solidity/libyul/optimiser/FunctionSpecializer.cpp
2021-05-04 16:05:23 +02:00

159 lines
4.4 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <libyul/optimiser/FunctionSpecializer.h>
#include <libyul/optimiser/ASTCopier.h>
#include <libyul/optimiser/CallGraphGenerator.h>
#include <libyul/optimiser/NameCollector.h>
#include <libyul/optimiser/NameDispenser.h>
#include <libyul/AST.h>
#include <libyul/YulString.h>
#include <libsolutil/CommonData.h>
#include <range/v3/algorithm/any_of.hpp>
#include <range/v3/view/enumerate.hpp>
#include <variant>
using namespace std;
using namespace solidity::util;
using namespace solidity::yul;
FunctionSpecializer::LiteralArguments FunctionSpecializer::specializableArguments(
FunctionCall const& _f
)
{
auto heuristic = [&](Expression const& _e) -> optional<Expression>
{
if (holds_alternative<Literal>(_e))
return ASTCopier{}.translate(_e);
return nullopt;
};
return applyMap(_f.arguments, heuristic);
}
void FunctionSpecializer::operator()(FunctionCall& _f)
{
ASTModifier::operator()(_f);
// TODO When backtracking is implemented, the restriction of recursive functions can be lifted.
if (
m_dialect.builtin(_f.functionName.name) ||
m_recursiveFunctions.count(_f.functionName.name)
)
return;
LiteralArguments arguments = specializableArguments(_f);
if (ranges::any_of(arguments, [](auto& _a) { return _a.has_value(); }))
{
YulString oldName = move(_f.functionName.name);
auto newName = m_nameDispenser.newName(oldName);
m_oldToNewMap[oldName].emplace_back(make_pair(newName, arguments));
_f.functionName.name = newName;
_f.arguments = util::filter(
_f.arguments,
applyMap(arguments, [](auto& _a) { return !_a; })
);
}
}
FunctionDefinition FunctionSpecializer::specialize(
FunctionDefinition const& _f,
YulString _newName,
FunctionSpecializer::LiteralArguments _arguments
)
{
yulAssert(_arguments.size() == _f.parameters.size(), "");
map<YulString, YulString> translatedNames = applyMap(
NameCollector{_f, NameCollector::OnlyVariables}.names(),
[&](auto& _name) -> pair<YulString, YulString>
{
return make_pair(_name, m_nameDispenser.newName(_name));
},
map<YulString, YulString>{}
);
FunctionDefinition newFunction = get<FunctionDefinition>(FunctionCopier{translatedNames}(_f));
// Function parameters that will be specialized inside the body are converted into variable
// declarations.
vector<Statement> missingVariableDeclarations;
for (auto&& [index, argument]: _arguments | ranges::views::enumerate)
if (argument)
missingVariableDeclarations.emplace_back(
VariableDeclaration{
_f.debugData,
vector<TypedName>{newFunction.parameters[index]},
make_unique<Expression>(move(*argument))
}
);
newFunction.body.statements =
move(missingVariableDeclarations) + move(newFunction.body.statements);
// Only take those indices that cannot be specialized, i.e., whose value is `nullopt`.
newFunction.parameters =
util::filter(
newFunction.parameters,
applyMap(_arguments, [&](auto const& _v) { return !_v; })
);
newFunction.name = move(_newName);
return newFunction;
}
void FunctionSpecializer::run(OptimiserStepContext& _context, Block& _ast)
{
FunctionSpecializer f{
CallGraphGenerator::callGraph(_ast).recursiveFunctions(),
_context.dispenser,
_context.dialect
};
f(_ast);
iterateReplacing(_ast.statements, [&](Statement& _s) -> optional<vector<Statement>>
{
if (holds_alternative<FunctionDefinition>(_s))
{
auto& functionDefinition = get<FunctionDefinition>(_s);
if (f.m_oldToNewMap.count(functionDefinition.name))
{
vector<Statement> out = applyMap(
f.m_oldToNewMap.at(functionDefinition.name),
[&](auto& _p) -> Statement
{
return f.specialize(functionDefinition, move(_p.first), move(_p.second));
}
);
return move(out) + make_vector<Statement>(move(functionDefinition));
}
}
return nullopt;
});
}