solidity/libyul/backends/evm/EVMCodeTransform.cpp
2019-12-19 23:22:19 +01:00

803 lines
24 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Common code generator for translating Yul / inline assembly to EVM and EVM1.5.
*/
#include <libyul/backends/evm/EVMCodeTransform.h>
#include <libyul/optimiser/NameCollector.h>
#include <libyul/AsmAnalysisInfo.h>
#include <libyul/AsmData.h>
#include <libyul/Utilities.h>
#include <liblangutil/Exceptions.h>
#include <boost/range/adaptor/reversed.hpp>
#include <variant>
using namespace std;
using namespace dev;
using namespace yul;
void VariableReferenceCounter::operator()(Identifier const& _identifier)
{
increaseRefIfFound(_identifier.name);
}
void VariableReferenceCounter::operator()(FunctionDefinition const& _function)
{
Scope* originalScope = m_scope;
yulAssert(m_info.virtualBlocks.at(&_function), "");
m_scope = m_info.scopes.at(m_info.virtualBlocks.at(&_function).get()).get();
yulAssert(m_scope, "Variable scope does not exist.");
for (auto const& v: _function.returnVariables)
increaseRefIfFound(v.name);
VariableReferenceCounter{m_context, m_info}(_function.body);
m_scope = originalScope;
}
void VariableReferenceCounter::operator()(ForLoop const& _forLoop)
{
Scope* originalScope = m_scope;
// Special scoping rules.
m_scope = m_info.scopes.at(&_forLoop.pre).get();
walkVector(_forLoop.pre.statements);
visit(*_forLoop.condition);
(*this)(_forLoop.body);
(*this)(_forLoop.post);
m_scope = originalScope;
}
void VariableReferenceCounter::operator()(Block const& _block)
{
Scope* originalScope = m_scope;
m_scope = m_info.scopes.at(&_block).get();
ASTWalker::operator()(_block);
m_scope = originalScope;
}
void VariableReferenceCounter::increaseRefIfFound(YulString _variableName)
{
m_scope->lookup(_variableName, GenericVisitor{
[=](Scope::Variable const& _var)
{
++m_context.variableReferences[&_var];
},
[=](Scope::Label const&) { },
[=](Scope::Function const&) { }
});
}
CodeTransform::CodeTransform(
AbstractAssembly& _assembly,
AsmAnalysisInfo& _analysisInfo,
Block const& _block,
bool _allowStackOpt,
EVMDialect const& _dialect,
BuiltinContext& _builtinContext,
bool _evm15,
ExternalIdentifierAccess const& _identifierAccess,
bool _useNamedLabelsForFunctions,
int _stackAdjustment,
shared_ptr<Context> _context
):
m_assembly(_assembly),
m_info(_analysisInfo),
m_dialect(_dialect),
m_builtinContext(_builtinContext),
m_allowStackOpt(_allowStackOpt),
m_evm15(_evm15),
m_useNamedLabelsForFunctions(_useNamedLabelsForFunctions),
m_identifierAccess(_identifierAccess),
m_stackAdjustment(_stackAdjustment),
m_context(_context)
{
if (!m_context)
{
// initialize
m_context = make_shared<Context>();
if (m_allowStackOpt)
VariableReferenceCounter{*m_context, m_info}(_block);
}
}
void CodeTransform::decreaseReference(YulString, Scope::Variable const& _var)
{
if (!m_allowStackOpt)
return;
unsigned& ref = m_context->variableReferences.at(&_var);
yulAssert(ref >= 1, "");
--ref;
if (ref == 0)
m_variablesScheduledForDeletion.insert(&_var);
}
bool CodeTransform::unreferenced(Scope::Variable const& _var) const
{
return !m_context->variableReferences.count(&_var) || m_context->variableReferences[&_var] == 0;
}
void CodeTransform::freeUnusedVariables()
{
if (!m_allowStackOpt)
return;
for (auto const& identifier: m_scope->identifiers)
if (holds_alternative<Scope::Variable>(identifier.second))
{
Scope::Variable const& var = std::get<Scope::Variable>(identifier.second);
if (m_variablesScheduledForDeletion.count(&var))
deleteVariable(var);
}
while (m_unusedStackSlots.count(m_assembly.stackHeight() - 1))
{
yulAssert(m_unusedStackSlots.erase(m_assembly.stackHeight() - 1), "");
m_assembly.appendInstruction(dev::eth::Instruction::POP);
--m_stackAdjustment;
}
}
void CodeTransform::deleteVariable(Scope::Variable const& _var)
{
yulAssert(m_allowStackOpt, "");
yulAssert(m_context->variableStackHeights.count(&_var) > 0, "");
m_unusedStackSlots.insert(m_context->variableStackHeights[&_var]);
m_context->variableStackHeights.erase(&_var);
m_context->variableReferences.erase(&_var);
m_variablesScheduledForDeletion.erase(&_var);
}
void CodeTransform::operator()(VariableDeclaration const& _varDecl)
{
yulAssert(m_scope, "");
int const numVariables = _varDecl.variables.size();
int height = m_assembly.stackHeight();
if (_varDecl.value)
{
std::visit(*this, *_varDecl.value);
expectDeposit(numVariables, height);
}
else
{
int variablesLeft = numVariables;
while (variablesLeft--)
m_assembly.appendConstant(u256(0));
}
bool atTopOfStack = true;
for (int varIndex = numVariables - 1; varIndex >= 0; --varIndex)
{
YulString varName = _varDecl.variables[varIndex].name;
auto& var = std::get<Scope::Variable>(m_scope->identifiers.at(varName));
m_context->variableStackHeights[&var] = height + varIndex;
if (!m_allowStackOpt)
continue;
if (unreferenced(var))
{
if (atTopOfStack)
{
m_context->variableStackHeights.erase(&var);
m_assembly.setSourceLocation(_varDecl.location);
m_assembly.appendInstruction(dev::eth::Instruction::POP);
--m_stackAdjustment;
}
else
m_variablesScheduledForDeletion.insert(&var);
}
else if (m_unusedStackSlots.empty())
atTopOfStack = false;
else
{
int slot = *m_unusedStackSlots.begin();
m_unusedStackSlots.erase(m_unusedStackSlots.begin());
m_context->variableStackHeights[&var] = slot;
m_assembly.setSourceLocation(_varDecl.location);
if (int heightDiff = variableHeightDiff(var, varName, true))
m_assembly.appendInstruction(dev::eth::swapInstruction(heightDiff - 1));
m_assembly.appendInstruction(dev::eth::Instruction::POP);
--m_stackAdjustment;
}
}
checkStackHeight(&_varDecl);
}
void CodeTransform::stackError(StackTooDeepError _error, int _targetStackHeight)
{
m_assembly.appendInstruction(dev::eth::Instruction::INVALID);
// Correct the stack.
while (m_assembly.stackHeight() > _targetStackHeight)
m_assembly.appendInstruction(dev::eth::Instruction::POP);
while (m_assembly.stackHeight() < _targetStackHeight)
m_assembly.appendConstant(u256(0));
// Store error.
m_stackErrors.emplace_back(std::move(_error));
}
void CodeTransform::operator()(Assignment const& _assignment)
{
int height = m_assembly.stackHeight();
std::visit(*this, *_assignment.value);
expectDeposit(_assignment.variableNames.size(), height);
m_assembly.setSourceLocation(_assignment.location);
generateMultiAssignment(_assignment.variableNames);
checkStackHeight(&_assignment);
}
void CodeTransform::operator()(ExpressionStatement const& _statement)
{
m_assembly.setSourceLocation(_statement.location);
std::visit(*this, _statement.expression);
checkStackHeight(&_statement);
}
void CodeTransform::operator()(FunctionCall const& _call)
{
yulAssert(m_scope, "");
if (BuiltinFunctionForEVM const* builtin = m_dialect.builtin(_call.functionName.name))
{
builtin->generateCode(_call, m_assembly, m_builtinContext, [&]() {
for (auto const& arg: _call.arguments | boost::adaptors::reversed)
visitExpression(arg);
m_assembly.setSourceLocation(_call.location);
});
}
else
{
m_assembly.setSourceLocation(_call.location);
EVMAssembly::LabelID returnLabel(-1); // only used for evm 1.0
if (!m_evm15)
{
returnLabel = m_assembly.newLabelId();
m_assembly.appendLabelReference(returnLabel);
m_stackAdjustment++;
}
Scope::Function* function = nullptr;
yulAssert(m_scope->lookup(_call.functionName.name, GenericVisitor{
[=](Scope::Variable&) { yulAssert(false, "Expected function name."); },
[=](Scope::Label&) { yulAssert(false, "Expected function name."); },
[&](Scope::Function& _function) { function = &_function; }
}), "Function name not found.");
yulAssert(function, "");
yulAssert(function->arguments.size() == _call.arguments.size(), "");
for (auto const& arg: _call.arguments | boost::adaptors::reversed)
visitExpression(arg);
m_assembly.setSourceLocation(_call.location);
if (m_evm15)
m_assembly.appendJumpsub(functionEntryID(_call.functionName.name, *function), function->arguments.size(), function->returns.size());
else
{
m_assembly.appendJumpTo(functionEntryID(_call.functionName.name, *function), function->returns.size() - function->arguments.size() - 1);
m_assembly.appendLabel(returnLabel);
m_stackAdjustment--;
}
checkStackHeight(&_call);
}
}
void CodeTransform::operator()(Identifier const& _identifier)
{
m_assembly.setSourceLocation(_identifier.location);
// First search internals, then externals.
yulAssert(m_scope, "");
if (m_scope->lookup(_identifier.name, GenericVisitor{
[=](Scope::Variable& _var)
{
// TODO: opportunity for optimization: Do not DUP if this is the last reference
// to the top most element of the stack
if (int heightDiff = variableHeightDiff(_var, _identifier.name, false))
m_assembly.appendInstruction(dev::eth::dupInstruction(heightDiff));
else
// Store something to balance the stack
m_assembly.appendConstant(u256(0));
decreaseReference(_identifier.name, _var);
},
[=](Scope::Label& _label)
{
m_assembly.appendLabelReference(labelID(_label));
},
[=](Scope::Function&)
{
yulAssert(false, "Function not removed during desugaring.");
}
}))
{
return;
}
yulAssert(
m_identifierAccess.generateCode,
"Identifier not found and no external access available."
);
m_identifierAccess.generateCode(_identifier, IdentifierContext::RValue, m_assembly);
checkStackHeight(&_identifier);
}
void CodeTransform::operator()(Literal const& _literal)
{
m_assembly.setSourceLocation(_literal.location);
m_assembly.appendConstant(valueOfLiteral(_literal));
checkStackHeight(&_literal);
}
void CodeTransform::operator()(If const& _if)
{
visitExpression(*_if.condition);
m_assembly.setSourceLocation(_if.location);
m_assembly.appendInstruction(dev::eth::Instruction::ISZERO);
AbstractAssembly::LabelID end = m_assembly.newLabelId();
m_assembly.appendJumpToIf(end);
(*this)(_if.body);
m_assembly.setSourceLocation(_if.location);
m_assembly.appendLabel(end);
checkStackHeight(&_if);
}
void CodeTransform::operator()(Switch const& _switch)
{
//@TODO use JUMPV in EVM1.5?
visitExpression(*_switch.expression);
int expressionHeight = m_assembly.stackHeight();
map<Case const*, AbstractAssembly::LabelID> caseBodies;
AbstractAssembly::LabelID end = m_assembly.newLabelId();
for (Case const& c: _switch.cases)
{
if (c.value)
{
(*this)(*c.value);
m_assembly.setSourceLocation(c.location);
AbstractAssembly::LabelID bodyLabel = m_assembly.newLabelId();
caseBodies[&c] = bodyLabel;
yulAssert(m_assembly.stackHeight() == expressionHeight + 1, "");
m_assembly.appendInstruction(dev::eth::dupInstruction(2));
m_assembly.appendInstruction(dev::eth::Instruction::EQ);
m_assembly.appendJumpToIf(bodyLabel);
}
else
// default case
(*this)(c.body);
}
m_assembly.setSourceLocation(_switch.location);
m_assembly.appendJumpTo(end);
size_t numCases = caseBodies.size();
for (auto const& c: caseBodies)
{
m_assembly.setSourceLocation(c.first->location);
m_assembly.appendLabel(c.second);
(*this)(c.first->body);
// Avoid useless "jump to next" for the last case.
if (--numCases > 0)
{
m_assembly.setSourceLocation(c.first->location);
m_assembly.appendJumpTo(end);
}
}
m_assembly.setSourceLocation(_switch.location);
m_assembly.appendLabel(end);
m_assembly.appendInstruction(dev::eth::Instruction::POP);
checkStackHeight(&_switch);
}
void CodeTransform::operator()(FunctionDefinition const& _function)
{
yulAssert(m_scope, "");
yulAssert(m_scope->identifiers.count(_function.name), "");
Scope::Function& function = std::get<Scope::Function>(m_scope->identifiers.at(_function.name));
int const localStackAdjustment = m_evm15 ? 0 : 1;
int height = localStackAdjustment;
yulAssert(m_info.scopes.at(&_function.body), "");
Scope* varScope = m_info.scopes.at(m_info.virtualBlocks.at(&_function).get()).get();
yulAssert(varScope, "");
for (auto const& v: _function.parameters | boost::adaptors::reversed)
{
auto& var = std::get<Scope::Variable>(varScope->identifiers.at(v.name));
m_context->variableStackHeights[&var] = height++;
}
m_assembly.setSourceLocation(_function.location);
int const stackHeightBefore = m_assembly.stackHeight();
if (m_evm15)
m_assembly.appendBeginsub(functionEntryID(_function.name, function), _function.parameters.size());
else
m_assembly.appendLabel(functionEntryID(_function.name, function));
m_assembly.setStackHeight(height);
m_stackAdjustment += localStackAdjustment;
for (auto const& v: _function.returnVariables)
{
auto& var = std::get<Scope::Variable>(varScope->identifiers.at(v.name));
m_context->variableStackHeights[&var] = height++;
// Preset stack slots for return variables to zero.
m_assembly.appendConstant(u256(0));
}
m_context->functionExitPoints.push(
CodeTransformContext::JumpInfo{m_assembly.newLabelId(), m_assembly.stackHeight()}
);
try
{
CodeTransform(
m_assembly,
m_info,
_function.body,
m_allowStackOpt,
m_dialect,
m_builtinContext,
m_evm15,
m_identifierAccess,
m_useNamedLabelsForFunctions,
localStackAdjustment,
m_context
)(_function.body);
}
catch (StackTooDeepError const& _error)
{
// This exception will be re-thrown after the end of the surrounding block.
// It enables us to see which functions compiled successfully and which did not.
// Even if we emit actual code, add an illegal instruction to make sure that tests
// will catch it.
StackTooDeepError error(_error);
if (error.functionName.empty())
error.functionName = _function.name;
stackError(std::move(error), height);
}
m_assembly.appendLabel(m_context->functionExitPoints.top().label);
m_context->functionExitPoints.pop();
{
// The stack layout here is:
// <return label>? <arguments...> <return values...>
// But we would like it to be:
// <return values...> <return label>?
// So we have to append some SWAP and POP instructions.
// This vector holds the desired target positions of all stack slots and is
// modified parallel to the actual stack.
vector<int> stackLayout;
if (!m_evm15)
stackLayout.push_back(_function.returnVariables.size()); // Move return label to the top
stackLayout += vector<int>(_function.parameters.size(), -1); // discard all arguments
for (size_t i = 0; i < _function.returnVariables.size(); ++i)
stackLayout.push_back(i); // Move return values down, but keep order.
if (stackLayout.size() > 17)
{
StackTooDeepError error(_function.name, YulString{}, stackLayout.size() - 17);
error << errinfo_comment(
"The function " +
_function.name.str() +
" has " +
to_string(stackLayout.size() - 17) +
" parameters or return variables too many to fit the stack size."
);
stackError(std::move(error), m_assembly.stackHeight() - _function.parameters.size());
}
else
{
while (!stackLayout.empty() && stackLayout.back() != int(stackLayout.size() - 1))
if (stackLayout.back() < 0)
{
m_assembly.appendInstruction(dev::eth::Instruction::POP);
stackLayout.pop_back();
}
else
{
m_assembly.appendInstruction(dev::eth::swapInstruction(stackLayout.size() - stackLayout.back() - 1));
swap(stackLayout[stackLayout.back()], stackLayout.back());
}
for (int i = 0; size_t(i) < stackLayout.size(); ++i)
yulAssert(i == stackLayout[i], "Error reshuffling stack.");
}
}
if (m_evm15)
m_assembly.appendReturnsub(_function.returnVariables.size(), stackHeightBefore);
else
m_assembly.appendJump(stackHeightBefore - _function.returnVariables.size());
m_stackAdjustment -= localStackAdjustment;
checkStackHeight(&_function);
m_assembly.setStackHeight(stackHeightBefore);
}
void CodeTransform::operator()(ForLoop const& _forLoop)
{
Scope* originalScope = m_scope;
// We start with visiting the block, but not finalizing it.
m_scope = m_info.scopes.at(&_forLoop.pre).get();
int stackStartHeight = m_assembly.stackHeight();
visitStatements(_forLoop.pre.statements);
AbstractAssembly::LabelID loopStart = m_assembly.newLabelId();
AbstractAssembly::LabelID postPart = m_assembly.newLabelId();
AbstractAssembly::LabelID loopEnd = m_assembly.newLabelId();
m_assembly.setSourceLocation(_forLoop.location);
m_assembly.appendLabel(loopStart);
visitExpression(*_forLoop.condition);
m_assembly.setSourceLocation(_forLoop.location);
m_assembly.appendInstruction(dev::eth::Instruction::ISZERO);
m_assembly.appendJumpToIf(loopEnd);
int const stackHeightBody = m_assembly.stackHeight();
m_context->forLoopStack.emplace(Context::ForLoopLabels{ {postPart, stackHeightBody}, {loopEnd, stackHeightBody} });
(*this)(_forLoop.body);
m_assembly.setSourceLocation(_forLoop.location);
m_assembly.appendLabel(postPart);
(*this)(_forLoop.post);
m_assembly.setSourceLocation(_forLoop.location);
m_assembly.appendJumpTo(loopStart);
m_assembly.appendLabel(loopEnd);
finalizeBlock(_forLoop.pre, stackStartHeight);
m_context->forLoopStack.pop();
m_scope = originalScope;
checkStackHeight(&_forLoop);
}
int CodeTransform::appendPopUntil(int _targetDepth)
{
int const stackDiffAfter = m_assembly.stackHeight() - _targetDepth;
for (int i = 0; i < stackDiffAfter; ++i)
m_assembly.appendInstruction(dev::eth::Instruction::POP);
return stackDiffAfter;
}
void CodeTransform::operator()(Break const& _break)
{
yulAssert(!m_context->forLoopStack.empty(), "Invalid break-statement. Requires surrounding for-loop in code generation.");
m_assembly.setSourceLocation(_break.location);
Context::JumpInfo const& jump = m_context->forLoopStack.top().done;
m_assembly.appendJumpTo(jump.label, appendPopUntil(jump.targetStackHeight));
checkStackHeight(&_break);
}
void CodeTransform::operator()(Continue const& _continue)
{
yulAssert(!m_context->forLoopStack.empty(), "Invalid continue-statement. Requires surrounding for-loop in code generation.");
m_assembly.setSourceLocation(_continue.location);
Context::JumpInfo const& jump = m_context->forLoopStack.top().post;
m_assembly.appendJumpTo(jump.label, appendPopUntil(jump.targetStackHeight));
checkStackHeight(&_continue);
}
void CodeTransform::operator()(Leave const& _leaveStatement)
{
yulAssert(!m_context->functionExitPoints.empty(), "Invalid leave-statement. Requires surrounding function in code generation.");
m_assembly.setSourceLocation(_leaveStatement.location);
Context::JumpInfo const& jump = m_context->functionExitPoints.top();
m_assembly.appendJumpTo(jump.label, appendPopUntil(jump.targetStackHeight));
checkStackHeight(&_leaveStatement);
}
void CodeTransform::operator()(Block const& _block)
{
Scope* originalScope = m_scope;
m_scope = m_info.scopes.at(&_block).get();
int blockStartStackHeight = m_assembly.stackHeight();
visitStatements(_block.statements);
finalizeBlock(_block, blockStartStackHeight);
m_scope = originalScope;
if (!m_stackErrors.empty())
BOOST_THROW_EXCEPTION(m_stackErrors.front());
}
AbstractAssembly::LabelID CodeTransform::labelFromIdentifier(Identifier const& _identifier)
{
AbstractAssembly::LabelID label = AbstractAssembly::LabelID(-1);
if (!m_scope->lookup(_identifier.name, GenericVisitor{
[=](Scope::Variable&) { yulAssert(false, "Expected label"); },
[&](Scope::Label& _label)
{
label = labelID(_label);
},
[=](Scope::Function&) { yulAssert(false, "Expected label"); }
}))
{
yulAssert(false, "Identifier not found.");
}
return label;
}
AbstractAssembly::LabelID CodeTransform::labelID(Scope::Label const& _label)
{
if (!m_context->labelIDs.count(&_label))
m_context->labelIDs[&_label] = m_assembly.newLabelId();
return m_context->labelIDs[&_label];
}
AbstractAssembly::LabelID CodeTransform::functionEntryID(YulString _name, Scope::Function const& _function)
{
if (!m_context->functionEntryIDs.count(&_function))
{
AbstractAssembly::LabelID id =
m_useNamedLabelsForFunctions ?
m_assembly.namedLabel(_name.str()) :
m_assembly.newLabelId();
m_context->functionEntryIDs[&_function] = id;
}
return m_context->functionEntryIDs[&_function];
}
void CodeTransform::visitExpression(Expression const& _expression)
{
int height = m_assembly.stackHeight();
std::visit(*this, _expression);
expectDeposit(1, height);
}
void CodeTransform::visitStatements(vector<Statement> const& _statements)
{
std::optional<AbstractAssembly::LabelID> jumpTarget = std::nullopt;
for (auto const& statement: _statements)
{
freeUnusedVariables();
auto const* functionDefinition = std::get_if<FunctionDefinition>(&statement);
if (functionDefinition && !jumpTarget)
{
m_assembly.setSourceLocation(locationOf(statement));
jumpTarget = m_assembly.newLabelId();
m_assembly.appendJumpTo(*jumpTarget, 0);
}
else if (!functionDefinition && jumpTarget)
{
m_assembly.appendLabel(*jumpTarget);
jumpTarget = std::nullopt;
}
std::visit(*this, statement);
}
// we may have a leftover jumpTarget
if (jumpTarget)
m_assembly.appendLabel(*jumpTarget);
freeUnusedVariables();
}
void CodeTransform::finalizeBlock(Block const& _block, int blockStartStackHeight)
{
m_assembly.setSourceLocation(_block.location);
freeUnusedVariables();
// pop variables
yulAssert(m_info.scopes.at(&_block).get() == m_scope, "");
for (auto const& id: m_scope->identifiers)
if (holds_alternative<Scope::Variable>(id.second))
{
Scope::Variable const& var = std::get<Scope::Variable>(id.second);
if (m_allowStackOpt)
{
yulAssert(!m_context->variableStackHeights.count(&var), "");
yulAssert(!m_context->variableReferences.count(&var), "");
m_stackAdjustment++;
}
else
m_assembly.appendInstruction(dev::eth::Instruction::POP);
}
int deposit = m_assembly.stackHeight() - blockStartStackHeight;
yulAssert(deposit == 0, "Invalid stack height at end of block: " + to_string(deposit));
checkStackHeight(&_block);
}
void CodeTransform::generateMultiAssignment(vector<Identifier> const& _variableNames)
{
yulAssert(m_scope, "");
for (auto const& variableName: _variableNames | boost::adaptors::reversed)
generateAssignment(variableName);
}
void CodeTransform::generateAssignment(Identifier const& _variableName)
{
yulAssert(m_scope, "");
if (auto var = m_scope->lookup(_variableName.name))
{
Scope::Variable const& _var = std::get<Scope::Variable>(*var);
if (int heightDiff = variableHeightDiff(_var, _variableName.name, true))
m_assembly.appendInstruction(dev::eth::swapInstruction(heightDiff - 1));
m_assembly.appendInstruction(dev::eth::Instruction::POP);
decreaseReference(_variableName.name, _var);
}
else
{
yulAssert(
m_identifierAccess.generateCode,
"Identifier not found and no external access available."
);
m_identifierAccess.generateCode(_variableName, IdentifierContext::LValue, m_assembly);
}
}
int CodeTransform::variableHeightDiff(Scope::Variable const& _var, YulString _varName, bool _forSwap)
{
yulAssert(m_context->variableStackHeights.count(&_var), "");
int heightDiff = m_assembly.stackHeight() - m_context->variableStackHeights[&_var];
yulAssert(heightDiff > (_forSwap ? 1 : 0), "Negative stack difference for variable.");
int limit = _forSwap ? 17 : 16;
if (heightDiff > limit)
{
m_stackErrors.emplace_back(_varName, heightDiff - limit);
m_stackErrors.back() << errinfo_comment(
"Variable " +
_varName.str() +
" is " +
to_string(heightDiff - limit) +
" slot(s) too deep inside the stack."
);
BOOST_THROW_EXCEPTION(m_stackErrors.back());
}
return heightDiff;
}
void CodeTransform::expectDeposit(int _deposit, int _oldHeight) const
{
yulAssert(m_assembly.stackHeight() == _oldHeight + _deposit, "Invalid stack deposit.");
}
void CodeTransform::checkStackHeight(void const* _astElement) const
{
yulAssert(m_info.stackHeightInfo.count(_astElement), "Stack height for AST element not found.");
int stackHeightInAnalysis = m_info.stackHeightInfo.at(_astElement);
int stackHeightInCodegen = m_assembly.stackHeight() - m_stackAdjustment;
yulAssert(
stackHeightInAnalysis == stackHeightInCodegen,
"Stack height mismatch between analysis and code generation phase: Analysis: " +
to_string(stackHeightInAnalysis) +
" code gen: " +
to_string(stackHeightInCodegen)
);
}