solidity/libsolutil/BooleanLP.cpp
2022-06-01 22:16:16 +02:00

947 lines
30 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <libsolutil/BooleanLP.h>
#include <libsolutil/CommonData.h>
#include <libsolutil/StringUtils.h>
#include <liblangutil/Exceptions.h>
#include <libsolutil/LinearExpression.h>
#include <libsolutil/CDCL.h>
#include <libsolutil/LP.h>
#include <range/v3/view/enumerate.hpp>
#include <range/v3/view/transform.hpp>
#include <range/v3/view/filter.hpp>
#include <range/v3/view/tail.hpp>
#include <range/v3/view/iota.hpp>
#include <range/v3/algorithm/all_of.hpp>
#include <range/v3/algorithm/any_of.hpp>
#include <range/v3/algorithm/max.hpp>
#include <range/v3/algorithm/count_if.hpp>
#include <range/v3/iterator/operations.hpp>
#include <boost/range/algorithm_ext/erase.hpp>
using namespace std;
using namespace solidity;
using namespace solidity::util;
using namespace solidity::smtutil;
using rational = boost::rational<bigint>;
//#define DEBUG
namespace
{
template <class T>
void resizeAndSet(vector<T>& _vector, size_t _index, T _value)
{
if (_vector.size() < _index + 1)
_vector.resize(_index + 1);
_vector[_index] = move(_value);
}
string toString(rational const& _x)
{
if (_x == bigint(1) << 256)
return "2**256";
else if (_x == (bigint(1) << 256) - 1)
return "2**256-1";
else if (_x.denominator() == 1)
return _x.numerator().str();
else
return _x.numerator().str() + "/" + _x.denominator().str();
}
}
void BooleanLPSolver::reset()
{
m_state = vector<State>{{State{}}};
}
void BooleanLPSolver::push()
{
// TODO maybe find a way where we do not have to copy everything
State currentState = state();
m_state.emplace_back(move(currentState));
}
void BooleanLPSolver::pop()
{
m_state.pop_back();
solAssert(!m_state.empty(), "");
}
void BooleanLPSolver::declareVariable(string const& _name, SortPointer const& _sort)
{
// Internal variables are '$<number>', or '$c<number>' so escape `$` to `$$`.
string name = (_name.empty() || _name.at(0) != '$') ? _name : "$$" + _name;
solAssert(_sort && (_sort->kind == Kind::Int || _sort->kind == Kind::Real || _sort->kind == Kind::Bool), "");
solAssert(!state().variables.count(name), "");
// TODO store the actual kind (integer, real, bool)
declareVariable(name, _sort->kind == Kind::Bool);
}
pair<CheckResult, vector<string>> BooleanLPSolver::check(vector<Expression> const&)
{
#ifdef DEBUG
cerr << "Solving boolean constraint system" << endl;
cerr << toString() << endl;
cerr << "--------------" << endl;
#endif
if (state().infeasible)
{
#ifdef DEBUG
cerr << "----->>>>> unsatisfiable" << endl;
#endif
return make_pair(CheckResult::UNSATISFIABLE, vector<string>{});
}
std::vector<std::string> booleanVariables;
std::vector<Clause> clauses = state().clauses;
// TODO we start building up a new set of solver
// for each query, but we should also keep some
// kind of cache across queries.
std::vector<std::pair<size_t, LPSolver>> lpSolvers;
lpSolvers.emplace_back(0, LPSolver{});
LPSolver& lpSolver = lpSolvers.back().second;
for (auto&& [index, bound]: state().bounds)
{
if (bound.lower)
lpSolver.addLowerBound(index, *bound.lower);
if (bound.upper)
lpSolver.addUpperBound(index, *bound.upper);
}
for (Constraint const& c: state().fixedConstraints)
lpSolver.addConstraint(c);
// TODO this way, it will result in a lot of gaps in both sets of variables.
// should we compress them and store a mapping?
// Is it even a problem if the indices overlap?
for (auto&& [name, index]: state().variables)
if (state().isBooleanVariable.at(index) || isConditionalConstraint(index))
resizeAndSet(booleanVariables, index, name);
else
lpSolver.setVariableName(index, name);
if (lpSolver.check().first == LPResult::Infeasible)
{
#ifdef DEBUG
cerr << "----->>>>> unsatisfiable" << endl;
#endif
return {CheckResult::UNSATISFIABLE, {}};
}
auto theorySolver = [&](size_t _trailSize, map<size_t, bool> const& _newBooleanAssignment) -> optional<Clause>
{
lpSolvers.emplace_back(_trailSize, LPSolver(lpSolvers.back().second));
for (auto&& [constraintIndex, value]: _newBooleanAssignment)
{
if (!value || !state().conditionalConstraints.count(constraintIndex))
continue;
// "reason" is already stored for those constraints.
Constraint const& constraint = state().conditionalConstraints.at(constraintIndex);
lpSolvers.back().second.addConstraint(constraint, constraintIndex);
}
auto&& [result, reasonSet] = lpSolvers.back().second.check();
// We can only really use the result "infeasible". Everything else should be "sat".
if (result == LPResult::Infeasible)
{
// TODO is it ok to ignore the non-constraint boolean variables here?
Clause conflictClause;
for (size_t constraintIndex: reasonSet)
conflictClause.emplace_back(Literal{false, constraintIndex});
#ifdef DEBUG
cerr << "||||| conflict claus: " << toString(conflictClause) << endl;
#endif
return conflictClause;
}
else
return nullopt;
};
auto backtrackNotify = [&](size_t _trailSize)
{
while (lpSolvers.back().first > _trailSize)
lpSolvers.pop_back();
};
auto optionalModel = CDCL{move(booleanVariables), clauses, theorySolver, backtrackNotify}.solve();
if (!optionalModel)
{
#ifdef DEBUG
cerr << "==============> CDCL final result: unsatisfiable." << endl;
#endif
return {CheckResult::UNSATISFIABLE, {}};
}
else
{
#ifdef DEBUG
cerr << "==============> CDCL final result: SATisfiable / UNKNOWN." << endl;
#endif
// TODO should be "unknown" later on
return {CheckResult::SATISFIABLE, {}};
//return {CheckResult::UNKNOWN, {}};
}
}
string BooleanLPSolver::toString() const
{
string result;
result += "-- Fixed Constraints:\n";
for (Constraint const& c: state().fixedConstraints)
result += toString(c) + "\n";
result += "-- Fixed Bounds:\n";
for (auto&& [index, bounds]: state().bounds)
{
if (!bounds.lower && !bounds.upper)
continue;
if (bounds.lower)
result += bounds.lower->toString() + " <= ";
result += variableName(index);
if (bounds.upper)
result += " <= " + bounds.upper->toString();
result += "\n";
}
result += "-- Clauses:\n";
for (Clause const& c: state().clauses)
result += toString(c);
return result;
}
void BooleanLPSolver::addAssertion(Expression const& _expr, LetBindings _letBindings)
{
#ifdef DEBUG
cerr << "adding assertion" << endl;
cerr << " - " << _expr.toString() << endl;
#endif
solAssert(_expr.sort->kind == Kind::Bool);
if (_expr.arguments.empty())
{
size_t varIndex = 0;
if (_letBindings->count(_expr.name))
{
LetBinding binding = _letBindings->at(_expr.name);
if (holds_alternative<smtutil::Expression>(binding))
{
addAssertion(std::get<smtutil::Expression>(binding), move(_letBindings));
return;
}
else
varIndex = std::get<size_t>(binding);
}
else
varIndex = state().variables.at(_expr.name);
solAssert(varIndex > 0, "");
solAssert(isBooleanVariable(varIndex));
state().clauses.emplace_back(Clause{Literal{true, varIndex}});
}
else if (_expr.name == "let")
{
addLetBindings(_expr, _letBindings);
addAssertion(_expr.arguments.back(), move(_letBindings));
}
else if (_expr.name == "=")
{
solAssert(_expr.arguments.size() == 2);
solAssert(_expr.arguments.at(0).sort->kind == _expr.arguments.at(1).sort->kind);
if (_expr.arguments.at(0).sort->kind == Kind::Bool)
{
if (_expr.arguments.at(0).arguments.empty() && isBooleanVariable(_expr.arguments.at(0).name))
addBooleanEquality(*parseLiteral(_expr.arguments.at(0), _letBindings), _expr.arguments.at(1), _letBindings);
else if (_expr.arguments.at(1).arguments.empty() && isBooleanVariable(_expr.arguments.at(1).name))
addBooleanEquality(*parseLiteral(_expr.arguments.at(1), _letBindings), _expr.arguments.at(0), _letBindings);
else
{
Literal newBoolean = *parseLiteral(declareInternalVariable(true), make_shared<map<string, LetBinding>>());
addBooleanEquality(newBoolean, _expr.arguments.at(0), _letBindings);
addBooleanEquality(newBoolean, _expr.arguments.at(1), _letBindings);
}
}
else if (_expr.arguments.at(0).sort->kind == Kind::Int || _expr.arguments.at(0).sort->kind == Kind::Real)
{
// Try to see if both sides are linear.
optional<LinearExpression> left = parseLinearSum(_expr.arguments.at(0), _letBindings);
optional<LinearExpression> right = parseLinearSum(_expr.arguments.at(1), _letBindings);
if (left && right)
{
LinearExpression data = *left - *right;
data[0] *= -1;
Constraint c{move(data), Constraint::EQUAL};
if (!tryAddDirectBounds(c))
state().fixedConstraints.emplace_back(move(c));
#ifdef DEBUG
cerr << "Added as fixed constraint" << endl;
#endif
}
else
{
cerr << _expr.toString() << endl;
cerr << "Expected linear arguments." << endl;
solAssert(false);
}
}
else
solAssert(false);
}
else if (_expr.name == "and")
for (auto const& arg: _expr.arguments)
addAssertion(arg, _letBindings);
else if (_expr.name == "or")
{
if (_expr.arguments.size() == 1)
addAssertion(_expr.arguments.front());
else
{
vector<Literal> literals;
// We could try to parse a full clause here instead.
for (auto const& arg: _expr.arguments)
literals.emplace_back(parseLiteralOrReturnEqualBoolean(arg, _letBindings));
state().clauses.emplace_back(Clause{move(literals)});
}
}
else if (_expr.name == "xor")
{
solAssert(_expr.arguments.size() == 2);
addAssertion(_expr.arguments.at(0) || _expr.arguments.at(1));
addAssertion(!_expr.arguments.at(0) || !_expr.arguments.at(1));
}
else if (_expr.name == "not")
{
solAssert(_expr.arguments.size() == 1);
// TODO can we still try to add a fixed constraint?
Literal l = negate(parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0), move(_letBindings)));
state().clauses.emplace_back(Clause{vector<Literal>{l}});
}
else if (_expr.name == "=>")
{
solAssert(_expr.arguments.size() == 2);
addAssertion(!_expr.arguments.at(0) || _expr.arguments.at(1), move(_letBindings));
}
else if (_expr.name == "<=" || _expr.name == "<")
{
solAssert(_expr.arguments.size() == 2);
optional<LinearExpression> left = parseLinearSum(_expr.arguments.at(0), _letBindings);
optional<LinearExpression> right = parseLinearSum(_expr.arguments.at(1), _letBindings);
solAssert(left && right);
LinearExpression data = *left - *right;
data[0] *= -1;
// TODO if the type is integer, transform x < y into x <= y - 1
Constraint c{move(data), _expr.name == "<=" ? Constraint::LESS_OR_EQUAL : Constraint::LESS_THAN};
if (!tryAddDirectBounds(c))
state().fixedConstraints.emplace_back(move(c));
}
else if (_expr.name == ">=")
{
solAssert(_expr.arguments.size() == 2);
addAssertion(_expr.arguments.at(1) <= _expr.arguments.at(0), move(_letBindings));
}
else if (_expr.name == ">")
{
solAssert(_expr.arguments.size() == 2);
addAssertion(_expr.arguments.at(1) < _expr.arguments.at(0), move(_letBindings));
}
else
{
cerr << "Unknown operator " << _expr.name << endl;
solAssert(false);
}
}
Expression BooleanLPSolver::declareInternalVariable(bool _boolean)
{
string name = "$" + to_string(state().variables.size() + 1);
declareVariable(name, _boolean);
// TODO also support integer
return smtutil::Expression(name, {}, _boolean ? SortProvider::boolSort : SortProvider::realSort);
}
void BooleanLPSolver::declareVariable(string const& _name, bool _boolean)
{
size_t index = state().variables.size() + 1;
state().variables[_name] = index;
resizeAndSet(state().isBooleanVariable, index, _boolean);
}
void BooleanLPSolver::addLetBindings(Expression const& _let, LetBindings& _letBindings)
{
map<string, LetBinding> newBindings;
solAssert(_let.name == "let");
for (size_t i = 0; i < _let.arguments.size() - 1; i++)
{
Expression binding = _let.arguments.at(i);
bool isBool = binding.arguments.at(0).sort->kind == Kind::Bool;
if (isLiteral(binding.arguments.at(0)))
newBindings.insert({binding.name, binding.arguments.at(0)});
else
{
Expression var = declareInternalVariable(isBool);
newBindings.insert({binding.name, state().variables.at(var.name)});
addAssertion(var == binding.arguments.at(0), _letBindings);
}
}
_letBindings = make_shared<std::map<std::string, LetBinding>>(*_letBindings);
for (auto& [name, value]: newBindings)
_letBindings->insert({name, move(value)});
}
optional<Literal> BooleanLPSolver::parseLiteral(smtutil::Expression const& _expr, LetBindings _letBindings)
{
if (_expr.name == "let")
{
addLetBindings(_expr, _letBindings);
return parseLiteral(_expr.arguments.back(), move(_letBindings));
}
if (_expr.arguments.empty())
{
size_t varIndex = 0;
if (_letBindings->count(_expr.name))
{
LetBinding binding = _letBindings->at(_expr.name);
if (holds_alternative<smtutil::Expression>(binding))
return parseLiteral(std::get<smtutil::Expression>(binding), move(_letBindings));
else
varIndex = std::get<size_t>(binding);
}
else if (_expr.name == "true" || _expr.name == "false")
{
// TODO handle this better
solAssert(false, "True/false literals not implemented");
}
else
varIndex = state().variables.at(_expr.name);
solAssert(isBooleanVariable(varIndex));
return Literal{true, varIndex};
}
else if (_expr.name == "not")
return negate(parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0), move(_letBindings)));
else if (_expr.name == "<=" || _expr.name == "<" || _expr.name == "=")
{
optional<LinearExpression> left = parseLinearSum(_expr.arguments.at(0), _letBindings);
optional<LinearExpression> right = parseLinearSum(_expr.arguments.at(1), _letBindings);
if (!left || !right)
return {};
// TODO if the type is int, use x < y -> x <= y - 1
LinearExpression data = *left - *right;
data[0] *= -1;
Constraint::Kind kind =
_expr.name == "<=" ? Constraint::LESS_OR_EQUAL :
_expr.name == "<" ? Constraint::LESS_THAN :
Constraint::EQUAL;
return Literal{true, addConditionalConstraint(Constraint{move(data), kind})};
}
else if (_expr.name == ">=")
return parseLiteral(_expr.arguments.at(1) <= _expr.arguments.at(0), move(_letBindings));
else if (_expr.name == ">")
return parseLiteral(_expr.arguments.at(1) < _expr.arguments.at(0), move(_letBindings));
return {};
}
Literal BooleanLPSolver::negate(Literal const& _lit)
{
if (isConditionalConstraint(_lit.variable))
{
Constraint const& c = conditionalConstraint(_lit.variable);
if (c.kind == Constraint::EQUAL)
{
// X = b
/* This is the integer case
// X <= b - 1
Constraint le = c;
le.equality = false;
le.data[0] -= 1;
Literal leL{true, addConditionalConstraint(le)};
// X >= b + 1
// -X <= -b - 1
Constraint ge = c;
ge.equality = false;
ge.data *= -1;
ge.data[0] -= 1;
Literal geL{true, addConditionalConstraint(ge)};
*/
// X < b
Constraint lt = c;
lt.kind = Constraint::LESS_THAN;
Literal ltL{true, addConditionalConstraint(lt)};
// X > b <=> -X < -b
Constraint gt = c;
gt.kind = Constraint::LESS_THAN;
gt.data *= -1;
Literal gtL{true, addConditionalConstraint(gt)};
Literal equalBoolean = *parseLiteral(declareInternalVariable(true), make_shared<map<string, LetBinding>>());
// a = or(x, y) <=> (-a \/ x \/ y) /\ (a \/ -x) /\ (a \/ -y)
state().clauses.emplace_back(Clause{vector<Literal>{negate(equalBoolean), ltL, gtL}});
state().clauses.emplace_back(Clause{vector<Literal>{equalBoolean, negate(ltL)}});
state().clauses.emplace_back(Clause{vector<Literal>{equalBoolean, negate(gtL)}});
return equalBoolean;
}
else
{
/* This is the integer case
// -x < -b
// -x <= -b - 1
Constraint negated = c;
negated.data *= -1;
negated.data[0] -= 1;
*/
// !(X <= b) <=> X > b <=> -X < -b
// !(X < b) <=> X >= b <=> -X <= -b
Constraint negated = c;
negated.data *= -1;
negated.kind = c.kind == Constraint::LESS_THAN ? Constraint::LESS_OR_EQUAL : Constraint::LESS_THAN;
return Literal{true, addConditionalConstraint(negated)};
}
}
else
return ~_lit;
}
Literal BooleanLPSolver::parseLiteralOrReturnEqualBoolean(Expression const& _expr, LetBindings _letBindings)
{
if (_expr.sort->kind != Kind::Bool)
cerr << "expected bool: " << _expr.toString() << endl;
solAssert(_expr.sort->kind == Kind::Bool);
// TODO when can this fail?
if (optional<Literal> literal = parseLiteral(_expr, _letBindings))
return *literal;
else
{
Literal newBoolean = *parseLiteral(declareInternalVariable(true), _letBindings);
addBooleanEquality(newBoolean, _expr, _letBindings);
return newBoolean;
}
}
optional<LinearExpression> BooleanLPSolver::parseLinearSum(smtutil::Expression const& _expr, LetBindings _letBindings)
{
if (_expr.name == "let")
{
addLetBindings(_expr, _letBindings);
return parseLinearSum(_expr.arguments.back(), move(_letBindings));
}
if (_expr.arguments.empty())
return parseFactor(_expr, move(_letBindings));
else if (_expr.name == "+")
{
optional<LinearExpression> expr = LinearExpression::constant(0);
for (auto const& arg: _expr.arguments)
if (optional<LinearExpression> summand = parseLinearSum(arg, _letBindings))
*expr += move(*summand);
else
return std::nullopt;
return expr;
}
else if (_expr.name == "-")
{
optional<LinearExpression> left;
optional<LinearExpression> right;
if (_expr.arguments.size() == 2)
{
left = parseLinearSum(_expr.arguments.at(0), _letBindings);
right = parseLinearSum(_expr.arguments.at(1), _letBindings);
}
else if (_expr.arguments.size() == 1)
{
left = LinearExpression::constant(0);
right = parseLinearSum(_expr.arguments.at(0), _letBindings);
}
else
solAssert(false);
if (!left || !right)
return std::nullopt;
return *left - *right;
}
else if (_expr.name == "*")
{
// TODO this can also have more than to args
solAssert(_expr.arguments.size() == 2);
// This will result in nullopt unless one of them is a constant.
return parseLinearSum(_expr.arguments.at(0), _letBindings) * parseLinearSum(_expr.arguments.at(1), _letBindings);
}
else if (_expr.name == "/" || _expr.name == "div")
{
solAssert(_expr.arguments.size() == 2);
optional<LinearExpression> left = parseLinearSum(_expr.arguments.at(0), _letBindings);
optional<LinearExpression> right = parseLinearSum(_expr.arguments.at(1), move(_letBindings));
if (!left || !right || !right->isConstant())
return std::nullopt;
*left /= right->get(0);
return left;
}
else if (_expr.name == "ite")
{
solAssert(_expr.arguments.size() == 3);
Expression result = declareInternalVariable(false);
addAssertion(!_expr.arguments.at(0) || (result == _expr.arguments.at(1)), _letBindings);
addAssertion(_expr.arguments.at(0) || (result == _expr.arguments.at(2)), _letBindings);
return parseLinearSum(result, make_shared<map<string, LetBinding>>());
}
else
{
// cerr << _expr.toString() << endl;
// cerr << "Invalid operator " << _expr.name << endl;
return std::nullopt;
}
}
namespace
{
bool isNumber(string const& _expr)
{
return !_expr.empty() && (isDigit(_expr.front()) || _expr.front() == '.');
}
rational parseRational(string const& _atom)
{
size_t decimal = _atom.find('.');
if (decimal == string::npos)
return rational(bigint(_atom));
unsigned shift = static_cast<unsigned>(_atom.size() - decimal - 1);
rational r(
bigint(string(_atom.substr(0, decimal)) + string(_atom.substr(decimal + 1))),
pow(bigint(10), shift)
);
// cerr << _atom << endl;
// cerr << r << endl;
return r;
}
}
bool BooleanLPSolver::isLiteral(smtutil::Expression const& _expr) const
{
if (!_expr.arguments.empty())
return false;
solAssert(!_expr.name.empty(), "");
return
isNumber(_expr.name) ||
_expr.name == "true" ||
_expr.name == "false";
}
optional<LinearExpression> BooleanLPSolver::parseFactor(smtutil::Expression const& _expr, LetBindings _letBindings) const
{
solAssert(_expr.arguments.empty(), "");
solAssert(!_expr.name.empty(), "");
if (isNumber(_expr.name))
return LinearExpression::constant(parseRational(_expr.name));
else if (_expr.name == "true")
// TODO do we want to do this?
return LinearExpression::constant(1);
else if (_expr.name == "false")
// TODO do we want to do this?
return LinearExpression::constant(0);
size_t varIndex = 0;
if (_letBindings->count(_expr.name))
{
LetBinding binding = _letBindings->at(_expr.name);
if (holds_alternative<smtutil::Expression>(binding))
return parseFactor(std::get<smtutil::Expression>(binding), move(_letBindings));
else
varIndex = std::get<size_t>(binding);
}
else
varIndex = state().variables.at(_expr.name);
solAssert(varIndex > 0, "");
if (isBooleanVariable(varIndex))
return nullopt;
return LinearExpression::factorForVariable(varIndex, rational(bigint(1)));
}
bool BooleanLPSolver::tryAddDirectBounds(Constraint const& _constraint)
{
auto nonzero = _constraint.data.enumerateTail() | ranges::views::filter(
[](std::pair<size_t, rational> const& _x) { return !!_x.second; }
);
// TODO we can exit early on in the loop above.
if (ranges::distance(nonzero) > 1)
return false;
//cerr << "adding direct bound." << endl;
if (ranges::distance(nonzero) == 0)
{
// 0 < b or 0 <= b or 0 = b
if (
(_constraint.kind == Constraint::LESS_THAN && _constraint.data.front() <= 0) ||
(_constraint.kind == Constraint::LESS_OR_EQUAL && _constraint.data.front() < 0) ||
(_constraint.kind == Constraint::EQUAL && _constraint.data.front() != 0)
)
{
// cerr << "SETTING INF" << endl;
state().infeasible = true;
}
}
else
{
auto&& [varIndex, factor] = nonzero.front();
// a * x <= b or a * x < b or a * x = b
RationalWithDelta bound = _constraint.data[0];
if (_constraint.kind == Constraint::LESS_THAN)
bound -= RationalWithDelta::delta();
bound /= factor;
if (factor > 0 || _constraint.kind == Constraint::EQUAL)
addUpperBound(varIndex, bound);
if (factor < 0 || _constraint.kind == Constraint::EQUAL)
addLowerBound(varIndex, bound);
}
return true;
}
void BooleanLPSolver::addUpperBound(size_t _index, RationalWithDelta _value)
{
//cerr << "adding " << variableName(_index) << " <= " << toString(_value) << endl;
if (!state().bounds[_index].upper || _value < *state().bounds[_index].upper)
state().bounds[_index].upper = move(_value);
}
void BooleanLPSolver::addLowerBound(size_t _index, RationalWithDelta _value)
{
//cerr << "adding " << variableName(_index) << " >= " << toString(_value) << endl;
if (!state().bounds[_index].lower || _value > *state().bounds[_index].lower)
state().bounds[_index].lower = move(_value);
}
size_t BooleanLPSolver::addConditionalConstraint(Constraint _constraint)
{
string name = "$c" + to_string(state().variables.size() + 1);
// It's not a boolean variable
// TODO we actually have there kinds of variables and we should split them:
// - actual booleans (including internals)
// - conditional constraints
// - integers
declareVariable(name, false);
size_t index = state().variables.at(name);
state().conditionalConstraints[index] = move(_constraint);
return index;
}
void BooleanLPSolver::addBooleanEquality(Literal const& _left, smtutil::Expression const& _right, LetBindings _letBindings)
{
solAssert(_right.sort->kind == Kind::Bool);
if (optional<Literal> right = parseLiteral(_right, _letBindings))
{
// includes: not, <=, <, >=, >, =, boolean variables.
// a = b <=> (-a \/ b) /\ (a \/ -b)
Literal negLeft = negate(_left);
Literal negRight = negate(*right);
state().clauses.emplace_back(Clause{vector<Literal>{negLeft, *right}});
state().clauses.emplace_back(Clause{vector<Literal>{_left, negRight}});
}
// TODO This parses twice
else if (_right.name == "=" && parseLinearSum(_right.arguments.at(0), _letBindings) && parseLinearSum(_right.arguments.at(1), _letBindings))
{
solAssert(false, "This should be covered by the case above");
// a = (x = y) <=> a = (x <= y && x >= y)
addBooleanEquality(
_left,
_right.arguments.at(0) <= _right.arguments.at(1) &&
_right.arguments.at(1) <= _right.arguments.at(0),
move(_letBindings)
);
}
else if (_right.name == "ite")
{
solAssert(_right.arguments.size() == 3);
solAssert(
_right.arguments.at(0).sort->kind == Kind::Bool &&
_right.arguments.at(1).sort->kind == Kind::Bool &&
_right.arguments.at(2).sort->kind == Kind::Bool
);
// _left = (c ? x : y)
// c ? _left = x : _left = y
// c => _left = x && !c => _left = y
// (-c || _left = x) && (c || _left = y)
// (-c || ((-_left || x) && (_left || -x))) && ...
// (-c || -_left || x) && (-c || _left || -x) && ...
Literal c = parseLiteralOrReturnEqualBoolean(_right.arguments.at(0), _letBindings);
Literal x = parseLiteralOrReturnEqualBoolean(_right.arguments.at(1), _letBindings);
Literal y = parseLiteralOrReturnEqualBoolean(_right.arguments.at(2), _letBindings);
state().clauses.emplace_back(Clause{vector<Literal>{negate(c), negate(_left), x}});
state().clauses.emplace_back(Clause{vector<Literal>{negate(c), _left, negate(x)}});
state().clauses.emplace_back(Clause{vector<Literal>{c, negate(_left), y}});
state().clauses.emplace_back(Clause{vector<Literal>{c, _left, negate(y)}});
}
else
{
Literal a = parseLiteralOrReturnEqualBoolean(_right.arguments.at(0), _letBindings);
Literal b;
if (_right.arguments.size() > 2)
{
solAssert(_right.name == "and" || _right.name == "or");
// Reduce "a and b and c and ..." to "a and (b and c and ...)"
smtutil::Expression rightSuffix = _right;
rightSuffix.arguments.erase(rightSuffix.arguments.begin());
b = parseLiteralOrReturnEqualBoolean(rightSuffix, _letBindings);
}
else
b = parseLiteralOrReturnEqualBoolean(_right.arguments.at(1), _letBindings);
if (_right.name == "and")
{
// a = and(x, y) <=> (-a \/ x) /\ ( -a \/ y) /\ (a \/ -x \/ -y)
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), a}});
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), b}});
state().clauses.emplace_back(Clause{vector<Literal>{_left, negate(a), negate(b)}});
}
else if (_right.name == "or")
{
// a = or(x, y) <=> (-a \/ x \/ y) /\ (a \/ -x) /\ (a \/ -y)
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), a, b}});
state().clauses.emplace_back(Clause{vector<Literal>{_left, negate(a)}});
state().clauses.emplace_back(Clause{vector<Literal>{_left, negate(b)}});
}
else if (_right.name == "=>")
{
solAssert(_right.arguments.size() == 2);
// a = (x => y) <=> a = or(-x, y)
addBooleanEquality(_left, !_right.arguments.at(0) || _right.arguments.at(1), move(_letBindings));
}
else if (_right.name == "=")
{
// l = eq(a, b) <=> (-l or -a or b) and (-l or a or -b) and (l or -a or -b) and (l or a or b)
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), negate(a), b}});
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), a, negate(b)}});
state().clauses.emplace_back(Clause{vector<Literal>{_left, negate(a), negate(b)}});
state().clauses.emplace_back(Clause{vector<Literal>{_left, a, b}});
}
else if (_right.name == "xor")
{
solAssert(_right.arguments.size() == 2);
addBooleanEquality(negate(_left), _right.arguments.at(0) == _right.arguments.at(1), move(_letBindings));
}
else
solAssert(false, "Unsupported operation: " + _right.name);
}
}
/*
string BooleanLPSolver::toString(std::vector<SolvingState::Bounds> const& _bounds) const
{
string result;
for (auto&& [index, bounds]: _bounds | ranges::views::enumerate)
{
if (!bounds.lower && !bounds[1])
continue;
if (bounds[0])
result += ::toString(*bounds[0]) + " <= ";
// TODO If the variables are compressed, this does no longer work.
result += variableName(index);
if (bounds[1])
result += " <= " + ::toString(*bounds[1]);
result += "\n";
}
return result;
}
*/
string BooleanLPSolver::toString(Clause const& _clause) const
{
vector<string> literals;
for (Literal const& l: _clause)
{
string lit = l.positive ? "" : "!";
if (isBooleanVariable(l.variable))
lit += variableName(l.variable);
else
{
solAssert(isConditionalConstraint(l.variable));
lit += toString(conditionalConstraint(l.variable));
}
literals.emplace_back(move(lit));
}
return joinHumanReadable(literals, " \\/ ") + "\n";
}
string BooleanLPSolver::toString(Constraint const& _constraint) const
{
vector<string> line;
for (auto&& [index, multiplier]: _constraint.data.enumerate())
if (index > 0 && multiplier != 0)
{
string mult =
multiplier == -1 ?
"-" :
multiplier == 1 ?
"" :
::toString(multiplier) + " ";
line.emplace_back(mult + variableName(index));
}
// TODO reasons?
return
joinHumanReadable(line, " + ") +
(
_constraint.kind == Constraint::EQUAL ? " = " :
_constraint.kind == Constraint::LESS_OR_EQUAL ? " <= " :
" < "
) +
::toString(_constraint.data.front());
}
Constraint const& BooleanLPSolver::conditionalConstraint(size_t _index) const
{
return state().conditionalConstraints.at(_index);
}
string BooleanLPSolver::variableName(size_t _index) const
{
for (auto const& v: state().variables)
if (v.second == _index)
return v.first;
return {};
}
bool BooleanLPSolver::isBooleanVariable(string const& _name) const
{
if (!state().variables.count(_name))
return false;
size_t index = state().variables.at(_name);
solAssert(index > 0, "");
return isBooleanVariable(index);
}
bool BooleanLPSolver::isBooleanVariable(size_t _index) const
{
return
_index < state().isBooleanVariable.size() &&
state().isBooleanVariable.at(_index);
}