solidity/libyul/optimiser/UnusedStoreEliminator.cpp
2022-08-30 11:12:15 +02:00

406 lines
14 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* Optimiser component that removes stores to memory and storage slots that are not used
* or overwritten later on.
*/
#include <libyul/optimiser/UnusedStoreEliminator.h>
#include <libyul/optimiser/Semantics.h>
#include <libyul/optimiser/OptimizerUtilities.h>
#include <libyul/optimiser/Semantics.h>
#include <libyul/optimiser/SSAValueTracker.h>
#include <libyul/optimiser/DataFlowAnalyzer.h>
#include <libyul/optimiser/KnowledgeBase.h>
#include <libyul/ControlFlowSideEffectsCollector.h>
#include <libyul/AST.h>
#include <libyul/backends/evm/EVMDialect.h>
#include <libsolutil/CommonData.h>
#include <libevmasm/Instruction.h>
#include <libevmasm/SemanticInformation.h>
#include <range/v3/algorithm/all_of.hpp>
using namespace std;
using namespace solidity;
using namespace solidity::yul;
/// Variable names for special constants that can never appear in actual Yul code.
static string const zero{"@ 0"};
static string const one{"@ 1"};
static string const thirtyTwo{"@ 32"};
void UnusedStoreEliminator::run(OptimiserStepContext& _context, Block& _ast)
{
map<YulString, SideEffects> functionSideEffects = SideEffectsPropagator::sideEffects(
_context.dialect,
CallGraphGenerator::callGraph(_ast)
);
SSAValueTracker ssaValues;
ssaValues(_ast);
map<YulString, AssignedValue> values;
for (auto const& [name, expression]: ssaValues.values())
values[name] = AssignedValue{expression, {}};
Expression const zeroLiteral{Literal{{}, LiteralKind::Number, YulString{"0"}, {}}};
Expression const oneLiteral{Literal{{}, LiteralKind::Number, YulString{"1"}, {}}};
Expression const thirtyTwoLiteral{Literal{{}, LiteralKind::Number, YulString{"32"}, {}}};
values[YulString{zero}] = AssignedValue{&zeroLiteral, {}};
values[YulString{one}] = AssignedValue{&oneLiteral, {}};
values[YulString{thirtyTwo}] = AssignedValue{&thirtyTwoLiteral, {}};
bool const ignoreMemory = MSizeFinder::containsMSize(_context.dialect, _ast);
UnusedStoreEliminator rse{
_context.dialect,
functionSideEffects,
ControlFlowSideEffectsCollector{_context.dialect, _ast}.functionSideEffectsNamed(),
values,
ignoreMemory
};
rse(_ast);
if (
auto evmDialect = dynamic_cast<EVMDialect const*>(&_context.dialect);
evmDialect && evmDialect->providesObjectAccess()
)
rse.changeUndecidedTo(State::Unused, Location::Memory);
else
rse.changeUndecidedTo(State::Used, Location::Memory);
rse.changeUndecidedTo(State::Used, Location::Storage);
rse.scheduleUnusedForDeletion();
StatementRemover remover(rse.m_pendingRemovals);
remover(_ast);
}
void UnusedStoreEliminator::operator()(FunctionCall const& _functionCall)
{
UnusedStoreBase::operator()(_functionCall);
for (Operation const& op: operationsFromFunctionCall(_functionCall))
applyOperation(op);
ControlFlowSideEffects sideEffects;
if (auto builtin = m_dialect.builtin(_functionCall.functionName.name))
sideEffects = builtin->controlFlowSideEffects;
else
sideEffects = m_controlFlowSideEffects.at(_functionCall.functionName.name);
if (!sideEffects.canContinue)
{
changeUndecidedTo(State::Unused, Location::Memory);
changeUndecidedTo(sideEffects.canTerminate ? State::Used : State::Unused, Location::Storage);
}
}
void UnusedStoreEliminator::operator()(FunctionDefinition const& _functionDefinition)
{
ScopedSaveAndRestore storeOperations(m_storeOperations, {});
UnusedStoreBase::operator()(_functionDefinition);
}
void UnusedStoreEliminator::operator()(Leave const&)
{
changeUndecidedTo(State::Used);
}
void UnusedStoreEliminator::visit(Statement const& _statement)
{
using evmasm::Instruction;
UnusedStoreBase::visit(_statement);
auto const* exprStatement = get_if<ExpressionStatement>(&_statement);
if (!exprStatement)
return;
FunctionCall const* funCall = get_if<FunctionCall>(&exprStatement->expression);
yulAssert(funCall);
optional<Instruction> instruction = toEVMInstruction(m_dialect, funCall->functionName.name);
if (!instruction)
return;
if (!ranges::all_of(funCall->arguments, [](Expression const& _expr) -> bool {
return get_if<Identifier>(&_expr) || get_if<Literal>(&_expr);
}))
return;
// We determine if this is a store instruction without additional side-effects
// both by querying a combination of semantic information and by listing the instructions.
// This way the assert below should be triggered on any change.
using evmasm::SemanticInformation;
bool isStorageWrite = (*instruction == Instruction::SSTORE);
bool isMemoryWrite =
*instruction == Instruction::EXTCODECOPY ||
*instruction == Instruction::CODECOPY ||
*instruction == Instruction::CALLDATACOPY ||
*instruction == Instruction::RETURNDATACOPY ||
*instruction == Instruction::MSTORE ||
*instruction == Instruction::MSTORE8;
bool isCandidateForRemoval =
SemanticInformation::otherState(*instruction) != SemanticInformation::Write && (
SemanticInformation::storage(*instruction) == SemanticInformation::Write ||
(!m_ignoreMemory && SemanticInformation::memory(*instruction) == SemanticInformation::Write)
);
yulAssert(isCandidateForRemoval == (isStorageWrite || (!m_ignoreMemory && isMemoryWrite)));
if (isCandidateForRemoval)
{
State initialState = State::Undecided;
if (*instruction == Instruction::RETURNDATACOPY)
{
initialState = State::Used;
auto startOffset = identifierNameIfSSA(funCall->arguments.at(1));
auto length = identifierNameIfSSA(funCall->arguments.at(2));
KnowledgeBase knowledge(m_dialect, [this](YulString _var) { return util::valueOrNullptr(m_ssaValues, _var); });
if (length && startOffset)
{
FunctionCall const* lengthCall = get_if<FunctionCall>(m_ssaValues.at(*length).value);
if (
knowledge.knownToBeZero(*startOffset) &&
lengthCall &&
toEVMInstruction(m_dialect, lengthCall->functionName.name) == Instruction::RETURNDATASIZE
)
initialState = State::Undecided;
}
}
m_stores[YulString{}].insert({&_statement, initialState});
vector<Operation> operations = operationsFromFunctionCall(*funCall);
yulAssert(operations.size() == 1, "");
m_storeOperations[&_statement] = std::move(operations.front());
}
}
void UnusedStoreEliminator::finalizeFunctionDefinition(FunctionDefinition const&)
{
changeUndecidedTo(State::Used);
scheduleUnusedForDeletion();
}
vector<UnusedStoreEliminator::Operation> UnusedStoreEliminator::operationsFromFunctionCall(
FunctionCall const& _functionCall
) const
{
using evmasm::Instruction;
YulString functionName = _functionCall.functionName.name;
SideEffects sideEffects;
if (BuiltinFunction const* f = m_dialect.builtin(functionName))
sideEffects = f->sideEffects;
else
sideEffects = m_functionSideEffects.at(functionName);
optional<Instruction> instruction = toEVMInstruction(m_dialect, functionName);
if (!instruction)
{
vector<Operation> result;
// Unknown read is worse than unknown write.
if (sideEffects.memory != SideEffects::Effect::None)
result.emplace_back(Operation{Location::Memory, Effect::Read, {}, {}});
if (sideEffects.storage != SideEffects::Effect::None)
result.emplace_back(Operation{Location::Storage, Effect::Read, {}, {}});
return result;
}
using evmasm::SemanticInformation;
return util::applyMap(
SemanticInformation::readWriteOperations(*instruction),
[&](SemanticInformation::Operation const& _op) -> Operation
{
yulAssert(!(_op.lengthParameter && _op.lengthConstant));
yulAssert(_op.effect != Effect::None);
Operation ourOp{_op.location, _op.effect, {}, {}};
if (_op.startParameter)
ourOp.start = identifierNameIfSSA(_functionCall.arguments.at(*_op.startParameter));
if (_op.lengthParameter)
ourOp.length = identifierNameIfSSA(_functionCall.arguments.at(*_op.lengthParameter));
if (_op.lengthConstant)
switch (*_op.lengthConstant)
{
case 1: ourOp.length = YulString(one); break;
case 32: ourOp.length = YulString(thirtyTwo); break;
default: yulAssert(false);
}
return ourOp;
}
);
}
void UnusedStoreEliminator::applyOperation(UnusedStoreEliminator::Operation const& _operation)
{
for (auto& [statement, state]: m_stores[YulString{}])
if (state == State::Undecided)
{
Operation const& storeOperation = m_storeOperations.at(statement);
if (_operation.effect == Effect::Read && !knownUnrelated(storeOperation, _operation))
state = State::Used;
else if (_operation.effect == Effect::Write && knownCovered(storeOperation, _operation))
state = State::Unused;
}
}
bool UnusedStoreEliminator::knownUnrelated(
UnusedStoreEliminator::Operation const& _op1,
UnusedStoreEliminator::Operation const& _op2
) const
{
KnowledgeBase knowledge(m_dialect, [this](YulString _var) { return util::valueOrNullptr(m_ssaValues, _var); });
if (_op1.location != _op2.location)
return true;
if (_op1.location == Location::Storage)
{
if (_op1.start && _op2.start)
{
yulAssert(
_op1.length &&
_op2.length &&
knowledge.valueIfKnownConstant(*_op1.length) == 1 &&
knowledge.valueIfKnownConstant(*_op2.length) == 1
);
return knowledge.knownToBeDifferent(*_op1.start, *_op2.start);
}
}
else
{
yulAssert(_op1.location == Location::Memory, "");
if (
(_op1.length && knowledge.knownToBeZero(*_op1.length)) ||
(_op2.length && knowledge.knownToBeZero(*_op2.length))
)
return true;
if (_op1.start && _op1.length && _op2.start)
{
optional<u256> length1 = knowledge.valueIfKnownConstant(*_op1.length);
optional<u256> start1 = knowledge.valueIfKnownConstant(*_op1.start);
optional<u256> start2 = knowledge.valueIfKnownConstant(*_op2.start);
if (
(length1 && start1 && start2) &&
*start1 + *length1 >= *start1 && // no overflow
*start1 + *length1 <= *start2
)
return true;
}
if (_op2.start && _op2.length && _op1.start)
{
optional<u256> length2 = knowledge.valueIfKnownConstant(*_op2.length);
optional<u256> start2 = knowledge.valueIfKnownConstant(*_op2.start);
optional<u256> start1 = knowledge.valueIfKnownConstant(*_op1.start);
if (
(length2 && start2 && start1) &&
*start2 + *length2 >= *start2 && // no overflow
*start2 + *length2 <= *start1
)
return true;
}
if (_op1.start && _op1.length && _op2.start && _op2.length)
{
optional<u256> length1 = knowledge.valueIfKnownConstant(*_op1.length);
optional<u256> length2 = knowledge.valueIfKnownConstant(*_op2.length);
if (
(length1 && *length1 <= 32) &&
(length2 && *length2 <= 32) &&
knowledge.knownToBeDifferentByAtLeast32(*_op1.start, *_op2.start)
)
return true;
}
}
return false;
}
bool UnusedStoreEliminator::knownCovered(
UnusedStoreEliminator::Operation const& _covered,
UnusedStoreEliminator::Operation const& _covering
) const
{
if (_covered.location != _covering.location)
return false;
if (
(_covered.start && _covered.start == _covering.start) &&
(_covered.length && _covered.length == _covering.length)
)
return true;
if (_covered.location == Location::Memory)
{
KnowledgeBase knowledge(m_dialect, [this](YulString _var) { return util::valueOrNullptr(m_ssaValues, _var); });
if (_covered.length && knowledge.knownToBeZero(*_covered.length))
return true;
// Condition (i = cover_i_ng, e = cover_e_d):
// i.start <= e.start && e.start + e.length <= i.start + i.length
if (!_covered.start || !_covering.start || !_covered.length || !_covering.length)
return false;
optional<u256> coveredLength = knowledge.valueIfKnownConstant(*_covered.length);
optional<u256> coveringLength = knowledge.valueIfKnownConstant(*_covering.length);
if (knowledge.knownToBeEqual(*_covered.start, *_covering.start))
if (coveredLength && coveringLength && *coveredLength <= *coveringLength)
return true;
optional<u256> coveredStart = knowledge.valueIfKnownConstant(*_covered.start);
optional<u256> coveringStart = knowledge.valueIfKnownConstant(*_covering.start);
if (coveredStart && coveringStart && coveredLength && coveringLength)
if (
*coveringStart <= *coveredStart &&
*coveringStart + *coveringLength >= *coveringStart && // no overflow
*coveredStart + *coveredLength >= *coveredStart && // no overflow
*coveredStart + *coveredLength <= *coveringStart + *coveringLength
)
return true;
// TODO for this we probably need a non-overflow assumption as above.
// Condition (i = cover_i_ng, e = cover_e_d):
// i.start <= e.start && e.start + e.length <= i.start + i.length
}
return false;
}
void UnusedStoreEliminator::changeUndecidedTo(
State _newState,
optional<UnusedStoreEliminator::Location> _onlyLocation)
{
for (auto& [statement, state]: m_stores[YulString{}])
if (
state == State::Undecided &&
(_onlyLocation == nullopt || *_onlyLocation == m_storeOperations.at(statement).location)
)
state = _newState;
}
optional<YulString> UnusedStoreEliminator::identifierNameIfSSA(Expression const& _expression) const
{
if (Identifier const* identifier = get_if<Identifier>(&_expression))
if (m_ssaValues.count(identifier->name))
return {identifier->name};
return nullopt;
}
void UnusedStoreEliminator::scheduleUnusedForDeletion()
{
for (auto const& [statement, state]: m_stores[YulString{}])
if (state == State::Unused)
m_pendingRemovals.insert(statement);
}