mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
2462 lines
83 KiB
C++
2462 lines
83 KiB
C++
/*
|
||
This file is part of solidity.
|
||
|
||
solidity is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
solidity is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
/**
|
||
* @author Christian <c@ethdev.com>
|
||
* @date 2015
|
||
* Type analyzer and checker.
|
||
*/
|
||
|
||
#include <libsolidity/analysis/TypeChecker.h>
|
||
#include <libsolidity/ast/AST.h>
|
||
|
||
#include <libyul/AsmAnalysis.h>
|
||
#include <libyul/AsmAnalysisInfo.h>
|
||
#include <libyul/AsmData.h>
|
||
#include <libyul/backends/evm/EVMDialect.h>
|
||
|
||
#include <liblangutil/ErrorReporter.h>
|
||
|
||
#include <libdevcore/Algorithms.h>
|
||
#include <libdevcore/StringUtils.h>
|
||
|
||
#include <boost/algorithm/cxx11/all_of.hpp>
|
||
#include <boost/algorithm/string/join.hpp>
|
||
#include <boost/algorithm/string/predicate.hpp>
|
||
|
||
#include <memory>
|
||
#include <vector>
|
||
|
||
using namespace std;
|
||
using namespace dev;
|
||
using namespace langutil;
|
||
using namespace dev::solidity;
|
||
|
||
namespace
|
||
{
|
||
|
||
bool typeSupportedByOldABIEncoder(Type const& _type)
|
||
{
|
||
if (_type.dataStoredIn(DataLocation::Storage))
|
||
return true;
|
||
if (_type.category() == Type::Category::Struct)
|
||
return false;
|
||
if (_type.category() == Type::Category::Array)
|
||
{
|
||
auto const& arrayType = dynamic_cast<ArrayType const&>(_type);
|
||
auto base = arrayType.baseType();
|
||
if (!typeSupportedByOldABIEncoder(*base) || (base->category() == Type::Category::Array && base->isDynamicallySized()))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
}
|
||
|
||
|
||
bool TypeChecker::checkTypeRequirements(ASTNode const& _contract)
|
||
{
|
||
_contract.accept(*this);
|
||
return Error::containsOnlyWarnings(m_errorReporter.errors());
|
||
}
|
||
|
||
TypePointer const& TypeChecker::type(Expression const& _expression) const
|
||
{
|
||
solAssert(!!_expression.annotation().type, "Type requested but not present.");
|
||
return _expression.annotation().type;
|
||
}
|
||
|
||
TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const
|
||
{
|
||
solAssert(!!_variable.annotation().type, "Type requested but not present.");
|
||
return _variable.annotation().type;
|
||
}
|
||
|
||
bool TypeChecker::visit(ContractDefinition const& _contract)
|
||
{
|
||
m_scope = &_contract;
|
||
|
||
ASTNode::listAccept(_contract.baseContracts(), *this);
|
||
|
||
for (auto const& n: _contract.subNodes())
|
||
n->accept(*this);
|
||
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::checkDoubleStorageAssignment(Assignment const& _assignment)
|
||
{
|
||
TupleType const& lhs = dynamic_cast<TupleType const&>(*type(_assignment.leftHandSide()));
|
||
TupleType const& rhs = dynamic_cast<TupleType const&>(*type(_assignment.rightHandSide()));
|
||
|
||
if (lhs.components().size() != rhs.components().size())
|
||
{
|
||
solAssert(m_errorReporter.hasErrors(), "");
|
||
return;
|
||
}
|
||
|
||
size_t storageToStorageCopies = 0;
|
||
size_t toStorageCopies = 0;
|
||
for (size_t i = 0; i < lhs.components().size(); ++i)
|
||
{
|
||
ReferenceType const* ref = dynamic_cast<ReferenceType const*>(lhs.components()[i].get());
|
||
if (!ref || !ref->dataStoredIn(DataLocation::Storage) || ref->isPointer())
|
||
continue;
|
||
toStorageCopies++;
|
||
if (rhs.components()[i]->dataStoredIn(DataLocation::Storage))
|
||
storageToStorageCopies++;
|
||
}
|
||
if (storageToStorageCopies >= 1 && toStorageCopies >= 2)
|
||
m_errorReporter.warning(
|
||
_assignment.location(),
|
||
"This assignment performs two copies to storage. Since storage copies do not first "
|
||
"copy to a temporary location, one of them might be overwritten before the second "
|
||
"is executed and thus may have unexpected effects. It is safer to perform the copies "
|
||
"separately or assign to storage pointers first."
|
||
);
|
||
}
|
||
|
||
TypePointers TypeChecker::typeCheckABIDecodeAndRetrieveReturnType(FunctionCall const& _functionCall, bool _abiEncoderV2)
|
||
{
|
||
vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
|
||
if (arguments.size() != 2)
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"This function takes two arguments, but " +
|
||
toString(arguments.size()) +
|
||
" were provided."
|
||
);
|
||
if (arguments.size() >= 1 && !type(*arguments.front())->isImplicitlyConvertibleTo(ArrayType::bytesMemory()))
|
||
m_errorReporter.typeError(
|
||
arguments.front()->location(),
|
||
"Invalid type for argument in function call. "
|
||
"Invalid implicit conversion from " +
|
||
type(*arguments.front())->toString() +
|
||
" to bytes memory requested."
|
||
);
|
||
|
||
if (arguments.size() < 2)
|
||
return {};
|
||
|
||
// The following is a rather syntactic restriction, but we check it here anyway:
|
||
// The second argument has to be a tuple expression containing type names.
|
||
TupleExpression const* tupleExpression = dynamic_cast<TupleExpression const*>(arguments[1].get());
|
||
if (!tupleExpression)
|
||
{
|
||
m_errorReporter.typeError(
|
||
arguments[1]->location(),
|
||
"The second argument to \"abi.decode\" has to be a tuple of types."
|
||
);
|
||
return {};
|
||
}
|
||
|
||
TypePointers components;
|
||
for (auto const& typeArgument: tupleExpression->components())
|
||
{
|
||
solAssert(typeArgument, "");
|
||
if (TypeType const* argTypeType = dynamic_cast<TypeType const*>(type(*typeArgument).get()))
|
||
{
|
||
TypePointer actualType = argTypeType->actualType();
|
||
solAssert(actualType, "");
|
||
// We force memory because the parser currently cannot handle
|
||
// data locations. Furthermore, storage can be a little dangerous and
|
||
// calldata is not really implemented anyway.
|
||
actualType = ReferenceType::copyForLocationIfReference(DataLocation::Memory, actualType);
|
||
// We force address payable for address types.
|
||
if (actualType->category() == Type::Category::Address)
|
||
actualType = make_shared<AddressType>(StateMutability::Payable);
|
||
solAssert(
|
||
!actualType->dataStoredIn(DataLocation::CallData) &&
|
||
!actualType->dataStoredIn(DataLocation::Storage),
|
||
""
|
||
);
|
||
if (!actualType->fullEncodingType(false, _abiEncoderV2, false))
|
||
m_errorReporter.typeError(
|
||
typeArgument->location(),
|
||
"Decoding type " + actualType->toString(false) + " not supported."
|
||
);
|
||
components.push_back(actualType);
|
||
}
|
||
else
|
||
{
|
||
m_errorReporter.typeError(typeArgument->location(), "Argument has to be a type name.");
|
||
components.push_back(make_shared<TupleType>());
|
||
}
|
||
}
|
||
return components;
|
||
}
|
||
|
||
TypePointers TypeChecker::typeCheckMetaTypeFunctionAndRetrieveReturnType(FunctionCall const& _functionCall)
|
||
{
|
||
vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
|
||
if (arguments.size() != 1)
|
||
{
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"This function takes one argument, but " +
|
||
toString(arguments.size()) +
|
||
" were provided."
|
||
);
|
||
return {};
|
||
}
|
||
TypePointer firstArgType = type(*arguments.front());
|
||
if (
|
||
firstArgType->category() != Type::Category::TypeType ||
|
||
dynamic_cast<TypeType const&>(*firstArgType).actualType()->category() != TypeType::Category::Contract
|
||
)
|
||
{
|
||
m_errorReporter.typeError(
|
||
arguments.front()->location(),
|
||
"Invalid type for argument in function call. "
|
||
"Contract type required, but " +
|
||
type(*arguments.front())->toString(true) +
|
||
" provided."
|
||
);
|
||
return {};
|
||
}
|
||
|
||
return {MagicType::metaType(dynamic_cast<TypeType const&>(*firstArgType).actualType())};
|
||
}
|
||
|
||
void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance)
|
||
{
|
||
auto base = dynamic_cast<ContractDefinition const*>(&dereference(_inheritance.name()));
|
||
solAssert(base, "Base contract not available.");
|
||
|
||
if (m_scope->isInterface())
|
||
m_errorReporter.typeError(_inheritance.location(), "Interfaces cannot inherit.");
|
||
|
||
if (base->isLibrary())
|
||
m_errorReporter.typeError(_inheritance.location(), "Libraries cannot be inherited from.");
|
||
|
||
auto const& arguments = _inheritance.arguments();
|
||
TypePointers parameterTypes;
|
||
if (!base->isInterface())
|
||
// Interfaces do not have constructors, so there are zero parameters.
|
||
parameterTypes = ContractType(*base).newExpressionType()->parameterTypes();
|
||
|
||
if (arguments)
|
||
{
|
||
if (parameterTypes.size() != arguments->size())
|
||
{
|
||
m_errorReporter.typeError(
|
||
_inheritance.location(),
|
||
"Wrong argument count for constructor call: " +
|
||
toString(arguments->size()) +
|
||
" arguments given but expected " +
|
||
toString(parameterTypes.size()) +
|
||
". Remove parentheses if you do not want to provide arguments here."
|
||
);
|
||
}
|
||
for (size_t i = 0; i < std::min(arguments->size(), parameterTypes.size()); ++i)
|
||
if (!type(*(*arguments)[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
|
||
m_errorReporter.typeError(
|
||
(*arguments)[i]->location(),
|
||
"Invalid type for argument in constructor call. "
|
||
"Invalid implicit conversion from " +
|
||
type(*(*arguments)[i])->toString() +
|
||
" to " +
|
||
parameterTypes[i]->toString() +
|
||
" requested."
|
||
);
|
||
}
|
||
}
|
||
|
||
void TypeChecker::endVisit(UsingForDirective const& _usingFor)
|
||
{
|
||
ContractDefinition const* library = dynamic_cast<ContractDefinition const*>(
|
||
_usingFor.libraryName().annotation().referencedDeclaration
|
||
);
|
||
if (!library || !library->isLibrary())
|
||
m_errorReporter.fatalTypeError(_usingFor.libraryName().location(), "Library name expected.");
|
||
}
|
||
|
||
bool TypeChecker::visit(StructDefinition const& _struct)
|
||
{
|
||
for (ASTPointer<VariableDeclaration> const& member: _struct.members())
|
||
if (!type(*member)->canBeStored())
|
||
m_errorReporter.typeError(member->location(), "Type cannot be used in struct.");
|
||
|
||
// Check recursion, fatal error if detected.
|
||
auto visitor = [&](StructDefinition const& _struct, CycleDetector<StructDefinition>& _cycleDetector, size_t _depth)
|
||
{
|
||
if (_depth >= 256)
|
||
m_errorReporter.fatalDeclarationError(_struct.location(), "Struct definition exhausting cyclic dependency validator.");
|
||
|
||
for (ASTPointer<VariableDeclaration> const& member: _struct.members())
|
||
{
|
||
Type const* memberType = type(*member).get();
|
||
while (auto arrayType = dynamic_cast<ArrayType const*>(memberType))
|
||
{
|
||
if (arrayType->isDynamicallySized())
|
||
break;
|
||
memberType = arrayType->baseType().get();
|
||
}
|
||
if (auto structType = dynamic_cast<StructType const*>(memberType))
|
||
if (_cycleDetector.run(structType->structDefinition()))
|
||
return;
|
||
}
|
||
};
|
||
if (CycleDetector<StructDefinition>(visitor).run(_struct) != nullptr)
|
||
m_errorReporter.fatalTypeError(_struct.location(), "Recursive struct definition.");
|
||
|
||
bool insideStruct = true;
|
||
swap(insideStruct, m_insideStruct);
|
||
ASTNode::listAccept(_struct.members(), *this);
|
||
m_insideStruct = insideStruct;
|
||
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(FunctionDefinition const& _function)
|
||
{
|
||
bool isLibraryFunction = _function.inContractKind() == ContractDefinition::ContractKind::Library;
|
||
if (_function.isPayable())
|
||
{
|
||
if (isLibraryFunction)
|
||
m_errorReporter.typeError(_function.location(), "Library functions cannot be payable.");
|
||
if (!_function.isConstructor() && !_function.isFallback() && !_function.isPartOfExternalInterface())
|
||
m_errorReporter.typeError(_function.location(), "Internal functions cannot be payable.");
|
||
}
|
||
auto checkArgumentAndReturnParameter = [&](VariableDeclaration const& var) {
|
||
if (type(var)->category() == Type::Category::Mapping)
|
||
{
|
||
if (var.referenceLocation() != VariableDeclaration::Location::Storage)
|
||
{
|
||
if (!isLibraryFunction && _function.isPublic())
|
||
m_errorReporter.typeError(var.location(), "Mapping types can only have a data location of \"storage\" and thus only be parameters or return variables for internal or library functions.");
|
||
else
|
||
m_errorReporter.typeError(var.location(), "Mapping types can only have a data location of \"storage\"." );
|
||
}
|
||
else
|
||
{
|
||
solAssert(isLibraryFunction || !_function.isPublic(), "Mapping types for parameters or return variables can only be used in internal or library functions.");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!type(var)->canLiveOutsideStorage() && _function.isPublic())
|
||
m_errorReporter.typeError(var.location(), "Type is required to live outside storage.");
|
||
if (_function.isPublic() && !(type(var)->interfaceType(isLibraryFunction)))
|
||
m_errorReporter.fatalTypeError(var.location(), "Internal or recursive type is not allowed for public or external functions.");
|
||
}
|
||
if (
|
||
_function.isPublic() &&
|
||
!_function.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
|
||
!typeSupportedByOldABIEncoder(*type(var))
|
||
)
|
||
m_errorReporter.typeError(
|
||
var.location(),
|
||
"This type is only supported in the new experimental ABI encoder. "
|
||
"Use \"pragma experimental ABIEncoderV2;\" to enable the feature."
|
||
);
|
||
};
|
||
for (ASTPointer<VariableDeclaration> const& var: _function.parameters())
|
||
{
|
||
TypePointer baseType = type(*var);
|
||
while (auto const* arrayType = dynamic_cast<ArrayType const*>(baseType.get()))
|
||
baseType = arrayType->baseType();
|
||
|
||
if (
|
||
!m_scope->isInterface() &&
|
||
baseType->category() == Type::Category::Struct &&
|
||
baseType->dataStoredIn(DataLocation::CallData)
|
||
)
|
||
m_errorReporter.typeError(var->location(), "Calldata structs are not yet supported.");
|
||
checkArgumentAndReturnParameter(*var);
|
||
var->accept(*this);
|
||
}
|
||
for (ASTPointer<VariableDeclaration> const& var: _function.returnParameters())
|
||
{
|
||
checkArgumentAndReturnParameter(*var);
|
||
var->accept(*this);
|
||
}
|
||
set<Declaration const*> modifiers;
|
||
for (ASTPointer<ModifierInvocation> const& modifier: _function.modifiers())
|
||
{
|
||
visitManually(
|
||
*modifier,
|
||
_function.isConstructor() ?
|
||
dynamic_cast<ContractDefinition const&>(*_function.scope()).annotation().linearizedBaseContracts :
|
||
vector<ContractDefinition const*>()
|
||
);
|
||
Declaration const* decl = &dereference(*modifier->name());
|
||
if (modifiers.count(decl))
|
||
{
|
||
if (dynamic_cast<ContractDefinition const*>(decl))
|
||
m_errorReporter.declarationError(modifier->location(), "Base constructor already provided.");
|
||
}
|
||
else
|
||
modifiers.insert(decl);
|
||
}
|
||
if (m_scope->isInterface())
|
||
{
|
||
if (_function.isImplemented())
|
||
m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot have an implementation.");
|
||
|
||
if (_function.visibility() != FunctionDefinition::Visibility::External)
|
||
m_errorReporter.typeError(_function.location(), "Functions in interfaces must be declared external.");
|
||
|
||
if (_function.isConstructor())
|
||
m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in interfaces.");
|
||
}
|
||
else if (m_scope->contractKind() == ContractDefinition::ContractKind::Library)
|
||
if (_function.isConstructor())
|
||
m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in libraries.");
|
||
if (_function.isImplemented())
|
||
_function.body().accept(*this);
|
||
else if (_function.isConstructor())
|
||
m_errorReporter.typeError(_function.location(), "Constructor must be implemented if declared.");
|
||
else if (isLibraryFunction && _function.visibility() <= FunctionDefinition::Visibility::Internal)
|
||
m_errorReporter.typeError(_function.location(), "Internal library function must be implemented if declared.");
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(VariableDeclaration const& _variable)
|
||
{
|
||
// Forbid any variable declarations inside interfaces unless they are part of
|
||
// * a function's input/output parameters,
|
||
// * or inside of a struct definition.
|
||
if (
|
||
m_scope->isInterface()
|
||
&& !_variable.isCallableParameter()
|
||
&& !m_insideStruct
|
||
)
|
||
m_errorReporter.typeError(_variable.location(), "Variables cannot be declared in interfaces.");
|
||
|
||
// type is filled either by ReferencesResolver directly from the type name or by
|
||
// TypeChecker at the VariableDeclarationStatement level.
|
||
TypePointer varType = _variable.annotation().type;
|
||
solAssert(!!varType, "Variable type not provided.");
|
||
|
||
if (_variable.value())
|
||
expectType(*_variable.value(), *varType);
|
||
if (_variable.isConstant())
|
||
{
|
||
if (!_variable.type()->isValueType())
|
||
{
|
||
bool allowed = false;
|
||
if (auto arrayType = dynamic_cast<ArrayType const*>(_variable.type().get()))
|
||
allowed = arrayType->isByteArray();
|
||
if (!allowed)
|
||
m_errorReporter.typeError(_variable.location(), "Constants of non-value type not yet implemented.");
|
||
}
|
||
|
||
if (!_variable.value())
|
||
m_errorReporter.typeError(_variable.location(), "Uninitialized \"constant\" variable.");
|
||
else if (!_variable.value()->annotation().isPure)
|
||
m_errorReporter.typeError(
|
||
_variable.value()->location(),
|
||
"Initial value for constant variable has to be compile-time constant."
|
||
);
|
||
}
|
||
if (!_variable.isStateVariable())
|
||
{
|
||
if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData))
|
||
if (!varType->canLiveOutsideStorage())
|
||
m_errorReporter.typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage.");
|
||
}
|
||
else if (_variable.visibility() >= VariableDeclaration::Visibility::Public)
|
||
{
|
||
FunctionType getter(_variable);
|
||
if (!_variable.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2))
|
||
{
|
||
vector<string> unsupportedTypes;
|
||
for (auto const& param: getter.parameterTypes() + getter.returnParameterTypes())
|
||
if (!typeSupportedByOldABIEncoder(*param))
|
||
unsupportedTypes.emplace_back(param->toString());
|
||
if (!unsupportedTypes.empty())
|
||
m_errorReporter.typeError(_variable.location(),
|
||
"The following types are only supported for getters in the new experimental ABI encoder: " +
|
||
joinHumanReadable(unsupportedTypes) +
|
||
". Either remove \"public\" or use \"pragma experimental ABIEncoderV2;\" to enable the feature."
|
||
);
|
||
}
|
||
if (!getter.interfaceFunctionType())
|
||
m_errorReporter.typeError(_variable.location(), "Internal or recursive type is not allowed for public state variables.");
|
||
}
|
||
|
||
switch (varType->category())
|
||
{
|
||
case Type::Category::Array:
|
||
if (auto arrayType = dynamic_cast<ArrayType const*>(varType.get()))
|
||
if (
|
||
((arrayType->location() == DataLocation::Memory) ||
|
||
(arrayType->location() == DataLocation::CallData)) &&
|
||
!arrayType->validForCalldata()
|
||
)
|
||
m_errorReporter.typeError(_variable.location(), "Array is too large to be encoded.");
|
||
break;
|
||
case Type::Category::Mapping:
|
||
if (auto mappingType = dynamic_cast<MappingType const*>(varType.get()))
|
||
if (
|
||
mappingType->keyType()->isDynamicallySized() &&
|
||
_variable.visibility() == Declaration::Visibility::Public
|
||
)
|
||
m_errorReporter.typeError(_variable.location(), "Dynamically-sized keys for public mappings are not supported.");
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::visitManually(
|
||
ModifierInvocation const& _modifier,
|
||
vector<ContractDefinition const*> const& _bases
|
||
)
|
||
{
|
||
std::vector<ASTPointer<Expression>> const& arguments =
|
||
_modifier.arguments() ? *_modifier.arguments() : std::vector<ASTPointer<Expression>>();
|
||
for (ASTPointer<Expression> const& argument: arguments)
|
||
argument->accept(*this);
|
||
_modifier.name()->accept(*this);
|
||
|
||
auto const* declaration = &dereference(*_modifier.name());
|
||
vector<ASTPointer<VariableDeclaration>> emptyParameterList;
|
||
vector<ASTPointer<VariableDeclaration>> const* parameters = nullptr;
|
||
if (auto modifierDecl = dynamic_cast<ModifierDefinition const*>(declaration))
|
||
parameters = &modifierDecl->parameters();
|
||
else
|
||
// check parameters for Base constructors
|
||
for (ContractDefinition const* base: _bases)
|
||
if (declaration == base)
|
||
{
|
||
if (auto referencedConstructor = base->constructor())
|
||
parameters = &referencedConstructor->parameters();
|
||
else
|
||
parameters = &emptyParameterList;
|
||
break;
|
||
}
|
||
if (!parameters)
|
||
{
|
||
m_errorReporter.typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class.");
|
||
return;
|
||
}
|
||
if (parameters->size() != arguments.size())
|
||
{
|
||
m_errorReporter.typeError(
|
||
_modifier.location(),
|
||
"Wrong argument count for modifier invocation: " +
|
||
toString(arguments.size()) +
|
||
" arguments given but expected " +
|
||
toString(parameters->size()) +
|
||
"."
|
||
);
|
||
return;
|
||
}
|
||
for (size_t i = 0; i < arguments.size(); ++i)
|
||
if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i])))
|
||
m_errorReporter.typeError(
|
||
arguments[i]->location(),
|
||
"Invalid type for argument in modifier invocation. "
|
||
"Invalid implicit conversion from " +
|
||
type(*arguments[i])->toString() +
|
||
" to " +
|
||
type(*(*parameters)[i])->toString() +
|
||
" requested."
|
||
);
|
||
}
|
||
|
||
bool TypeChecker::visit(EventDefinition const& _eventDef)
|
||
{
|
||
solAssert(_eventDef.visibility() > Declaration::Visibility::Internal, "");
|
||
unsigned numIndexed = 0;
|
||
for (ASTPointer<VariableDeclaration> const& var: _eventDef.parameters())
|
||
{
|
||
if (var->isIndexed())
|
||
{
|
||
numIndexed++;
|
||
if (
|
||
_eventDef.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
|
||
dynamic_cast<ReferenceType const*>(type(*var).get())
|
||
)
|
||
m_errorReporter.typeError(
|
||
var->location(),
|
||
"Indexed reference types cannot yet be used with ABIEncoderV2."
|
||
);
|
||
}
|
||
if (!type(*var)->canLiveOutsideStorage())
|
||
m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
|
||
if (!type(*var)->interfaceType(false))
|
||
m_errorReporter.typeError(var->location(), "Internal or recursive type is not allowed as event parameter type.");
|
||
if (
|
||
!_eventDef.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
|
||
!typeSupportedByOldABIEncoder(*type(*var))
|
||
)
|
||
m_errorReporter.typeError(
|
||
var->location(),
|
||
"This type is only supported in the new experimental ABI encoder. "
|
||
"Use \"pragma experimental ABIEncoderV2;\" to enable the feature."
|
||
);
|
||
}
|
||
if (_eventDef.isAnonymous() && numIndexed > 4)
|
||
m_errorReporter.typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event.");
|
||
else if (!_eventDef.isAnonymous() && numIndexed > 3)
|
||
m_errorReporter.typeError(_eventDef.location(), "More than 3 indexed arguments for event.");
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(FunctionTypeName const& _funType)
|
||
{
|
||
FunctionType const& fun = dynamic_cast<FunctionType const&>(*_funType.annotation().type);
|
||
if (fun.kind() == FunctionType::Kind::External)
|
||
if (!fun.canBeUsedExternally(false))
|
||
m_errorReporter.typeError(_funType.location(), "External function type uses internal types.");
|
||
}
|
||
|
||
bool TypeChecker::visit(InlineAssembly const& _inlineAssembly)
|
||
{
|
||
// External references have already been resolved in a prior stage and stored in the annotation.
|
||
// We run the resolve step again regardless.
|
||
yul::ExternalIdentifierAccess::Resolver identifierAccess = [&](
|
||
yul::Identifier const& _identifier,
|
||
yul::IdentifierContext _context,
|
||
bool
|
||
)
|
||
{
|
||
auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier);
|
||
if (ref == _inlineAssembly.annotation().externalReferences.end())
|
||
return size_t(-1);
|
||
Declaration const* declaration = ref->second.declaration;
|
||
solAssert(!!declaration, "");
|
||
bool requiresStorage = ref->second.isSlot || ref->second.isOffset;
|
||
if (auto var = dynamic_cast<VariableDeclaration const*>(declaration))
|
||
{
|
||
if (var->isConstant())
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Constant variables not supported by inline assembly.");
|
||
return size_t(-1);
|
||
}
|
||
else if (requiresStorage)
|
||
{
|
||
if (!var->isStateVariable() && !var->type()->dataStoredIn(DataLocation::Storage))
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
|
||
return size_t(-1);
|
||
}
|
||
else if (_context != yul::IdentifierContext::RValue)
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Storage variables cannot be assigned to.");
|
||
return size_t(-1);
|
||
}
|
||
}
|
||
else if (!var->isLocalVariable())
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Only local variables are supported. To access storage variables, use the _slot and _offset suffixes.");
|
||
return size_t(-1);
|
||
}
|
||
else if (var->type()->dataStoredIn(DataLocation::Storage))
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "You have to use the _slot or _offset suffix to access storage reference variables.");
|
||
return size_t(-1);
|
||
}
|
||
else if (var->type()->sizeOnStack() != 1)
|
||
{
|
||
if (var->type()->dataStoredIn(DataLocation::CallData))
|
||
m_errorReporter.typeError(_identifier.location, "Call data elements cannot be accessed directly. Copy to a local variable first or use \"calldataload\" or \"calldatacopy\" with manually determined offsets and sizes.");
|
||
else
|
||
m_errorReporter.typeError(_identifier.location, "Only types that use one stack slot are supported.");
|
||
return size_t(-1);
|
||
}
|
||
}
|
||
else if (requiresStorage)
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
|
||
return size_t(-1);
|
||
}
|
||
else if (_context == yul::IdentifierContext::LValue)
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Only local variables can be assigned to in inline assembly.");
|
||
return size_t(-1);
|
||
}
|
||
|
||
if (_context == yul::IdentifierContext::RValue)
|
||
{
|
||
solAssert(!!declaration->type(), "Type of declaration required but not yet determined.");
|
||
if (dynamic_cast<FunctionDefinition const*>(declaration))
|
||
{
|
||
}
|
||
else if (dynamic_cast<VariableDeclaration const*>(declaration))
|
||
{
|
||
}
|
||
else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
|
||
{
|
||
if (!contract->isLibrary())
|
||
{
|
||
m_errorReporter.typeError(_identifier.location, "Expected a library.");
|
||
return size_t(-1);
|
||
}
|
||
}
|
||
else
|
||
return size_t(-1);
|
||
}
|
||
ref->second.valueSize = 1;
|
||
return size_t(1);
|
||
};
|
||
solAssert(!_inlineAssembly.annotation().analysisInfo, "");
|
||
_inlineAssembly.annotation().analysisInfo = make_shared<yul::AsmAnalysisInfo>();
|
||
yul::AsmAnalyzer analyzer(
|
||
*_inlineAssembly.annotation().analysisInfo,
|
||
m_errorReporter,
|
||
m_evmVersion,
|
||
Error::Type::SyntaxError,
|
||
yul::EVMDialect::looseAssemblyForEVM(),
|
||
identifierAccess
|
||
);
|
||
if (!analyzer.analyze(_inlineAssembly.operations()))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
bool TypeChecker::visit(IfStatement const& _ifStatement)
|
||
{
|
||
expectType(_ifStatement.condition(), BoolType());
|
||
_ifStatement.trueStatement().accept(*this);
|
||
if (_ifStatement.falseStatement())
|
||
_ifStatement.falseStatement()->accept(*this);
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(WhileStatement const& _whileStatement)
|
||
{
|
||
expectType(_whileStatement.condition(), BoolType());
|
||
_whileStatement.body().accept(*this);
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(ForStatement const& _forStatement)
|
||
{
|
||
if (_forStatement.initializationExpression())
|
||
_forStatement.initializationExpression()->accept(*this);
|
||
if (_forStatement.condition())
|
||
expectType(*_forStatement.condition(), BoolType());
|
||
if (_forStatement.loopExpression())
|
||
_forStatement.loopExpression()->accept(*this);
|
||
_forStatement.body().accept(*this);
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(Return const& _return)
|
||
{
|
||
ParameterList const* params = _return.annotation().functionReturnParameters;
|
||
if (!_return.expression())
|
||
{
|
||
if (params && !params->parameters().empty())
|
||
m_errorReporter.typeError(_return.location(), "Return arguments required.");
|
||
return;
|
||
}
|
||
if (!params)
|
||
{
|
||
m_errorReporter.typeError(_return.location(), "Return arguments not allowed.");
|
||
return;
|
||
}
|
||
TypePointers returnTypes;
|
||
for (auto const& var: params->parameters())
|
||
returnTypes.push_back(type(*var));
|
||
if (auto tupleType = dynamic_cast<TupleType const*>(type(*_return.expression()).get()))
|
||
{
|
||
if (tupleType->components().size() != params->parameters().size())
|
||
m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
|
||
else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes)))
|
||
m_errorReporter.typeError(
|
||
_return.expression()->location(),
|
||
"Return argument type " +
|
||
type(*_return.expression())->toString() +
|
||
" is not implicitly convertible to expected type " +
|
||
TupleType(returnTypes).toString(false) +
|
||
"."
|
||
);
|
||
}
|
||
else if (params->parameters().size() != 1)
|
||
m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
|
||
else
|
||
{
|
||
TypePointer const& expected = type(*params->parameters().front());
|
||
if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected))
|
||
m_errorReporter.typeError(
|
||
_return.expression()->location(),
|
||
"Return argument type " +
|
||
type(*_return.expression())->toString() +
|
||
" is not implicitly convertible to expected type (type of first return variable) " +
|
||
expected->toString() +
|
||
"."
|
||
);
|
||
}
|
||
}
|
||
|
||
void TypeChecker::endVisit(EmitStatement const& _emit)
|
||
{
|
||
if (
|
||
_emit.eventCall().annotation().kind != FunctionCallKind::FunctionCall ||
|
||
type(_emit.eventCall().expression())->category() != Type::Category::Function ||
|
||
dynamic_cast<FunctionType const&>(*type(_emit.eventCall().expression())).kind() != FunctionType::Kind::Event
|
||
)
|
||
m_errorReporter.typeError(_emit.eventCall().expression().location(), "Expression has to be an event invocation.");
|
||
m_insideEmitStatement = false;
|
||
}
|
||
|
||
namespace
|
||
{
|
||
/**
|
||
* @returns a suggested left-hand-side of a multi-variable declaration contairing
|
||
* the variable declarations given in @a _decls.
|
||
*/
|
||
string createTupleDecl(vector<ASTPointer<VariableDeclaration>> const& _decls)
|
||
{
|
||
vector<string> components;
|
||
for (ASTPointer<VariableDeclaration> const& decl: _decls)
|
||
if (decl)
|
||
{
|
||
solAssert(decl->annotation().type, "");
|
||
components.emplace_back(decl->annotation().type->toString(false) + " " + decl->name());
|
||
}
|
||
else
|
||
components.emplace_back();
|
||
|
||
if (_decls.size() == 1)
|
||
return components.front();
|
||
else
|
||
return "(" + boost::algorithm::join(components, ", ") + ")";
|
||
}
|
||
|
||
bool typeCanBeExpressed(vector<ASTPointer<VariableDeclaration>> const& decls)
|
||
{
|
||
for (ASTPointer<VariableDeclaration> const& decl: decls)
|
||
{
|
||
// skip empty tuples (they can be expressed of course)
|
||
if (!decl)
|
||
continue;
|
||
|
||
if (!decl->annotation().type)
|
||
return false;
|
||
|
||
if (auto functionType = dynamic_cast<FunctionType const*>(decl->annotation().type.get()))
|
||
if (
|
||
functionType->kind() != FunctionType::Kind::Internal &&
|
||
functionType->kind() != FunctionType::Kind::External
|
||
)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
}
|
||
|
||
bool TypeChecker::visit(VariableDeclarationStatement const& _statement)
|
||
{
|
||
if (!_statement.initialValue())
|
||
{
|
||
// No initial value is only permitted for single variables with specified type.
|
||
if (_statement.declarations().size() != 1 || !_statement.declarations().front())
|
||
{
|
||
if (boost::algorithm::all_of_equal(_statement.declarations(), nullptr))
|
||
{
|
||
// The syntax checker has already generated an error for this case (empty LHS tuple).
|
||
solAssert(m_errorReporter.hasErrors(), "");
|
||
|
||
// It is okay to return here, as there are no named components on the
|
||
// left-hand-side that could cause any damage later.
|
||
return false;
|
||
}
|
||
else
|
||
// Bailing out *fatal* here, as those (untyped) vars may be used later, and diagnostics wouldn't be helpful then.
|
||
m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");
|
||
}
|
||
|
||
VariableDeclaration const& varDecl = *_statement.declarations().front();
|
||
if (!varDecl.annotation().type)
|
||
m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");
|
||
|
||
if (auto ref = dynamic_cast<ReferenceType const*>(type(varDecl).get()))
|
||
{
|
||
if (ref->dataStoredIn(DataLocation::Storage))
|
||
{
|
||
string errorText{"Uninitialized storage pointer."};
|
||
if (varDecl.referenceLocation() == VariableDeclaration::Location::Unspecified)
|
||
errorText += " Did you mean '<type> memory " + varDecl.name() + "'?";
|
||
solAssert(m_scope, "");
|
||
m_errorReporter.declarationError(varDecl.location(), errorText);
|
||
}
|
||
}
|
||
else if (dynamic_cast<MappingType const*>(type(varDecl).get()))
|
||
m_errorReporter.typeError(
|
||
varDecl.location(),
|
||
"Uninitialized mapping. Mappings cannot be created dynamically, you have to assign them from a state variable."
|
||
);
|
||
varDecl.accept(*this);
|
||
return false;
|
||
}
|
||
|
||
// Here we have an initial value and might have to derive some types before we can visit
|
||
// the variable declaration(s).
|
||
|
||
_statement.initialValue()->accept(*this);
|
||
TypePointers valueTypes;
|
||
if (auto tupleType = dynamic_cast<TupleType const*>(type(*_statement.initialValue()).get()))
|
||
valueTypes = tupleType->components();
|
||
else
|
||
valueTypes = TypePointers{type(*_statement.initialValue())};
|
||
|
||
vector<ASTPointer<VariableDeclaration>> const& variables = _statement.declarations();
|
||
if (variables.empty())
|
||
// We already have an error for this in the SyntaxChecker.
|
||
solAssert(m_errorReporter.hasErrors(), "");
|
||
else if (valueTypes.size() != variables.size())
|
||
m_errorReporter.typeError(
|
||
_statement.location(),
|
||
"Different number of components on the left hand side (" +
|
||
toString(variables.size()) +
|
||
") than on the right hand side (" +
|
||
toString(valueTypes.size()) +
|
||
")."
|
||
);
|
||
|
||
bool autoTypeDeductionNeeded = false;
|
||
|
||
for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i)
|
||
{
|
||
if (!variables[i])
|
||
continue;
|
||
VariableDeclaration const& var = *variables[i];
|
||
solAssert(!var.value(), "Value has to be tied to statement.");
|
||
TypePointer const& valueComponentType = valueTypes[i];
|
||
solAssert(!!valueComponentType, "");
|
||
if (!var.annotation().type)
|
||
{
|
||
autoTypeDeductionNeeded = true;
|
||
|
||
// Infer type from value.
|
||
solAssert(!var.typeName(), "");
|
||
var.annotation().type = valueComponentType->mobileType();
|
||
if (!var.annotation().type)
|
||
{
|
||
if (valueComponentType->category() == Type::Category::RationalNumber)
|
||
m_errorReporter.fatalTypeError(
|
||
_statement.initialValue()->location(),
|
||
"Invalid rational " +
|
||
valueComponentType->toString() +
|
||
" (absolute value too large or division by zero)."
|
||
);
|
||
else
|
||
solAssert(false, "");
|
||
}
|
||
else if (*var.annotation().type == TupleType())
|
||
m_errorReporter.typeError(
|
||
var.location(),
|
||
"Cannot declare variable with void (empty tuple) type."
|
||
);
|
||
else if (valueComponentType->category() == Type::Category::RationalNumber)
|
||
{
|
||
string typeName = var.annotation().type->toString(true);
|
||
string extension;
|
||
if (auto type = dynamic_cast<IntegerType const*>(var.annotation().type.get()))
|
||
{
|
||
unsigned numBits = type->numBits();
|
||
bool isSigned = type->isSigned();
|
||
solAssert(numBits > 0, "");
|
||
string minValue;
|
||
string maxValue;
|
||
if (isSigned)
|
||
{
|
||
numBits--;
|
||
minValue = "-" + bigint(bigint(1) << numBits).str();
|
||
}
|
||
else
|
||
minValue = "0";
|
||
maxValue = bigint((bigint(1) << numBits) - 1).str();
|
||
extension = ", which can hold values between " + minValue + " and " + maxValue;
|
||
}
|
||
else
|
||
solAssert(dynamic_cast<FixedPointType const*>(var.annotation().type.get()), "Unknown type.");
|
||
}
|
||
|
||
var.accept(*this);
|
||
}
|
||
else
|
||
{
|
||
var.accept(*this);
|
||
if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type))
|
||
{
|
||
auto errorMsg = "Type " +
|
||
valueComponentType->toString() +
|
||
" is not implicitly convertible to expected type " +
|
||
var.annotation().type->toString();
|
||
if (
|
||
valueComponentType->category() == Type::Category::RationalNumber &&
|
||
dynamic_cast<RationalNumberType const&>(*valueComponentType).isFractional() &&
|
||
valueComponentType->mobileType()
|
||
)
|
||
{
|
||
if (var.annotation().type->operator==(*valueComponentType->mobileType()))
|
||
m_errorReporter.typeError(
|
||
_statement.location(),
|
||
errorMsg + ", but it can be explicitly converted."
|
||
);
|
||
else
|
||
m_errorReporter.typeError(
|
||
_statement.location(),
|
||
errorMsg +
|
||
". Try converting to type " +
|
||
valueComponentType->mobileType()->toString() +
|
||
" or use an explicit conversion."
|
||
);
|
||
}
|
||
else
|
||
m_errorReporter.typeError(_statement.location(), errorMsg + ".");
|
||
}
|
||
}
|
||
}
|
||
|
||
if (autoTypeDeductionNeeded)
|
||
{
|
||
if (!typeCanBeExpressed(variables))
|
||
m_errorReporter.syntaxError(
|
||
_statement.location(),
|
||
"Use of the \"var\" keyword is disallowed. "
|
||
"Type cannot be expressed in syntax."
|
||
);
|
||
else
|
||
m_errorReporter.syntaxError(
|
||
_statement.location(),
|
||
"Use of the \"var\" keyword is disallowed. "
|
||
"Use explicit declaration `" + createTupleDecl(variables) + " = ...´ instead."
|
||
);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(ExpressionStatement const& _statement)
|
||
{
|
||
if (type(_statement.expression())->category() == Type::Category::RationalNumber)
|
||
if (!dynamic_cast<RationalNumberType const&>(*type(_statement.expression())).mobileType())
|
||
m_errorReporter.typeError(_statement.expression().location(), "Invalid rational number.");
|
||
|
||
if (auto call = dynamic_cast<FunctionCall const*>(&_statement.expression()))
|
||
{
|
||
if (auto callType = dynamic_cast<FunctionType const*>(type(call->expression()).get()))
|
||
{
|
||
auto kind = callType->kind();
|
||
if (
|
||
kind == FunctionType::Kind::BareCall ||
|
||
kind == FunctionType::Kind::BareCallCode ||
|
||
kind == FunctionType::Kind::BareDelegateCall ||
|
||
kind == FunctionType::Kind::BareStaticCall
|
||
)
|
||
m_errorReporter.warning(_statement.location(), "Return value of low-level calls not used.");
|
||
else if (kind == FunctionType::Kind::Send)
|
||
m_errorReporter.warning(_statement.location(), "Failure condition of 'send' ignored. Consider using 'transfer' instead.");
|
||
}
|
||
}
|
||
}
|
||
|
||
bool TypeChecker::visit(Conditional const& _conditional)
|
||
{
|
||
expectType(_conditional.condition(), BoolType());
|
||
|
||
_conditional.trueExpression().accept(*this);
|
||
_conditional.falseExpression().accept(*this);
|
||
|
||
TypePointer trueType = type(_conditional.trueExpression())->mobileType();
|
||
TypePointer falseType = type(_conditional.falseExpression())->mobileType();
|
||
if (!trueType)
|
||
m_errorReporter.fatalTypeError(_conditional.trueExpression().location(), "Invalid mobile type.");
|
||
if (!falseType)
|
||
m_errorReporter.fatalTypeError(_conditional.falseExpression().location(), "Invalid mobile type.");
|
||
|
||
TypePointer commonType = Type::commonType(trueType, falseType);
|
||
if (!commonType)
|
||
{
|
||
m_errorReporter.typeError(
|
||
_conditional.location(),
|
||
"True expression's type " +
|
||
trueType->toString() +
|
||
" doesn't match false expression's type " +
|
||
falseType->toString() +
|
||
"."
|
||
);
|
||
// even we can't find a common type, we have to set a type here,
|
||
// otherwise the upper statement will not be able to check the type.
|
||
commonType = trueType;
|
||
}
|
||
|
||
_conditional.annotation().type = commonType;
|
||
_conditional.annotation().isPure =
|
||
_conditional.condition().annotation().isPure &&
|
||
_conditional.trueExpression().annotation().isPure &&
|
||
_conditional.falseExpression().annotation().isPure;
|
||
|
||
if (_conditional.annotation().lValueRequested)
|
||
m_errorReporter.typeError(
|
||
_conditional.location(),
|
||
"Conditional expression as left value is not supported yet."
|
||
);
|
||
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::checkExpressionAssignment(Type const& _type, Expression const& _expression)
|
||
{
|
||
if (auto const* tupleExpression = dynamic_cast<TupleExpression const*>(&_expression))
|
||
{
|
||
auto const* tupleType = dynamic_cast<TupleType const*>(&_type);
|
||
auto const& types = tupleType ? tupleType->components() : vector<TypePointer> { _type.shared_from_this() };
|
||
|
||
solAssert(
|
||
tupleExpression->components().size() == types.size() || m_errorReporter.hasErrors(),
|
||
"Array sizes don't match or no errors generated."
|
||
);
|
||
|
||
for (size_t i = 0; i < min(tupleExpression->components().size(), types.size()); i++)
|
||
if (types[i])
|
||
{
|
||
solAssert(!!tupleExpression->components()[i], "");
|
||
checkExpressionAssignment(*types[i], *tupleExpression->components()[i]);
|
||
}
|
||
}
|
||
else if (_type.category() == Type::Category::Mapping)
|
||
{
|
||
bool isLocalOrReturn = false;
|
||
if (auto const* identifier = dynamic_cast<Identifier const*>(&_expression))
|
||
if (auto const *variableDeclaration = dynamic_cast<VariableDeclaration const*>(identifier->annotation().referencedDeclaration))
|
||
if (variableDeclaration->isLocalOrReturn())
|
||
isLocalOrReturn = true;
|
||
if (!isLocalOrReturn)
|
||
m_errorReporter.typeError(_expression.location(), "Mappings cannot be assigned to.");
|
||
}
|
||
}
|
||
|
||
bool TypeChecker::visit(Assignment const& _assignment)
|
||
{
|
||
requireLValue(_assignment.leftHandSide());
|
||
TypePointer t = type(_assignment.leftHandSide());
|
||
_assignment.annotation().type = t;
|
||
|
||
checkExpressionAssignment(*t, _assignment.leftHandSide());
|
||
|
||
if (TupleType const* tupleType = dynamic_cast<TupleType const*>(t.get()))
|
||
{
|
||
if (_assignment.assignmentOperator() != Token::Assign)
|
||
m_errorReporter.typeError(
|
||
_assignment.location(),
|
||
"Compound assignment is not allowed for tuple types."
|
||
);
|
||
// Sequenced assignments of tuples is not valid, make the result a "void" type.
|
||
_assignment.annotation().type = make_shared<TupleType>();
|
||
|
||
expectType(_assignment.rightHandSide(), *tupleType);
|
||
|
||
// expectType does not cause fatal errors, so we have to check again here.
|
||
if (dynamic_cast<TupleType const*>(type(_assignment.rightHandSide()).get()))
|
||
checkDoubleStorageAssignment(_assignment);
|
||
}
|
||
else if (_assignment.assignmentOperator() == Token::Assign)
|
||
expectType(_assignment.rightHandSide(), *t);
|
||
else
|
||
{
|
||
// compound assignment
|
||
_assignment.rightHandSide().accept(*this);
|
||
TypePointer resultType = t->binaryOperatorResult(
|
||
TokenTraits::AssignmentToBinaryOp(_assignment.assignmentOperator()),
|
||
type(_assignment.rightHandSide())
|
||
);
|
||
if (!resultType || *resultType != *t)
|
||
m_errorReporter.typeError(
|
||
_assignment.location(),
|
||
"Operator " +
|
||
string(TokenTraits::toString(_assignment.assignmentOperator())) +
|
||
" not compatible with types " +
|
||
t->toString() +
|
||
" and " +
|
||
type(_assignment.rightHandSide())->toString()
|
||
);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(TupleExpression const& _tuple)
|
||
{
|
||
vector<ASTPointer<Expression>> const& components = _tuple.components();
|
||
TypePointers types;
|
||
|
||
if (_tuple.annotation().lValueRequested)
|
||
{
|
||
if (_tuple.isInlineArray())
|
||
m_errorReporter.fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue.");
|
||
for (auto const& component: components)
|
||
if (component)
|
||
{
|
||
requireLValue(*component);
|
||
types.push_back(type(*component));
|
||
}
|
||
else
|
||
types.push_back(TypePointer());
|
||
if (components.size() == 1)
|
||
_tuple.annotation().type = type(*components[0]);
|
||
else
|
||
_tuple.annotation().type = make_shared<TupleType>(types);
|
||
// If some of the components are not LValues, the error is reported above.
|
||
_tuple.annotation().isLValue = true;
|
||
}
|
||
else
|
||
{
|
||
bool isPure = true;
|
||
TypePointer inlineArrayType;
|
||
|
||
for (size_t i = 0; i < components.size(); ++i)
|
||
{
|
||
if (!components[i])
|
||
m_errorReporter.fatalTypeError(_tuple.location(), "Tuple component cannot be empty.");
|
||
else if (components[i])
|
||
{
|
||
components[i]->accept(*this);
|
||
types.push_back(type(*components[i]));
|
||
|
||
if (types[i]->category() == Type::Category::Tuple)
|
||
if (dynamic_cast<TupleType const&>(*types[i]).components().empty())
|
||
{
|
||
if (_tuple.isInlineArray())
|
||
m_errorReporter.fatalTypeError(components[i]->location(), "Array component cannot be empty.");
|
||
m_errorReporter.typeError(components[i]->location(), "Tuple component cannot be empty.");
|
||
}
|
||
|
||
// Note: code generation will visit each of the expression even if they are not assigned from.
|
||
if (types[i]->category() == Type::Category::RationalNumber && components.size() > 1)
|
||
if (!dynamic_cast<RationalNumberType const&>(*types[i]).mobileType())
|
||
m_errorReporter.fatalTypeError(components[i]->location(), "Invalid rational number.");
|
||
|
||
if (_tuple.isInlineArray())
|
||
solAssert(!!types[i], "Inline array cannot have empty components");
|
||
if (_tuple.isInlineArray())
|
||
{
|
||
if ((i == 0 || inlineArrayType) && !types[i]->mobileType())
|
||
m_errorReporter.fatalTypeError(components[i]->location(), "Invalid mobile type.");
|
||
|
||
if (i == 0)
|
||
inlineArrayType = types[i]->mobileType();
|
||
else if (inlineArrayType)
|
||
inlineArrayType = Type::commonType(inlineArrayType, types[i]);
|
||
}
|
||
if (!components[i]->annotation().isPure)
|
||
isPure = false;
|
||
}
|
||
else
|
||
types.push_back(TypePointer());
|
||
}
|
||
_tuple.annotation().isPure = isPure;
|
||
if (_tuple.isInlineArray())
|
||
{
|
||
if (!inlineArrayType)
|
||
m_errorReporter.fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements.");
|
||
else if (!inlineArrayType->canLiveOutsideStorage())
|
||
m_errorReporter.fatalTypeError(_tuple.location(), "Type " + inlineArrayType->toString() + " is only valid in storage.");
|
||
|
||
_tuple.annotation().type = make_shared<ArrayType>(DataLocation::Memory, inlineArrayType, types.size());
|
||
}
|
||
else
|
||
{
|
||
if (components.size() == 1)
|
||
_tuple.annotation().type = type(*components[0]);
|
||
else
|
||
_tuple.annotation().type = make_shared<TupleType>(types);
|
||
}
|
||
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(UnaryOperation const& _operation)
|
||
{
|
||
// Inc, Dec, Add, Sub, Not, BitNot, Delete
|
||
Token op = _operation.getOperator();
|
||
bool const modifying = (op == Token::Inc || op == Token::Dec || op == Token::Delete);
|
||
if (modifying)
|
||
requireLValue(_operation.subExpression());
|
||
else
|
||
_operation.subExpression().accept(*this);
|
||
TypePointer const& subExprType = type(_operation.subExpression());
|
||
TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op);
|
||
if (!t)
|
||
{
|
||
m_errorReporter.typeError(
|
||
_operation.location(),
|
||
"Unary operator " +
|
||
string(TokenTraits::toString(op)) +
|
||
" cannot be applied to type " +
|
||
subExprType->toString()
|
||
);
|
||
t = subExprType;
|
||
}
|
||
_operation.annotation().type = t;
|
||
_operation.annotation().isPure = !modifying && _operation.subExpression().annotation().isPure;
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(BinaryOperation const& _operation)
|
||
{
|
||
TypePointer const& leftType = type(_operation.leftExpression());
|
||
TypePointer const& rightType = type(_operation.rightExpression());
|
||
TypeResult result = leftType->binaryOperatorResult(_operation.getOperator(), rightType);
|
||
TypePointer commonType = result.get();
|
||
if (!commonType)
|
||
{
|
||
m_errorReporter.typeError(
|
||
_operation.location(),
|
||
"Operator " +
|
||
string(TokenTraits::toString(_operation.getOperator())) +
|
||
" not compatible with types " +
|
||
leftType->toString() +
|
||
" and " +
|
||
rightType->toString() +
|
||
(!result.message().empty() ? ". " + result.message() : "")
|
||
);
|
||
commonType = leftType;
|
||
}
|
||
_operation.annotation().commonType = commonType;
|
||
_operation.annotation().type =
|
||
TokenTraits::isCompareOp(_operation.getOperator()) ?
|
||
make_shared<BoolType>() :
|
||
commonType;
|
||
_operation.annotation().isPure =
|
||
_operation.leftExpression().annotation().isPure &&
|
||
_operation.rightExpression().annotation().isPure;
|
||
|
||
if (_operation.getOperator() == Token::Exp || _operation.getOperator() == Token::SHL)
|
||
{
|
||
string operation = _operation.getOperator() == Token::Exp ? "exponentiation" : "shift";
|
||
if (
|
||
leftType->category() == Type::Category::RationalNumber &&
|
||
rightType->category() != Type::Category::RationalNumber
|
||
)
|
||
if ((
|
||
commonType->category() == Type::Category::Integer &&
|
||
dynamic_cast<IntegerType const&>(*commonType).numBits() != 256
|
||
) || (
|
||
commonType->category() == Type::Category::FixedPoint &&
|
||
dynamic_cast<FixedPointType const&>(*commonType).numBits() != 256
|
||
))
|
||
m_errorReporter.warning(
|
||
_operation.location(),
|
||
"Result of " + operation + " has type " + commonType->toString() + " and thus "
|
||
"might overflow. Silence this warning by converting the literal to the "
|
||
"expected type."
|
||
);
|
||
}
|
||
}
|
||
|
||
TypePointer TypeChecker::typeCheckTypeConversionAndRetrieveReturnType(
|
||
FunctionCall const& _functionCall
|
||
)
|
||
{
|
||
solAssert(_functionCall.annotation().kind == FunctionCallKind::TypeConversion, "");
|
||
TypePointer const& expressionType = type(_functionCall.expression());
|
||
|
||
vector<ASTPointer<Expression const>> const& arguments = _functionCall.arguments();
|
||
bool const isPositionalCall = _functionCall.names().empty();
|
||
|
||
TypePointer resultType = dynamic_cast<TypeType const&>(*expressionType).actualType();
|
||
if (arguments.size() != 1)
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Exactly one argument expected for explicit type conversion."
|
||
);
|
||
else if (!isPositionalCall)
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Type conversion cannot allow named arguments."
|
||
);
|
||
else
|
||
{
|
||
TypePointer const& argType = type(*arguments.front());
|
||
// Resulting data location is memory unless we are converting from a reference
|
||
// type with a different data location.
|
||
// (data location cannot yet be specified for type conversions)
|
||
DataLocation dataLoc = DataLocation::Memory;
|
||
if (auto argRefType = dynamic_cast<ReferenceType const*>(argType.get()))
|
||
dataLoc = argRefType->location();
|
||
if (auto type = dynamic_cast<ReferenceType const*>(resultType.get()))
|
||
resultType = type->copyForLocation(dataLoc, type->isPointer());
|
||
if (argType->isExplicitlyConvertibleTo(*resultType))
|
||
{
|
||
if (auto argArrayType = dynamic_cast<ArrayType const*>(argType.get()))
|
||
{
|
||
auto resultArrayType = dynamic_cast<ArrayType const*>(resultType.get());
|
||
solAssert(!!resultArrayType, "");
|
||
solAssert(
|
||
argArrayType->location() != DataLocation::Storage ||
|
||
(
|
||
(
|
||
resultArrayType->isPointer() ||
|
||
(argArrayType->isByteArray() && resultArrayType->isByteArray())
|
||
) &&
|
||
resultArrayType->location() == DataLocation::Storage
|
||
),
|
||
"Invalid explicit conversion to storage type."
|
||
);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (
|
||
resultType->category() == Type::Category::Contract &&
|
||
argType->category() == Type::Category::Address
|
||
)
|
||
{
|
||
solAssert(dynamic_cast<ContractType const*>(resultType.get())->isPayable(), "");
|
||
solAssert(
|
||
dynamic_cast<AddressType const*>(argType.get())->stateMutability() <
|
||
StateMutability::Payable,
|
||
""
|
||
);
|
||
SecondarySourceLocation ssl;
|
||
if (
|
||
auto const* identifier = dynamic_cast<Identifier const*>(arguments.front().get())
|
||
)
|
||
if (
|
||
auto const* variableDeclaration = dynamic_cast<VariableDeclaration const*>(
|
||
identifier->annotation().referencedDeclaration
|
||
)
|
||
)
|
||
ssl.append(
|
||
"Did you mean to declare this variable as \"address payable\"?",
|
||
variableDeclaration->location()
|
||
);
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(), ssl,
|
||
"Explicit type conversion not allowed from non-payable \"address\" to \"" +
|
||
resultType->toString() +
|
||
"\", which has a payable fallback function."
|
||
);
|
||
}
|
||
else
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Explicit type conversion not allowed from \"" +
|
||
argType->toString() +
|
||
"\" to \"" +
|
||
resultType->toString() +
|
||
"\"."
|
||
);
|
||
}
|
||
if (resultType->category() == Type::Category::Address)
|
||
{
|
||
bool const payable = argType->isExplicitlyConvertibleTo(AddressType::addressPayable());
|
||
resultType = make_shared<AddressType>(
|
||
payable ? StateMutability::Payable : StateMutability::NonPayable
|
||
);
|
||
}
|
||
}
|
||
return resultType;
|
||
}
|
||
|
||
void TypeChecker::typeCheckFunctionCall(
|
||
FunctionCall const& _functionCall,
|
||
FunctionTypePointer _functionType
|
||
)
|
||
{
|
||
// Actual function call or struct constructor call.
|
||
|
||
solAssert(!!_functionType, "");
|
||
solAssert(_functionType->kind() != FunctionType::Kind::ABIDecode, "");
|
||
|
||
// Check for unsupported use of bare static call
|
||
if (
|
||
_functionType->kind() == FunctionType::Kind::BareStaticCall &&
|
||
!m_evmVersion.hasStaticCall()
|
||
)
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"\"staticcall\" is not supported by the VM version."
|
||
);
|
||
|
||
// Check for event outside of emit statement
|
||
if (!m_insideEmitStatement && _functionType->kind() == FunctionType::Kind::Event)
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Event invocations have to be prefixed by \"emit\"."
|
||
);
|
||
|
||
// Perform standard function call type checking
|
||
typeCheckFunctionGeneralChecks(_functionCall, _functionType);
|
||
}
|
||
|
||
void TypeChecker::typeCheckABIEncodeFunctions(
|
||
FunctionCall const& _functionCall,
|
||
FunctionTypePointer _functionType
|
||
)
|
||
{
|
||
solAssert(!!_functionType, "");
|
||
solAssert(
|
||
_functionType->kind() == FunctionType::Kind::ABIEncode ||
|
||
_functionType->kind() == FunctionType::Kind::ABIEncodePacked ||
|
||
_functionType->kind() == FunctionType::Kind::ABIEncodeWithSelector ||
|
||
_functionType->kind() == FunctionType::Kind::ABIEncodeWithSignature,
|
||
"ABI function has unexpected FunctionType::Kind."
|
||
);
|
||
solAssert(_functionType->takesArbitraryParameters(), "ABI functions should be variadic.");
|
||
|
||
bool const isPacked = _functionType->kind() == FunctionType::Kind::ABIEncodePacked;
|
||
solAssert(_functionType->padArguments() != isPacked, "ABI function with unexpected padding");
|
||
|
||
bool const abiEncoderV2 = m_scope->sourceUnit().annotation().experimentalFeatures.count(
|
||
ExperimentalFeature::ABIEncoderV2
|
||
);
|
||
|
||
// Check for named arguments
|
||
if (!_functionCall.names().empty())
|
||
{
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Named arguments cannot be used for functions that take arbitrary parameters."
|
||
);
|
||
return;
|
||
}
|
||
|
||
// Perform standard function call type checking
|
||
typeCheckFunctionGeneralChecks(_functionCall, _functionType);
|
||
|
||
// Check additional arguments for variadic functions
|
||
vector<ASTPointer<Expression const>> const& arguments = _functionCall.arguments();
|
||
for (size_t i = 0; i < arguments.size(); ++i)
|
||
{
|
||
auto const& argType = type(*arguments[i]);
|
||
|
||
if (argType->category() == Type::Category::RationalNumber)
|
||
{
|
||
auto const& rationalType = dynamic_cast<RationalNumberType const&>(*argType);
|
||
if (rationalType.isFractional())
|
||
{
|
||
m_errorReporter.typeError(
|
||
arguments[i]->location(),
|
||
"Fractional numbers cannot yet be encoded."
|
||
);
|
||
continue;
|
||
}
|
||
else if (!argType->mobileType())
|
||
{
|
||
m_errorReporter.typeError(
|
||
arguments[i]->location(),
|
||
"Invalid rational number (too large or division by zero)."
|
||
);
|
||
continue;
|
||
}
|
||
else if (isPacked)
|
||
{
|
||
m_errorReporter.typeError(
|
||
arguments[i]->location(),
|
||
"Cannot perform packed encoding for a literal."
|
||
" Please convert it to an explicit type first."
|
||
);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (!argType->fullEncodingType(false, abiEncoderV2, !_functionType->padArguments()))
|
||
m_errorReporter.typeError(
|
||
arguments[i]->location(),
|
||
"This type cannot be encoded."
|
||
);
|
||
}
|
||
}
|
||
|
||
void TypeChecker::typeCheckFunctionGeneralChecks(
|
||
FunctionCall const& _functionCall,
|
||
FunctionTypePointer _functionType
|
||
)
|
||
{
|
||
// Actual function call or struct constructor call.
|
||
|
||
solAssert(!!_functionType, "");
|
||
solAssert(_functionType->kind() != FunctionType::Kind::ABIDecode, "");
|
||
|
||
bool const isPositionalCall = _functionCall.names().empty();
|
||
bool const isVariadic = _functionType->takesArbitraryParameters();
|
||
|
||
solAssert(
|
||
!isVariadic || _functionCall.annotation().kind == FunctionCallKind::FunctionCall,
|
||
"Struct constructor calls cannot be variadic."
|
||
);
|
||
|
||
TypePointers const& parameterTypes = _functionType->parameterTypes();
|
||
vector<ASTPointer<Expression const>> const& arguments = _functionCall.arguments();
|
||
vector<ASTPointer<ASTString>> const& argumentNames = _functionCall.names();
|
||
|
||
// Check number of passed in arguments
|
||
if (
|
||
arguments.size() < parameterTypes.size() ||
|
||
(!isVariadic && arguments.size() > parameterTypes.size())
|
||
)
|
||
{
|
||
bool const isStructConstructorCall =
|
||
_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall;
|
||
|
||
string msg;
|
||
|
||
if (isVariadic)
|
||
msg +=
|
||
"Need at least " +
|
||
toString(parameterTypes.size()) +
|
||
" arguments for " +
|
||
string(isStructConstructorCall ? "struct constructor" : "function call") +
|
||
", but provided only " +
|
||
toString(arguments.size()) +
|
||
".";
|
||
else
|
||
msg +=
|
||
"Wrong argument count for " +
|
||
string(isStructConstructorCall ? "struct constructor" : "function call") +
|
||
": " +
|
||
toString(arguments.size()) +
|
||
" arguments given but " +
|
||
string(isVariadic ? "need at least " : "expected ") +
|
||
toString(parameterTypes.size()) +
|
||
".";
|
||
|
||
// Extend error message in case we try to construct a struct with mapping member.
|
||
if (isStructConstructorCall)
|
||
{
|
||
/// For error message: Struct members that were removed during conversion to memory.
|
||
TypePointer const expressionType = type(_functionCall.expression());
|
||
TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
|
||
auto const& structType = dynamic_cast<StructType const&>(*t.actualType());
|
||
set<string> membersRemovedForStructConstructor = structType.membersMissingInMemory();
|
||
|
||
if (!membersRemovedForStructConstructor.empty())
|
||
{
|
||
msg += " Members that have to be skipped in memory:";
|
||
for (auto const& member: membersRemovedForStructConstructor)
|
||
msg += " " + member;
|
||
}
|
||
}
|
||
else if (
|
||
_functionType->kind() == FunctionType::Kind::BareCall ||
|
||
_functionType->kind() == FunctionType::Kind::BareCallCode ||
|
||
_functionType->kind() == FunctionType::Kind::BareDelegateCall ||
|
||
_functionType->kind() == FunctionType::Kind::BareStaticCall
|
||
)
|
||
{
|
||
if (arguments.empty())
|
||
msg +=
|
||
" This function requires a single bytes argument."
|
||
" Use \"\" as argument to provide empty calldata.";
|
||
else
|
||
msg +=
|
||
" This function requires a single bytes argument."
|
||
" If all your arguments are value types, you can use"
|
||
" abi.encode(...) to properly generate it.";
|
||
}
|
||
else if (
|
||
_functionType->kind() == FunctionType::Kind::KECCAK256 ||
|
||
_functionType->kind() == FunctionType::Kind::SHA256 ||
|
||
_functionType->kind() == FunctionType::Kind::RIPEMD160
|
||
)
|
||
msg +=
|
||
" This function requires a single bytes argument."
|
||
" Use abi.encodePacked(...) to obtain the pre-0.5.0"
|
||
" behaviour or abi.encode(...) to use ABI encoding.";
|
||
m_errorReporter.typeError(_functionCall.location(), msg);
|
||
return;
|
||
}
|
||
|
||
// Parameter to argument map
|
||
std::vector<Expression const*> paramArgMap(parameterTypes.size());
|
||
|
||
// Map parameters to arguments - trivially for positional calls, less so for named calls
|
||
if (isPositionalCall)
|
||
for (size_t i = 0; i < paramArgMap.size(); ++i)
|
||
paramArgMap[i] = arguments[i].get();
|
||
else
|
||
{
|
||
auto const& parameterNames = _functionType->parameterNames();
|
||
|
||
// Check for expected number of named arguments
|
||
if (parameterNames.size() != argumentNames.size())
|
||
{
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
parameterNames.size() > argumentNames.size() ?
|
||
"Some argument names are missing." :
|
||
"Too many arguments."
|
||
);
|
||
return;
|
||
}
|
||
|
||
// Check for duplicate argument names
|
||
{
|
||
bool duplication = false;
|
||
for (size_t i = 0; i < argumentNames.size(); i++)
|
||
for (size_t j = i + 1; j < argumentNames.size(); j++)
|
||
if (*argumentNames[i] == *argumentNames[j])
|
||
{
|
||
duplication = true;
|
||
m_errorReporter.typeError(
|
||
arguments[i]->location(),
|
||
"Duplicate named argument \"" + *argumentNames[i] + "\"."
|
||
);
|
||
}
|
||
if (duplication)
|
||
return;
|
||
}
|
||
|
||
// map parameter names to argument names
|
||
{
|
||
bool not_all_mapped = false;
|
||
|
||
for (size_t i = 0; i < paramArgMap.size(); i++)
|
||
{
|
||
size_t j;
|
||
for (j = 0; j < argumentNames.size(); j++)
|
||
if (parameterNames[i] == *argumentNames[j])
|
||
break;
|
||
|
||
if (j < argumentNames.size())
|
||
paramArgMap[i] = arguments[j].get();
|
||
else
|
||
{
|
||
paramArgMap[i] = nullptr;
|
||
not_all_mapped = true;
|
||
m_errorReporter.typeError(
|
||
_functionCall.location(),
|
||
"Named argument \"" +
|
||
*argumentNames[i] +
|
||
"\" does not match function declaration."
|
||
);
|
||
}
|
||
}
|
||
|
||
if (not_all_mapped)
|
||
return;
|
||
}
|
||
}
|
||
|
||
// Check for compatible types between arguments and parameters
|
||
for (size_t i = 0; i < paramArgMap.size(); ++i)
|
||
{
|
||
solAssert(!!paramArgMap[i], "unmapped parameter");
|
||
if (!type(*paramArgMap[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
|
||
{
|
||
string msg =
|
||
"Invalid type for argument in function call. "
|
||
"Invalid implicit conversion from " +
|
||
type(*paramArgMap[i])->toString() +
|
||
" to " +
|
||
parameterTypes[i]->toString() +
|
||
" requested.";
|
||
if (
|
||
_functionType->kind() == FunctionType::Kind::BareCall ||
|
||
_functionType->kind() == FunctionType::Kind::BareCallCode ||
|
||
_functionType->kind() == FunctionType::Kind::BareDelegateCall ||
|
||
_functionType->kind() == FunctionType::Kind::BareStaticCall
|
||
)
|
||
msg +=
|
||
" This function requires a single bytes argument."
|
||
" If all your arguments are value types, you can"
|
||
" use abi.encode(...) to properly generate it.";
|
||
else if (
|
||
_functionType->kind() == FunctionType::Kind::KECCAK256 ||
|
||
_functionType->kind() == FunctionType::Kind::SHA256 ||
|
||
_functionType->kind() == FunctionType::Kind::RIPEMD160
|
||
)
|
||
msg +=
|
||
" This function requires a single bytes argument."
|
||
" Use abi.encodePacked(...) to obtain the pre-0.5.0"
|
||
" behaviour or abi.encode(...) to use ABI encoding.";
|
||
m_errorReporter.typeError(paramArgMap[i]->location(), msg);
|
||
}
|
||
}
|
||
}
|
||
|
||
bool TypeChecker::visit(FunctionCall const& _functionCall)
|
||
{
|
||
vector<ASTPointer<Expression const>> const& arguments = _functionCall.arguments();
|
||
bool argumentsArePure = true;
|
||
|
||
// We need to check arguments' type first as they will be needed for overload resolution.
|
||
for (ASTPointer<Expression const> const& argument: arguments)
|
||
{
|
||
argument->accept(*this);
|
||
if (!argument->annotation().isPure)
|
||
argumentsArePure = false;
|
||
}
|
||
|
||
// For positional calls only, store argument types
|
||
if (_functionCall.names().empty())
|
||
{
|
||
shared_ptr<TypePointers> argumentTypes = make_shared<TypePointers>();
|
||
for (ASTPointer<Expression const> const& argument: arguments)
|
||
argumentTypes->push_back(type(*argument));
|
||
_functionCall.expression().annotation().argumentTypes = move(argumentTypes);
|
||
}
|
||
|
||
_functionCall.expression().accept(*this);
|
||
|
||
TypePointer const& expressionType = type(_functionCall.expression());
|
||
|
||
// Determine function call kind and function type for this FunctionCall node
|
||
FunctionCallAnnotation& funcCallAnno = _functionCall.annotation();
|
||
FunctionTypePointer functionType;
|
||
|
||
// Determine and assign function call kind, purity and function type for this FunctionCall node
|
||
switch (expressionType->category())
|
||
{
|
||
case Type::Category::Function:
|
||
functionType = dynamic_pointer_cast<FunctionType const>(expressionType);
|
||
funcCallAnno.kind = FunctionCallKind::FunctionCall;
|
||
|
||
// Purity for function calls also depends upon the callee and its FunctionType
|
||
funcCallAnno.isPure =
|
||
argumentsArePure &&
|
||
_functionCall.expression().annotation().isPure &&
|
||
functionType &&
|
||
functionType->isPure();
|
||
|
||
break;
|
||
|
||
case Type::Category::TypeType:
|
||
{
|
||
// Determine type for type conversion or struct construction expressions
|
||
TypePointer const& actualType = dynamic_cast<TypeType const&>(*expressionType).actualType();
|
||
solAssert(!!actualType, "");
|
||
|
||
if (actualType->category() == Type::Category::Struct)
|
||
{
|
||
functionType = dynamic_cast<StructType const&>(*actualType).constructorType();
|
||
funcCallAnno.kind = FunctionCallKind::StructConstructorCall;
|
||
funcCallAnno.isPure = argumentsArePure;
|
||
}
|
||
else
|
||
{
|
||
funcCallAnno.kind = FunctionCallKind::TypeConversion;
|
||
funcCallAnno.isPure = argumentsArePure;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
default:
|
||
m_errorReporter.typeError(_functionCall.location(), "Type is not callable");
|
||
funcCallAnno.kind = FunctionCallKind::Unset;
|
||
funcCallAnno.isPure = argumentsArePure;
|
||
break;
|
||
}
|
||
|
||
// Determine return types
|
||
switch (funcCallAnno.kind)
|
||
{
|
||
case FunctionCallKind::TypeConversion:
|
||
funcCallAnno.type = typeCheckTypeConversionAndRetrieveReturnType(_functionCall);
|
||
break;
|
||
|
||
case FunctionCallKind::StructConstructorCall: // fall-through
|
||
case FunctionCallKind::FunctionCall:
|
||
{
|
||
TypePointers returnTypes;
|
||
|
||
switch (functionType->kind())
|
||
{
|
||
case FunctionType::Kind::ABIDecode:
|
||
{
|
||
bool const abiEncoderV2 =
|
||
m_scope->sourceUnit().annotation().experimentalFeatures.count(
|
||
ExperimentalFeature::ABIEncoderV2
|
||
);
|
||
returnTypes = typeCheckABIDecodeAndRetrieveReturnType(_functionCall, abiEncoderV2);
|
||
break;
|
||
}
|
||
case FunctionType::Kind::ABIEncode:
|
||
case FunctionType::Kind::ABIEncodePacked:
|
||
case FunctionType::Kind::ABIEncodeWithSelector:
|
||
case FunctionType::Kind::ABIEncodeWithSignature:
|
||
{
|
||
typeCheckABIEncodeFunctions(_functionCall, functionType);
|
||
returnTypes = functionType->returnParameterTypes();
|
||
break;
|
||
}
|
||
case FunctionType::Kind::MetaType:
|
||
returnTypes = typeCheckMetaTypeFunctionAndRetrieveReturnType(_functionCall);
|
||
break;
|
||
default:
|
||
{
|
||
typeCheckFunctionCall(_functionCall, functionType);
|
||
returnTypes = m_evmVersion.supportsReturndata() ?
|
||
functionType->returnParameterTypes() :
|
||
functionType->returnParameterTypesWithoutDynamicTypes();
|
||
break;
|
||
}
|
||
}
|
||
|
||
funcCallAnno.type = returnTypes.size() == 1 ?
|
||
move(returnTypes.front()) :
|
||
make_shared<TupleType>(move(returnTypes));
|
||
|
||
break;
|
||
}
|
||
|
||
case FunctionCallKind::Unset: // fall-through
|
||
default:
|
||
// for non-callables, ensure error reported and annotate node to void function
|
||
solAssert(m_errorReporter.hasErrors(), "");
|
||
funcCallAnno.kind = FunctionCallKind::FunctionCall;
|
||
funcCallAnno.type = make_shared<TupleType>();
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(NewExpression const& _newExpression)
|
||
{
|
||
TypePointer type = _newExpression.typeName().annotation().type;
|
||
solAssert(!!type, "Type name not resolved.");
|
||
|
||
if (auto contractName = dynamic_cast<UserDefinedTypeName const*>(&_newExpression.typeName()))
|
||
{
|
||
auto contract = dynamic_cast<ContractDefinition const*>(&dereference(*contractName));
|
||
|
||
if (!contract)
|
||
m_errorReporter.fatalTypeError(_newExpression.location(), "Identifier is not a contract.");
|
||
if (contract->isInterface())
|
||
m_errorReporter.fatalTypeError(_newExpression.location(), "Cannot instantiate an interface.");
|
||
if (!contract->annotation().unimplementedFunctions.empty())
|
||
{
|
||
SecondarySourceLocation ssl;
|
||
for (auto function: contract->annotation().unimplementedFunctions)
|
||
ssl.append("Missing implementation:", function->location());
|
||
string msg = "Trying to create an instance of an abstract contract.";
|
||
ssl.limitSize(msg);
|
||
m_errorReporter.typeError(
|
||
_newExpression.location(),
|
||
ssl,
|
||
msg
|
||
);
|
||
}
|
||
if (!contract->constructorIsPublic())
|
||
m_errorReporter.typeError(_newExpression.location(), "Contract with internal constructor cannot be created directly.");
|
||
|
||
solAssert(!!m_scope, "");
|
||
m_scope->annotation().contractDependencies.insert(contract);
|
||
solAssert(
|
||
!contract->annotation().linearizedBaseContracts.empty(),
|
||
"Linearized base contracts not yet available."
|
||
);
|
||
if (contractDependenciesAreCyclic(*m_scope))
|
||
m_errorReporter.typeError(
|
||
_newExpression.location(),
|
||
"Circular reference for contract creation (cannot create instance of derived or same contract)."
|
||
);
|
||
|
||
_newExpression.annotation().type = FunctionType::newExpressionType(*contract);
|
||
}
|
||
else if (type->category() == Type::Category::Array)
|
||
{
|
||
if (!type->canLiveOutsideStorage())
|
||
m_errorReporter.fatalTypeError(
|
||
_newExpression.typeName().location(),
|
||
"Type cannot live outside storage."
|
||
);
|
||
if (!type->isDynamicallySized())
|
||
m_errorReporter.typeError(
|
||
_newExpression.typeName().location(),
|
||
"Length has to be placed in parentheses after the array type for new expression."
|
||
);
|
||
type = ReferenceType::copyForLocationIfReference(DataLocation::Memory, type);
|
||
_newExpression.annotation().type = make_shared<FunctionType>(
|
||
TypePointers{make_shared<IntegerType>(256)},
|
||
TypePointers{type},
|
||
strings(),
|
||
strings(),
|
||
FunctionType::Kind::ObjectCreation,
|
||
false,
|
||
StateMutability::Pure
|
||
);
|
||
_newExpression.annotation().isPure = true;
|
||
}
|
||
else
|
||
m_errorReporter.fatalTypeError(_newExpression.location(), "Contract or array type expected.");
|
||
}
|
||
|
||
bool TypeChecker::visit(MemberAccess const& _memberAccess)
|
||
{
|
||
_memberAccess.expression().accept(*this);
|
||
TypePointer exprType = type(_memberAccess.expression());
|
||
ASTString const& memberName = _memberAccess.memberName();
|
||
|
||
// Retrieve the types of the arguments if this is used to call a function.
|
||
auto const& argumentTypes = _memberAccess.annotation().argumentTypes;
|
||
MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName);
|
||
size_t const initialMemberCount = possibleMembers.size();
|
||
if (initialMemberCount > 1 && argumentTypes)
|
||
{
|
||
// do overload resolution
|
||
for (auto it = possibleMembers.begin(); it != possibleMembers.end();)
|
||
if (
|
||
it->type->category() == Type::Category::Function &&
|
||
!dynamic_cast<FunctionType const&>(*it->type).canTakeArguments(*argumentTypes, exprType)
|
||
)
|
||
it = possibleMembers.erase(it);
|
||
else
|
||
++it;
|
||
}
|
||
|
||
auto& annotation = _memberAccess.annotation();
|
||
|
||
if (possibleMembers.empty())
|
||
{
|
||
if (initialMemberCount == 0)
|
||
{
|
||
// Try to see if the member was removed because it is only available for storage types.
|
||
auto storageType = ReferenceType::copyForLocationIfReference(
|
||
DataLocation::Storage,
|
||
exprType
|
||
);
|
||
if (!storageType->members(m_scope).membersByName(memberName).empty())
|
||
m_errorReporter.fatalTypeError(
|
||
_memberAccess.location(),
|
||
"Member \"" + memberName + "\" is not available in " +
|
||
exprType->toString() +
|
||
" outside of storage."
|
||
);
|
||
}
|
||
string errorMsg = "Member \"" + memberName + "\" not found or not visible "
|
||
"after argument-dependent lookup in " + exprType->toString() + ".";
|
||
if (memberName == "value")
|
||
{
|
||
errorMsg.pop_back();
|
||
errorMsg += " - did you forget the \"payable\" modifier?";
|
||
}
|
||
else if (exprType->category() == Type::Category::Function)
|
||
{
|
||
if (auto const& funType = dynamic_pointer_cast<FunctionType const>(exprType))
|
||
{
|
||
auto const& t = funType->returnParameterTypes();
|
||
if (t.size() == 1)
|
||
if (
|
||
t.front()->category() == Type::Category::Contract ||
|
||
t.front()->category() == Type::Category::Struct
|
||
)
|
||
errorMsg += " Did you intend to call the function?";
|
||
}
|
||
}
|
||
if (exprType->category() == Type::Category::Contract)
|
||
for (auto const& addressMember: AddressType::addressPayable().nativeMembers(nullptr))
|
||
if (addressMember.name == memberName)
|
||
{
|
||
Identifier const* var = dynamic_cast<Identifier const*>(&_memberAccess.expression());
|
||
string varName = var ? var->name() : "...";
|
||
errorMsg += " Use \"address(" + varName + ")." + memberName + "\" to access this address member.";
|
||
break;
|
||
}
|
||
m_errorReporter.fatalTypeError(
|
||
_memberAccess.location(),
|
||
errorMsg
|
||
);
|
||
}
|
||
else if (possibleMembers.size() > 1)
|
||
m_errorReporter.fatalTypeError(
|
||
_memberAccess.location(),
|
||
"Member \"" + memberName + "\" not unique "
|
||
"after argument-dependent lookup in " + exprType->toString() +
|
||
(memberName == "value" ? " - did you forget the \"payable\" modifier?" : ".")
|
||
);
|
||
|
||
annotation.referencedDeclaration = possibleMembers.front().declaration;
|
||
annotation.type = possibleMembers.front().type;
|
||
|
||
if (auto funType = dynamic_cast<FunctionType const*>(annotation.type.get()))
|
||
if (funType->bound() && !exprType->isImplicitlyConvertibleTo(*funType->selfType()))
|
||
m_errorReporter.typeError(
|
||
_memberAccess.location(),
|
||
"Function \"" + memberName + "\" cannot be called on an object of type " +
|
||
exprType->toString() + " (expected " + funType->selfType()->toString() + ")."
|
||
);
|
||
|
||
if (exprType->category() == Type::Category::Struct)
|
||
annotation.isLValue = true;
|
||
else if (exprType->category() == Type::Category::Array)
|
||
{
|
||
auto const& arrayType(dynamic_cast<ArrayType const&>(*exprType));
|
||
annotation.isLValue = (
|
||
memberName == "length" &&
|
||
arrayType.location() == DataLocation::Storage &&
|
||
arrayType.isDynamicallySized()
|
||
);
|
||
}
|
||
else if (exprType->category() == Type::Category::FixedBytes)
|
||
annotation.isLValue = false;
|
||
else if (TypeType const* typeType = dynamic_cast<decltype(typeType)>(exprType.get()))
|
||
{
|
||
if (ContractType const* contractType = dynamic_cast<decltype(contractType)>(typeType->actualType().get()))
|
||
annotation.isLValue = annotation.referencedDeclaration->isLValue();
|
||
}
|
||
|
||
if (exprType->category() == Type::Category::Contract)
|
||
{
|
||
// Warn about using send or transfer with a non-payable fallback function.
|
||
if (auto callType = dynamic_cast<FunctionType const*>(type(_memberAccess).get()))
|
||
{
|
||
auto kind = callType->kind();
|
||
auto contractType = dynamic_cast<ContractType const*>(exprType.get());
|
||
solAssert(!!contractType, "Should be contract type.");
|
||
|
||
if (
|
||
(kind == FunctionType::Kind::Send || kind == FunctionType::Kind::Transfer) &&
|
||
!contractType->isPayable()
|
||
)
|
||
m_errorReporter.typeError(
|
||
_memberAccess.location(),
|
||
"Value transfer to a contract without a payable fallback function."
|
||
);
|
||
}
|
||
}
|
||
|
||
// TODO some members might be pure, but for example `address(0x123).balance` is not pure
|
||
// although every subexpression is, so leaving this limited for now.
|
||
if (auto tt = dynamic_cast<TypeType const*>(exprType.get()))
|
||
if (tt->actualType()->category() == Type::Category::Enum)
|
||
annotation.isPure = true;
|
||
if (auto magicType = dynamic_cast<MagicType const*>(exprType.get()))
|
||
{
|
||
if (magicType->kind() == MagicType::Kind::ABI)
|
||
annotation.isPure = true;
|
||
else if (magicType->kind() == MagicType::Kind::MetaType && (
|
||
memberName == "creationCode" || memberName == "runtimeCode"
|
||
))
|
||
{
|
||
annotation.isPure = true;
|
||
m_scope->annotation().contractDependencies.insert(
|
||
&dynamic_cast<ContractType const&>(*magicType->typeArgument()).contractDefinition()
|
||
);
|
||
if (contractDependenciesAreCyclic(*m_scope))
|
||
m_errorReporter.typeError(
|
||
_memberAccess.location(),
|
||
"Circular reference for contract code access."
|
||
);
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(IndexAccess const& _access)
|
||
{
|
||
_access.baseExpression().accept(*this);
|
||
TypePointer baseType = type(_access.baseExpression());
|
||
TypePointer resultType;
|
||
bool isLValue = false;
|
||
bool isPure = _access.baseExpression().annotation().isPure;
|
||
Expression const* index = _access.indexExpression();
|
||
switch (baseType->category())
|
||
{
|
||
case Type::Category::Array:
|
||
{
|
||
ArrayType const& actualType = dynamic_cast<ArrayType const&>(*baseType);
|
||
if (!index)
|
||
m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
|
||
else if (actualType.isString())
|
||
{
|
||
m_errorReporter.typeError(_access.location(), "Index access for string is not possible.");
|
||
index->accept(*this);
|
||
}
|
||
else
|
||
{
|
||
expectType(*index, IntegerType::uint256());
|
||
if (!m_errorReporter.hasErrors())
|
||
if (auto numberType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
|
||
{
|
||
solAssert(!numberType->isFractional(), "");
|
||
if (!actualType.isDynamicallySized() && actualType.length() <= numberType->literalValue(nullptr))
|
||
m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
|
||
}
|
||
}
|
||
resultType = actualType.baseType();
|
||
isLValue = actualType.location() != DataLocation::CallData;
|
||
break;
|
||
}
|
||
case Type::Category::Mapping:
|
||
{
|
||
MappingType const& actualType = dynamic_cast<MappingType const&>(*baseType);
|
||
if (!index)
|
||
m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
|
||
else
|
||
expectType(*index, *actualType.keyType());
|
||
resultType = actualType.valueType();
|
||
isLValue = true;
|
||
break;
|
||
}
|
||
case Type::Category::TypeType:
|
||
{
|
||
TypeType const& typeType = dynamic_cast<TypeType const&>(*baseType);
|
||
if (!index)
|
||
resultType = make_shared<TypeType>(make_shared<ArrayType>(DataLocation::Memory, typeType.actualType()));
|
||
else
|
||
{
|
||
expectType(*index, IntegerType::uint256());
|
||
if (auto length = dynamic_cast<RationalNumberType const*>(type(*index).get()))
|
||
resultType = make_shared<TypeType>(make_shared<ArrayType>(
|
||
DataLocation::Memory,
|
||
typeType.actualType(),
|
||
length->literalValue(nullptr)
|
||
));
|
||
else
|
||
m_errorReporter.fatalTypeError(index->location(), "Integer constant expected.");
|
||
}
|
||
break;
|
||
}
|
||
case Type::Category::FixedBytes:
|
||
{
|
||
FixedBytesType const& bytesType = dynamic_cast<FixedBytesType const&>(*baseType);
|
||
if (!index)
|
||
m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
|
||
else
|
||
{
|
||
if (!expectType(*index, IntegerType::uint256()))
|
||
m_errorReporter.fatalTypeError(_access.location(), "Index expression cannot be represented as an unsigned integer.");
|
||
if (auto integerType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
|
||
if (bytesType.numBytes() <= integerType->literalValue(nullptr))
|
||
m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
|
||
}
|
||
resultType = make_shared<FixedBytesType>(1);
|
||
isLValue = false; // @todo this heavily depends on how it is embedded
|
||
break;
|
||
}
|
||
default:
|
||
m_errorReporter.fatalTypeError(
|
||
_access.baseExpression().location(),
|
||
"Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")"
|
||
);
|
||
}
|
||
_access.annotation().type = move(resultType);
|
||
_access.annotation().isLValue = isLValue;
|
||
if (index && !index->annotation().isPure)
|
||
isPure = false;
|
||
_access.annotation().isPure = isPure;
|
||
|
||
return false;
|
||
}
|
||
|
||
bool TypeChecker::visit(Identifier const& _identifier)
|
||
{
|
||
IdentifierAnnotation& annotation = _identifier.annotation();
|
||
if (!annotation.referencedDeclaration)
|
||
{
|
||
if (!annotation.argumentTypes)
|
||
{
|
||
// The identifier should be a public state variable shadowing other functions
|
||
vector<Declaration const*> candidates;
|
||
|
||
for (Declaration const* declaration: annotation.overloadedDeclarations)
|
||
{
|
||
if (VariableDeclaration const* variableDeclaration = dynamic_cast<decltype(variableDeclaration)>(declaration))
|
||
candidates.push_back(declaration);
|
||
}
|
||
if (candidates.empty())
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup.");
|
||
else if (candidates.size() == 1)
|
||
annotation.referencedDeclaration = candidates.front();
|
||
else
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup.");
|
||
}
|
||
else if (annotation.overloadedDeclarations.empty())
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No candidates for overload resolution found.");
|
||
else if (annotation.overloadedDeclarations.size() == 1)
|
||
annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();
|
||
else
|
||
{
|
||
vector<Declaration const*> candidates;
|
||
|
||
for (Declaration const* declaration: annotation.overloadedDeclarations)
|
||
{
|
||
FunctionTypePointer functionType = declaration->functionType(true);
|
||
solAssert(!!functionType, "Requested type not present.");
|
||
if (functionType->canTakeArguments(*annotation.argumentTypes))
|
||
candidates.push_back(declaration);
|
||
}
|
||
if (candidates.empty())
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup.");
|
||
else if (candidates.size() == 1)
|
||
annotation.referencedDeclaration = candidates.front();
|
||
else
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup.");
|
||
}
|
||
}
|
||
solAssert(
|
||
!!annotation.referencedDeclaration,
|
||
"Referenced declaration is null after overload resolution."
|
||
);
|
||
annotation.isLValue = annotation.referencedDeclaration->isLValue();
|
||
annotation.type = annotation.referencedDeclaration->type();
|
||
if (!annotation.type)
|
||
m_errorReporter.fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined.");
|
||
if (auto variableDeclaration = dynamic_cast<VariableDeclaration const*>(annotation.referencedDeclaration))
|
||
annotation.isPure = annotation.isConstant = variableDeclaration->isConstant();
|
||
else if (dynamic_cast<MagicVariableDeclaration const*>(annotation.referencedDeclaration))
|
||
if (dynamic_cast<FunctionType const*>(annotation.type.get()))
|
||
annotation.isPure = true;
|
||
|
||
// Check for deprecated function names.
|
||
// The check is done here for the case without an actual function call.
|
||
if (FunctionType const* fType = dynamic_cast<FunctionType const*>(_identifier.annotation().type.get()))
|
||
{
|
||
if (_identifier.name() == "sha3" && fType->kind() == FunctionType::Kind::KECCAK256)
|
||
m_errorReporter.typeError(
|
||
_identifier.location(),
|
||
"\"sha3\" has been deprecated in favour of \"keccak256\""
|
||
);
|
||
else if (_identifier.name() == "suicide" && fType->kind() == FunctionType::Kind::Selfdestruct)
|
||
m_errorReporter.typeError(
|
||
_identifier.location(),
|
||
"\"suicide\" has been deprecated in favour of \"selfdestruct\""
|
||
);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr)
|
||
{
|
||
_expr.annotation().type = make_shared<TypeType>(Type::fromElementaryTypeName(_expr.typeName()));
|
||
_expr.annotation().isPure = true;
|
||
}
|
||
|
||
void TypeChecker::endVisit(Literal const& _literal)
|
||
{
|
||
if (_literal.looksLikeAddress())
|
||
{
|
||
// Assign type here if it even looks like an address. This prevents double errors for invalid addresses
|
||
_literal.annotation().type = make_shared<AddressType>(StateMutability::Payable);
|
||
|
||
string msg;
|
||
if (_literal.valueWithoutUnderscores().length() != 42) // "0x" + 40 hex digits
|
||
// looksLikeAddress enforces that it is a hex literal starting with "0x"
|
||
msg =
|
||
"This looks like an address but is not exactly 40 hex digits. It is " +
|
||
to_string(_literal.valueWithoutUnderscores().length() - 2) +
|
||
" hex digits.";
|
||
else if (!_literal.passesAddressChecksum())
|
||
{
|
||
msg = "This looks like an address but has an invalid checksum.";
|
||
if (!_literal.getChecksummedAddress().empty())
|
||
msg += " Correct checksummed address: \"" + _literal.getChecksummedAddress() + "\".";
|
||
}
|
||
|
||
if (!msg.empty())
|
||
m_errorReporter.syntaxError(
|
||
_literal.location(),
|
||
msg +
|
||
" If this is not used as an address, please prepend '00'. " +
|
||
"For more information please see https://solidity.readthedocs.io/en/develop/types.html#address-literals"
|
||
);
|
||
}
|
||
|
||
if (_literal.isHexNumber() && _literal.subDenomination() != Literal::SubDenomination::None)
|
||
m_errorReporter.fatalTypeError(
|
||
_literal.location(),
|
||
"Hexadecimal numbers cannot be used with unit denominations. "
|
||
"You can use an expression of the form \"0x1234 * 1 day\" instead."
|
||
);
|
||
|
||
if (_literal.subDenomination() == Literal::SubDenomination::Year)
|
||
m_errorReporter.typeError(
|
||
_literal.location(),
|
||
"Using \"years\" as a unit denomination is deprecated."
|
||
);
|
||
|
||
if (!_literal.annotation().type)
|
||
_literal.annotation().type = Type::forLiteral(_literal);
|
||
|
||
if (!_literal.annotation().type)
|
||
m_errorReporter.fatalTypeError(_literal.location(), "Invalid literal value.");
|
||
|
||
_literal.annotation().isPure = true;
|
||
}
|
||
|
||
bool TypeChecker::contractDependenciesAreCyclic(
|
||
ContractDefinition const& _contract,
|
||
std::set<ContractDefinition const*> const& _seenContracts
|
||
) const
|
||
{
|
||
// Naive depth-first search that remembers nodes already seen.
|
||
if (_seenContracts.count(&_contract))
|
||
return true;
|
||
set<ContractDefinition const*> seen(_seenContracts);
|
||
seen.insert(&_contract);
|
||
for (auto const* c: _contract.annotation().contractDependencies)
|
||
if (contractDependenciesAreCyclic(*c, seen))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
Declaration const& TypeChecker::dereference(Identifier const& _identifier) const
|
||
{
|
||
solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored.");
|
||
return *_identifier.annotation().referencedDeclaration;
|
||
}
|
||
|
||
Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const
|
||
{
|
||
solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored.");
|
||
return *_typeName.annotation().referencedDeclaration;
|
||
}
|
||
|
||
bool TypeChecker::expectType(Expression const& _expression, Type const& _expectedType)
|
||
{
|
||
_expression.accept(*this);
|
||
if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType))
|
||
{
|
||
auto errorMsg = "Type " +
|
||
type(_expression)->toString() +
|
||
" is not implicitly convertible to expected type " +
|
||
_expectedType.toString();
|
||
if (
|
||
type(_expression)->category() == Type::Category::RationalNumber &&
|
||
dynamic_pointer_cast<RationalNumberType const>(type(_expression))->isFractional() &&
|
||
type(_expression)->mobileType()
|
||
)
|
||
{
|
||
if (_expectedType.operator==(*type(_expression)->mobileType()))
|
||
m_errorReporter.typeError(
|
||
_expression.location(),
|
||
errorMsg + ", but it can be explicitly converted."
|
||
);
|
||
else
|
||
m_errorReporter.typeError(
|
||
_expression.location(),
|
||
errorMsg +
|
||
". Try converting to type " +
|
||
type(_expression)->mobileType()->toString() +
|
||
" or use an explicit conversion."
|
||
);
|
||
}
|
||
else
|
||
m_errorReporter.typeError(_expression.location(), errorMsg + ".");
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
void TypeChecker::requireLValue(Expression const& _expression)
|
||
{
|
||
_expression.annotation().lValueRequested = true;
|
||
_expression.accept(*this);
|
||
|
||
if (_expression.annotation().isConstant)
|
||
m_errorReporter.typeError(_expression.location(), "Cannot assign to a constant variable.");
|
||
else if (!_expression.annotation().isLValue)
|
||
m_errorReporter.typeError(_expression.location(), "Expression has to be an lvalue.");
|
||
}
|