solidity/libsolidity/analysis/ContractLevelChecker.cpp
2019-11-08 14:06:57 -05:00

876 lines
27 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Component that verifies overloads, abstract contracts, function clashes and others
* checks at contract or function level.
*/
#include <libsolidity/analysis/ContractLevelChecker.h>
#include <libsolidity/ast/AST.h>
#include <libsolidity/ast/TypeProvider.h>
#include <libsolidity/analysis/TypeChecker.h>
#include <liblangutil/ErrorReporter.h>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/algorithm/string/predicate.hpp>
using namespace std;
using namespace dev;
using namespace langutil;
using namespace dev::solidity;
namespace
{
// Helper struct to do a search by name
struct MatchByName
{
string const& m_name;
bool operator()(CallableDeclaration const* _callable)
{
return _callable->name() == m_name;
}
};
vector<ASTPointer<UserDefinedTypeName>> sortByContract(vector<ASTPointer<UserDefinedTypeName>> const& _list)
{
auto sorted = _list;
stable_sort(sorted.begin(), sorted.end(),
[] (ASTPointer<UserDefinedTypeName> _a, ASTPointer<UserDefinedTypeName> _b) {
if (!_a || !_b)
return _a < _b;
Declaration const* aDecl = _a->annotation().referencedDeclaration;
Declaration const* bDecl = _b->annotation().referencedDeclaration;
if (!aDecl || !bDecl)
return aDecl < bDecl;
return aDecl->id() < bDecl->id();
}
);
return sorted;
}
template <class T>
bool hasEqualNameAndParameters(T const& _a, T const& _b)
{
return
_a.name() == _b.name() &&
FunctionType(_a).asCallableFunction(false)->hasEqualParameterTypes(
*FunctionType(_b).asCallableFunction(false)
);
}
vector<ContractDefinition const*> resolveDirectBaseContracts(ContractDefinition const& _contract)
{
vector<ContractDefinition const*> resolvedContracts;
for (ASTPointer<InheritanceSpecifier> const& specifier: _contract.baseContracts())
{
Declaration const* baseDecl =
specifier->name().annotation().referencedDeclaration;
auto contract = dynamic_cast<ContractDefinition const*>(baseDecl);
solAssert(contract, "contract is null");
resolvedContracts.emplace_back(contract);
}
return resolvedContracts;
}
}
bool ContractLevelChecker::LessFunction::operator()(ModifierDefinition const* _a, ModifierDefinition const* _b) const
{
return _a->name() < _b->name();
}
bool ContractLevelChecker::LessFunction::operator()(FunctionDefinition const* _a, FunctionDefinition const* _b) const
{
if (_a->name() != _b->name())
return _a->name() < _b->name();
if (_a->kind() != _b->kind())
return _a->kind() < _b->kind();
return boost::lexicographical_compare(
FunctionType(*_a).asCallableFunction(false)->parameterTypes(),
FunctionType(*_b).asCallableFunction(false)->parameterTypes(),
[](auto const& _paramTypeA, auto const& _paramTypeB)
{
return _paramTypeA->richIdentifier() < _paramTypeB->richIdentifier();
}
);
}
bool ContractLevelChecker::LessFunction::operator()(ContractDefinition const* _a, ContractDefinition const* _b) const
{
if (!_a || !_b)
return _a < _b;
return _a->id() < _b->id();
}
bool ContractLevelChecker::check(ContractDefinition const& _contract)
{
checkDuplicateFunctions(_contract);
checkDuplicateEvents(_contract);
checkIllegalOverrides(_contract);
checkAmbiguousOverrides(_contract);
checkBaseConstructorArguments(_contract);
checkAbstractFunctions(_contract);
checkExternalTypeClashes(_contract);
checkHashCollisions(_contract);
checkLibraryRequirements(_contract);
checkBaseABICompatibility(_contract);
checkPayableFallbackWithoutReceive(_contract);
return Error::containsOnlyWarnings(m_errorReporter.errors());
}
void ContractLevelChecker::checkDuplicateFunctions(ContractDefinition const& _contract)
{
/// Checks that two functions with the same name defined in this contract have different
/// argument types and that there is at most one constructor.
map<string, vector<FunctionDefinition const*>> functions;
FunctionDefinition const* constructor = nullptr;
FunctionDefinition const* fallback = nullptr;
FunctionDefinition const* receive = nullptr;
for (FunctionDefinition const* function: _contract.definedFunctions())
if (function->isConstructor())
{
if (constructor)
m_errorReporter.declarationError(
function->location(),
SecondarySourceLocation().append("Another declaration is here:", constructor->location()),
"More than one constructor defined."
);
constructor = function;
}
else if (function->isFallback())
{
if (fallback)
m_errorReporter.declarationError(
function->location(),
SecondarySourceLocation().append("Another declaration is here:", fallback->location()),
"Only one fallback function is allowed."
);
fallback = function;
}
else if (function->isReceive())
{
if (receive)
m_errorReporter.declarationError(
function->location(),
SecondarySourceLocation().append("Another declaration is here:", receive->location()),
"Only one receive function is allowed."
);
receive = function;
}
else
{
solAssert(!function->name().empty(), "");
functions[function->name()].push_back(function);
}
findDuplicateDefinitions(functions, "Function with same name and arguments defined twice.");
}
void ContractLevelChecker::checkDuplicateEvents(ContractDefinition const& _contract)
{
/// Checks that two events with the same name defined in this contract have different
/// argument types
map<string, vector<EventDefinition const*>> events;
for (EventDefinition const* event: _contract.events())
events[event->name()].push_back(event);
findDuplicateDefinitions(events, "Event with same name and arguments defined twice.");
}
template <class T>
void ContractLevelChecker::findDuplicateDefinitions(map<string, vector<T>> const& _definitions, string _message)
{
for (auto const& it: _definitions)
{
vector<T> const& overloads = it.second;
set<size_t> reported;
for (size_t i = 0; i < overloads.size() && !reported.count(i); ++i)
{
SecondarySourceLocation ssl;
for (size_t j = i + 1; j < overloads.size(); ++j)
if (hasEqualNameAndParameters(*overloads[i], *overloads[j]))
{
ssl.append("Other declaration is here:", overloads[j]->location());
reported.insert(j);
}
if (ssl.infos.size() > 0)
{
ssl.limitSize(_message);
m_errorReporter.declarationError(
overloads[i]->location(),
ssl,
_message
);
}
}
}
}
void ContractLevelChecker::checkIllegalOverrides(ContractDefinition const& _contract)
{
FunctionMultiSet const& funcSet = inheritedFunctions(&_contract);
ModifierMultiSet const& modSet = inheritedModifiers(&_contract);
checkModifierOverrides(funcSet, modSet, _contract.functionModifiers());
for (FunctionDefinition const* function: _contract.definedFunctions())
{
if (contains_if(modSet, MatchByName{function->name()}))
m_errorReporter.typeError(function->location(), "Override changes modifier to function.");
// Skip if not overridable
if (!function->isOverridable())
continue;
// No inheriting functions found
if (funcSet.find(function) == funcSet.cend() && function->overrides())
m_errorReporter.typeError(
function->overrides()->location(),
"Function has override specified but does not override anything."
);
checkOverrideList(funcSet, *function);
}
}
bool ContractLevelChecker::checkFunctionOverride(FunctionDefinition const& _function, FunctionDefinition const& _super)
{
FunctionTypePointer functionType = FunctionType(_function).asCallableFunction(false);
FunctionTypePointer superType = FunctionType(_super).asCallableFunction(false);
bool success = true;
if (!functionType->hasEqualParameterTypes(*superType))
return true;
if (!_function.overrides())
{
overrideError(_function, _super, "Overriding function is missing 'override' specifier.");
success = false;
}
if (!functionType->hasEqualReturnTypes(*superType))
{
overrideError(_function, _super, "Overriding function return types differ.");
success = false;
}
if (!_function.annotation().superFunction)
_function.annotation().superFunction = &_super;
if (_function.visibility() != _super.visibility())
{
// Visibility change from external to public is fine.
// Any other change is disallowed.
if (!(
_super.visibility() == FunctionDefinition::Visibility::External &&
_function.visibility() == FunctionDefinition::Visibility::Public
))
{
overrideError(_function, _super, "Overriding function visibility differs.");
success = false;
}
}
if (_function.stateMutability() != _super.stateMutability())
{
overrideError(
_function,
_super,
"Overriding function changes state mutability from \"" +
stateMutabilityToString(_super.stateMutability()) +
"\" to \"" +
stateMutabilityToString(_function.stateMutability()) +
"\"."
);
success = false;
}
return success;
}
void ContractLevelChecker::overrideListError(FunctionDefinition const& function, set<ContractDefinition const*, LessFunction> _secondary, string const& _message1, string const& _message2)
{
// Using a set rather than a vector so the order is always the same
set<string> names;
SecondarySourceLocation ssl;
for (Declaration const* c: _secondary)
{
ssl.append("This contract: ", c->location());
names.insert(c->name());
}
string contractSingularPlural = "contract ";
if (_secondary.size() > 1)
contractSingularPlural = "contracts ";
m_errorReporter.typeError(
function.overrides() ? function.overrides()->location() : function.location(),
ssl,
_message1 +
contractSingularPlural +
_message2 +
joinHumanReadable(names, ", ", " and ") +
"."
);
}
void ContractLevelChecker::overrideError(CallableDeclaration const& function, CallableDeclaration const& super, string message)
{
m_errorReporter.typeError(
function.location(),
SecondarySourceLocation().append("Overridden function is here:", super.location()),
message
);
}
void ContractLevelChecker::checkAbstractFunctions(ContractDefinition const& _contract)
{
// Mapping from name to function definition (exactly one per argument type equality class) and
// flag to indicate whether it is fully implemented.
using FunTypeAndFlag = std::pair<FunctionTypePointer, bool>;
map<string, vector<FunTypeAndFlag>> functions;
auto registerFunction = [&](Declaration const& _declaration, FunctionTypePointer const& _type, bool _implemented)
{
auto& overloads = functions[_declaration.name()];
auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag)
{
return _type->hasEqualParameterTypes(*_funAndFlag.first);
});
if (it == overloads.end())
overloads.emplace_back(_type, _implemented);
else if (it->second)
{
if (!_implemented)
m_errorReporter.typeError(_declaration.location(), "Redeclaring an already implemented function as abstract");
}
else if (_implemented)
it->second = true;
};
// Search from base to derived, collect all functions and update
// the 'implemented' flag.
for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.annotation().linearizedBaseContracts))
{
for (VariableDeclaration const* v: contract->stateVariables())
if (v->isPartOfExternalInterface())
registerFunction(*v, TypeProvider::function(*v), true);
for (FunctionDefinition const* function: contract->definedFunctions())
if (!function->isConstructor())
registerFunction(
*function,
TypeProvider::function(*function)->asCallableFunction(false),
function->isImplemented()
);
}
// Set to not fully implemented if at least one flag is false.
// Note that `_contract.annotation().unimplementedFunctions` has already been
// pre-filled by `checkBaseConstructorArguments`.
for (auto const& it: functions)
for (auto const& funAndFlag: it.second)
if (!funAndFlag.second)
{
FunctionDefinition const* function = dynamic_cast<FunctionDefinition const*>(&funAndFlag.first->declaration());
solAssert(function, "");
_contract.annotation().unimplementedFunctions.push_back(function);
break;
}
if (_contract.abstract())
{
if (_contract.contractKind() == ContractDefinition::ContractKind::Interface)
m_errorReporter.typeError(_contract.location(), "Interfaces do not need the \"abstract\" keyword, they are abstract implicitly.");
else if (_contract.contractKind() == ContractDefinition::ContractKind::Library)
m_errorReporter.typeError(_contract.location(), "Libraries cannot be abstract.");
else
solAssert(_contract.contractKind() == ContractDefinition::ContractKind::Contract, "");
}
// For libraries, we emit errors on function-level, so this is fine as long as we do
// not have inheritance for libraries.
if (
_contract.contractKind() == ContractDefinition::ContractKind::Contract &&
!_contract.abstract() &&
!_contract.annotation().unimplementedFunctions.empty()
)
{
SecondarySourceLocation ssl;
for (auto function: _contract.annotation().unimplementedFunctions)
ssl.append("Missing implementation:", function->location());
m_errorReporter.typeError(_contract.location(), ssl,
"Contract \"" + _contract.annotation().canonicalName
+ "\" should be marked as abstract.");
}
}
void ContractLevelChecker::checkBaseConstructorArguments(ContractDefinition const& _contract)
{
vector<ContractDefinition const*> const& bases = _contract.annotation().linearizedBaseContracts;
// Determine the arguments that are used for the base constructors.
for (ContractDefinition const* contract: bases)
{
if (FunctionDefinition const* constructor = contract->constructor())
for (auto const& modifier: constructor->modifiers())
if (auto baseContract = dynamic_cast<ContractDefinition const*>(
modifier->name()->annotation().referencedDeclaration
))
{
if (modifier->arguments())
{
if (baseContract->constructor())
annotateBaseConstructorArguments(_contract, baseContract->constructor(), modifier.get());
}
else
m_errorReporter.declarationError(
modifier->location(),
"Modifier-style base constructor call without arguments."
);
}
for (ASTPointer<InheritanceSpecifier> const& base: contract->baseContracts())
{
ContractDefinition const* baseContract = dynamic_cast<ContractDefinition const*>(
base->name().annotation().referencedDeclaration
);
solAssert(baseContract, "");
if (baseContract->constructor() && base->arguments() && !base->arguments()->empty())
annotateBaseConstructorArguments(_contract, baseContract->constructor(), base.get());
}
}
// check that we get arguments for all base constructors that need it.
// If not mark the contract as abstract (not fully implemented)
for (ContractDefinition const* contract: bases)
if (FunctionDefinition const* constructor = contract->constructor())
if (contract != &_contract && !constructor->parameters().empty())
if (!_contract.annotation().baseConstructorArguments.count(constructor))
_contract.annotation().unimplementedFunctions.push_back(constructor);
}
void ContractLevelChecker::annotateBaseConstructorArguments(
ContractDefinition const& _currentContract,
FunctionDefinition const* _baseConstructor,
ASTNode const* _argumentNode
)
{
solAssert(_baseConstructor, "");
solAssert(_argumentNode, "");
auto insertionResult = _currentContract.annotation().baseConstructorArguments.insert(
std::make_pair(_baseConstructor, _argumentNode)
);
if (!insertionResult.second)
{
ASTNode const* previousNode = insertionResult.first->second;
SourceLocation const* mainLocation = nullptr;
SecondarySourceLocation ssl;
if (
_currentContract.location().contains(previousNode->location()) ||
_currentContract.location().contains(_argumentNode->location())
)
{
mainLocation = &previousNode->location();
ssl.append("Second constructor call is here:", _argumentNode->location());
}
else
{
mainLocation = &_currentContract.location();
ssl.append("First constructor call is here:", _argumentNode->location());
ssl.append("Second constructor call is here:", previousNode->location());
}
m_errorReporter.declarationError(
*mainLocation,
ssl,
"Base constructor arguments given twice."
);
}
}
void ContractLevelChecker::checkExternalTypeClashes(ContractDefinition const& _contract)
{
map<string, vector<pair<Declaration const*, FunctionTypePointer>>> externalDeclarations;
for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
{
for (FunctionDefinition const* f: contract->definedFunctions())
if (f->isPartOfExternalInterface())
{
auto functionType = TypeProvider::function(*f);
// under non error circumstances this should be true
if (functionType->interfaceFunctionType())
externalDeclarations[functionType->externalSignature()].emplace_back(
f, functionType->asCallableFunction(false)
);
}
for (VariableDeclaration const* v: contract->stateVariables())
if (v->isPartOfExternalInterface())
{
auto functionType = TypeProvider::function(*v);
// under non error circumstances this should be true
if (functionType->interfaceFunctionType())
externalDeclarations[functionType->externalSignature()].emplace_back(
v, functionType->asCallableFunction(false)
);
}
}
for (auto const& it: externalDeclarations)
for (size_t i = 0; i < it.second.size(); ++i)
for (size_t j = i + 1; j < it.second.size(); ++j)
if (!it.second[i].second->hasEqualParameterTypes(*it.second[j].second))
m_errorReporter.typeError(
it.second[j].first->location(),
"Function overload clash during conversion to external types for arguments."
);
}
void ContractLevelChecker::checkHashCollisions(ContractDefinition const& _contract)
{
set<FixedHash<4>> hashes;
for (auto const& it: _contract.interfaceFunctionList())
{
FixedHash<4> const& hash = it.first;
if (hashes.count(hash))
m_errorReporter.typeError(
_contract.location(),
string("Function signature hash collision for ") + it.second->externalSignature()
);
hashes.insert(hash);
}
}
void ContractLevelChecker::checkLibraryRequirements(ContractDefinition const& _contract)
{
if (!_contract.isLibrary())
return;
if (!_contract.baseContracts().empty())
m_errorReporter.typeError(_contract.location(), "Library is not allowed to inherit.");
for (auto const& var: _contract.stateVariables())
if (!var->isConstant())
m_errorReporter.typeError(var->location(), "Library cannot have non-constant state variables");
}
void ContractLevelChecker::checkBaseABICompatibility(ContractDefinition const& _contract)
{
if (_contract.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2))
return;
if (_contract.isLibrary())
{
solAssert(
_contract.baseContracts().empty() || m_errorReporter.hasErrors(),
"Library is not allowed to inherit"
);
return;
}
SecondarySourceLocation errors;
// interfaceFunctionList contains all inherited functions as well
for (auto const& func: _contract.interfaceFunctionList())
{
solAssert(func.second->hasDeclaration(), "Function has no declaration?!");
if (!func.second->declaration().sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2))
continue;
auto const& currentLoc = func.second->declaration().location();
for (TypePointer const& paramType: func.second->parameterTypes() + func.second->parameterTypes())
if (!TypeChecker::typeSupportedByOldABIEncoder(*paramType, false))
{
errors.append("Type only supported by the new experimental ABI encoder", currentLoc);
break;
}
}
if (!errors.infos.empty())
m_errorReporter.fatalTypeError(
_contract.location(),
errors,
std::string("Contract \"") +
_contract.name() +
"\" does not use the new experimental ABI encoder but wants to inherit from a contract " +
"which uses types that require it. " +
"Use \"pragma experimental ABIEncoderV2;\" for the inheriting contract as well to enable the feature."
);
}
void ContractLevelChecker::checkAmbiguousOverrides(ContractDefinition const& _contract) const
{
vector<FunctionDefinition const*> contractFuncs = _contract.definedFunctions();
auto const resolvedBases = resolveDirectBaseContracts(_contract);
FunctionMultiSet inheritedFuncs = inheritedFunctions(&_contract);;
// Check the sets of the most-inherited functions
for (auto it = inheritedFuncs.cbegin(); it != inheritedFuncs.cend(); it = inheritedFuncs.upper_bound(*it))
{
auto [begin,end] = inheritedFuncs.equal_range(*it);
// Only one function
if (next(begin) == end)
continue;
// Not an overridable function
if (!(*it)->isOverridable())
{
for (begin++; begin != end; begin++)
solAssert(!(*begin)->isOverridable(), "All functions in range expected to be non-overridable!");
continue;
}
// Function has been explicitly overridden
if (contains_if(
contractFuncs,
[&] (FunctionDefinition const* _f) {
return hasEqualNameAndParameters(*_f, **it);
}
))
continue;
set<FunctionDefinition const*> ambiguousFunctions;
SecondarySourceLocation ssl;
for (;begin != end; begin++)
{
ambiguousFunctions.insert(*begin);
ssl.append("Definition here: ", (*begin)->location());
}
// Make sure the functions are not from the same base contract
if (ambiguousFunctions.size() == 1)
continue;
m_errorReporter.typeError(
_contract.location(),
ssl,
"Derived contract must override function \"" +
(*it)->name() +
"\". Function with the same name and parameter types defined in two or more base classes."
);
}
}
set<ContractDefinition const*, ContractLevelChecker::LessFunction> ContractLevelChecker::resolveOverrideList(OverrideSpecifier const& _overrides) const
{
set<ContractDefinition const*, LessFunction> resolved;
for (ASTPointer<UserDefinedTypeName> const& override: _overrides.overrides())
{
Declaration const* decl = override->annotation().referencedDeclaration;
solAssert(decl, "Expected declaration to be resolved.");
// If it's not a contract it will be caught
// in the reference resolver
if (ContractDefinition const* contract = dynamic_cast<decltype(contract)>(decl))
resolved.insert(contract);
}
return resolved;
}
void ContractLevelChecker::checkModifierOverrides(FunctionMultiSet const& _funcSet, ModifierMultiSet const& _modSet, std::vector<ModifierDefinition const*> _modifiers)
{
for (ModifierDefinition const* modifier: _modifiers)
{
if (contains_if(_funcSet, MatchByName{modifier->name()}))
m_errorReporter.typeError(
modifier->location(),
"Override changes function to modifier."
);
auto [begin,end] = _modSet.equal_range(modifier);
// Skip if no modifiers found in bases
if (begin == end)
continue;
if (!modifier->overrides())
overrideError(*modifier, **begin, "Overriding modifier is missing 'override' specifier.");
for (; begin != end; begin++)
if (ModifierType(**begin) != ModifierType(*modifier))
m_errorReporter.typeError(
modifier->location(),
"Override changes modifier signature."
);
}
}
void ContractLevelChecker::checkOverrideList(FunctionMultiSet const& _funcSet, FunctionDefinition const& _function)
{
set<ContractDefinition const*, LessFunction> specifiedContracts =
_function.overrides() ?
resolveOverrideList(*_function.overrides()) :
decltype(specifiedContracts){};
// Check for duplicates in override list
if (_function.overrides() && specifiedContracts.size() != _function.overrides()->overrides().size())
{
// Sort by contract id to find duplicate for error reporting
vector<ASTPointer<UserDefinedTypeName>> list =
sortByContract(_function.overrides()->overrides());
// Find duplicates and output error
for (size_t i = 1; i < list.size(); i++)
{
Declaration const* aDecl = list[i]->annotation().referencedDeclaration;
Declaration const* bDecl = list[i-1]->annotation().referencedDeclaration;
if (!aDecl || !bDecl)
continue;
if (aDecl->id() == bDecl->id())
{
SecondarySourceLocation ssl;
ssl.append("First occurrence here: ", list[i-1]->location());
m_errorReporter.typeError(
list[i]->location(),
ssl,
"Duplicate contract \"" +
joinHumanReadable(list[i]->namePath(), ".") +
"\" found in override list of \"" +
_function.name() +
"\"."
);
}
}
}
decltype(specifiedContracts) expectedContracts;
// Build list of expected contracts
for (auto [begin, end] = _funcSet.equal_range(&_function); begin != end; begin++)
{
// Validate the override
if (!checkFunctionOverride(_function, **begin))
break;
expectedContracts.insert((*begin)->annotation().contract);
}
decltype(specifiedContracts) missingContracts;
decltype(specifiedContracts) surplusContracts;
// If we expect only one contract, no contract needs to be specified
if (expectedContracts.size() > 1)
missingContracts = expectedContracts - specifiedContracts;
surplusContracts = specifiedContracts - expectedContracts;
if (!missingContracts.empty())
overrideListError(
_function,
missingContracts,
"Function needs to specify overridden ",
""
);
if (!surplusContracts.empty())
overrideListError(
_function,
surplusContracts,
"Invalid ",
"specified in override list: "
);
}
ContractLevelChecker::FunctionMultiSet const& ContractLevelChecker::inheritedFunctions(ContractDefinition const* _contract) const
{
if (!m_inheritedFunctions.count(_contract))
{
FunctionMultiSet set;
for (auto const* base: resolveDirectBaseContracts(*_contract))
{
std::set<FunctionDefinition const*, LessFunction> tmpSet =
convertContainer<decltype(tmpSet)>(base->definedFunctions());
for (auto const& func: inheritedFunctions(base))
tmpSet.insert(func);
set += tmpSet;
}
m_inheritedFunctions[_contract] = set;
}
return m_inheritedFunctions[_contract];
}
ContractLevelChecker::ModifierMultiSet const& ContractLevelChecker::inheritedModifiers(ContractDefinition const* _contract) const
{
auto const& result = m_contractBaseModifiers.find(_contract);
if (result != m_contractBaseModifiers.cend())
return result->second;
ModifierMultiSet set;
for (auto const* base: resolveDirectBaseContracts(*_contract))
{
std::set<ModifierDefinition const*, LessFunction> tmpSet =
convertContainer<decltype(tmpSet)>(base->functionModifiers());
for (auto const& mod: inheritedModifiers(base))
tmpSet.insert(mod);
set += tmpSet;
}
return m_contractBaseModifiers[_contract] = set;
}
void ContractLevelChecker::checkPayableFallbackWithoutReceive(ContractDefinition const& _contract)
{
if (auto const* fallback = _contract.fallbackFunction())
if (fallback->isPayable() && !_contract.interfaceFunctionList().empty() && !_contract.receiveFunction())
m_errorReporter.warning(
_contract.location(),
"This contract has a payable fallback function, but no receive ether function. Consider adding a receive ether function.",
SecondarySourceLocation{}.append("The payable fallback function is defined here.", fallback->location())
);
}