUSH17:
|
|
case Instruction::PUSH18:
|
|
case Instruction::PUSH19:
|
|
case Instruction::PUSH20:
|
|
case Instruction::PUSH21:
|
|
case Instruction::PUSH22:
|
|
case Instruction::PUSH23:
|
|
case Instruction::PUSH24:
|
|
case Instruction::PUSH25:
|
|
case Instruction::PUSH26:
|
|
case Instruction::PUSH27:
|
|
case Instruction::PUSH28:
|
|
case Instruction::PUSH29:
|
|
case Instruction::PUSH30:
|
|
case Instruction::PUSH31:
|
|
case Instruction::PUSH32:
|
|
case Instruction::DUP1:
|
|
case Instruction::DUP2:
|
|
case Instruction::DUP3:
|
|
case Instruction::DUP4:
|
|
case Instruction::DUP5:
|
|
case Instruction::DUP6:
|
|
case Instruction::DUP7:
|
|
case Instruction::DUP8:
|
|
case Instruction::DUP9:
|
|
case Instruction::DUP10:
|
|
case Instruction::DUP11:
|
|
case Instruction::DUP12:
|
|
case Instruction::DUP13:
|
|
case Instruction::DUP14:
|
|
case Instruction::DUP15:
|
|
case Instruction::DUP16:
|
|
case Instruction::SWAP1:
|
|
case Instruction::SWAP2:
|
|
case Instruction::SWAP3:
|
|
case Instruction::SWAP4:
|
|
case Instruction::SWAP5:
|
|
case Instruction::SWAP6:
|
|
case Instruction::SWAP7:
|
|
case Instruction::SWAP8:
|
|
case Instruction::SWAP9:
|
|
case Instruction::SWAP10:
|
|
case Instruction::SWAP11:
|
|
case Instruction::SWAP12:
|
|
case Instruction::SWAP13:
|
|
case Instruction::SWAP14:
|
|
case Instruction::SWAP15:
|
|
case Instruction::SWAP16:
|
|
{
|
|
yulAssert(false, "");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
u256 EVMInstructionInterpreter::evalBuiltin(
|
|
BuiltinFunctionForEVM const& _fun,
|
|
vector<Expression> const& _arguments,
|
|
vector<u256> const& _evaluatedArguments
|
|
)
|
|
{
|
|
if (_fun.instruction)
|
|
return eval(*_fun.instruction, _evaluatedArguments);
|
|
|
|
string fun = _fun.name.str();
|
|
// Evaluate datasize/offset/copy instructions
|
|
if (fun == "datasize" || fun == "dataoffset")
|
|
{
|
|
string arg = std::get<Literal>(_arguments.at(0)).value.str();
|
|
if (arg.length() < 32)
|
|
arg.resize(32, 0);
|
|
if (fun == "datasize")
|
|
return u256(keccak256(arg)) & 0xfff;
|
|
else
|
|
{
|
|
// Force different value than for datasize
|
|
arg[31]++;
|
|
arg[31]++;
|
|
return u256(keccak256(arg)) & 0xfff;
|
|
}
|
|
}
|
|
else if (fun == "datacopy")
|
|
{
|
|
// This is identical to codecopy.
|
|
if (accessMemory(_evaluatedArguments.at(0), _evaluatedArguments.at(2)))
|
|
copyZeroExtended(
|
|
m_state.memory,
|
|
m_state.code,
|
|
size_t(_evaluatedArguments.at(0)),
|
|
size_t(_evaluatedArguments.at(1) & numeric_limits<size_t>::max()),
|
|
size_t(_evaluatedArguments.at(2))
|
|
);
|
|
return 0;
|
|
}
|
|
else
|
|
yulAssert(false, "Unknown builtin: " + fun);
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool EVMInstructionInterpreter::accessMemory(u256 const& _offset, u256 const& _size)
|
|
{
|
|
if (((_offset + _size) >= _offset) && ((_offset + _size + 0x1f) >= (_offset + _size)))
|
|
{
|
|
u256 newSize = (_offset + _size + 0x1f) & ~u256(0x1f);
|
|
m_state.msize = max(m_state.msize, newSize);
|
|
// We only record accesses to contiguous memory chunks that are at most 0xffff bytes
|
|
// in size and at an offset of at most numeric_limits<size_t>::max() - 0xffff
|
|
return _size <= 0xffff && _offset <= u256(numeric_limits<size_t>::max() - 0xffff);
|
|
}
|
|
else
|
|
m_state.msize = u256(-1);
|
|
|
|
return false;
|
|
}
|
|
|
|
bytes EVMInstructionInterpreter::readMemory(u256 const& _offset, u256 const& _size)
|
|
{
|
|
yulAssert(_size <= 0xffff, "Too large read.");
|
|
bytes data(size_t(_size), uint8_t(0));
|
|
for (size_t i = 0; i < data.size(); ++i)
|
|
data[i] = m_state.memory[_offset + i];
|
|
return data;
|
|
}
|
|
|
|
u256 EVMInstructionInterpreter::readMemoryWord(u256 const& _offset)
|
|
{
|
|
return u256(h256(readMemory(_offset, 32)));
|
|
}
|
|
|
|
void EVMInstructionInterpreter::writeMemoryWord(u256 const& _offset, u256 const& _value)
|
|
{
|
|
for (size_t i = 0; i < 32; i++)
|
|
m_state.memory[_offset + i] = uint8_t((_value >> (8 * (31 - i))) & 0xff);
|
|
}
|
|
|
|
|
|
void EVMInstructionInterpreter::logTrace(
|
|
evmasm::Instruction _instruction,
|
|
std::vector<u256> const& _arguments,
|
|
bytes const& _data
|
|
)
|
|
{
|
|
logTrace(
|
|
evmasm::instructionInfo(_instruction).name,
|
|
SemanticInformation::memory(_instruction) == SemanticInformation::Effect::Write,
|
|
_arguments,
|
|
_data
|
|
);
|
|
}
|
|
|
|
void EVMInstructionInterpreter::logTrace(
|
|
std::string const& _pseudoInstruction,
|
|
bool _writesToMemory,
|
|
std::vector<u256> const& _arguments,
|
|
bytes const& _data
|
|
)
|
|
{
|
|
if (!(_writesToMemory && memWriteTracingDisabled()))
|
|
{
|
|
string message = _pseudoInstruction + "(";
|
|
for (size_t i = 0; i < _arguments.size(); ++i)
|
|
message += (i > 0 ? ", " : "") + formatNumber(_arguments[i]);
|
|
message += ")";
|
|
if (!_data.empty())
|
|
message += " [" + util::toHex(_data) + "]";
|
|
m_state.trace.emplace_back(std::move(message));
|
|
if (m_state.maxTraceSize > 0 && m_state.trace.size() >= m_state.maxTraceSize)
|
|
{
|
|
m_state.trace.emplace_back("Trace size limit reached.");
|
|
BOOST_THROW_EXCEPTION(TraceLimitReached());
|
|
}
|
|
}
|
|
}
|