mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
814 lines
24 KiB
C++
814 lines
24 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
// SPDX-License-Identifier: GPL-3.0
|
|
|
|
#include <libsolutil/LP.h>
|
|
|
|
#include <libsolutil/CommonData.h>
|
|
#include <libsolutil/CommonIO.h>
|
|
#include <libsolutil/StringUtils.h>
|
|
#include <libsolutil/LinearExpression.h>
|
|
#include <liblangutil/Exceptions.h>
|
|
|
|
#include <range/v3/view/enumerate.hpp>
|
|
#include <range/v3/view/transform.hpp>
|
|
#include <range/v3/view/filter.hpp>
|
|
#include <range/v3/view/tail.hpp>
|
|
#include <range/v3/view/iota.hpp>
|
|
#include <range/v3/algorithm/all_of.hpp>
|
|
#include <range/v3/algorithm/any_of.hpp>
|
|
#include <range/v3/algorithm/max.hpp>
|
|
#include <range/v3/algorithm/count_if.hpp>
|
|
#include <range/v3/iterator/operations.hpp>
|
|
|
|
#include <boost/range/algorithm_ext/erase.hpp>
|
|
|
|
#include <optional>
|
|
#include <stack>
|
|
|
|
using namespace std;
|
|
using namespace solidity;
|
|
using namespace solidity::util;
|
|
|
|
using rational = boost::rational<bigint>;
|
|
|
|
|
|
namespace
|
|
{
|
|
|
|
/// Disjunctively combined two vectors of bools.
|
|
inline std::vector<bool>& operator|=(std::vector<bool>& _x, std::vector<bool> const& _y)
|
|
{
|
|
solAssert(_x.size() == _y.size(), "");
|
|
for (size_t i = 0; i < _x.size(); ++i)
|
|
if (_y[i])
|
|
_x[i] = true;
|
|
return _x;
|
|
}
|
|
|
|
/**
|
|
* Simplex tableau.
|
|
*/
|
|
struct Tableau
|
|
{
|
|
/// The factors of the objective function (first row of the tableau)
|
|
LinearExpression objective;
|
|
/// The tableau matrix (equational form).
|
|
std::vector<LinearExpression> data;
|
|
};
|
|
|
|
|
|
/// Adds slack variables to remove non-equality costraints from a set of constraints
|
|
/// and returns the data part of the tableau / constraints.
|
|
/// The second return variable is true if a non-equality constraint was
|
|
/// found and thus new variables have been added.
|
|
pair<vector<LinearExpression>, bool> toEquationalForm(vector<Constraint> _constraints)
|
|
{
|
|
size_t varsNeeded = static_cast<size_t>(ranges::count_if(_constraints, [](Constraint const& _c) { return !_c.equality; }));
|
|
if (varsNeeded > 0)
|
|
{
|
|
size_t columns = _constraints.at(0).data.size();
|
|
size_t varsAdded = 0;
|
|
for (Constraint& constraint: _constraints)
|
|
{
|
|
solAssert(constraint.data.size() == columns, "");
|
|
constraint.data.resize(columns + varsNeeded);
|
|
if (!constraint.equality)
|
|
{
|
|
constraint.equality = true;
|
|
constraint.data[columns + varsAdded] = bigint(1);
|
|
varsAdded++;
|
|
}
|
|
}
|
|
solAssert(varsAdded == varsNeeded);
|
|
}
|
|
|
|
vector<LinearExpression> data;
|
|
for (Constraint& c: _constraints)
|
|
data.emplace_back(move(c.data));
|
|
|
|
return make_pair(move(data), varsNeeded > 0);
|
|
}
|
|
|
|
/// Finds the simplex pivot column: The column with the largest positive objective factor.
|
|
/// If all objective factors are zero or negative, the optimum has been found and nullopt is returned.
|
|
optional<size_t> findPivotColumn(Tableau const& _tableau)
|
|
{
|
|
auto&& [maxColumn, maxValue] = ranges::max(
|
|
_tableau.objective | ranges::views::enumerate | ranges::views::tail,
|
|
{},
|
|
[](std::pair<size_t, rational> const& _x) { return _x.second; }
|
|
);
|
|
|
|
if (maxValue <= rational{0})
|
|
return nullopt; // found optimum
|
|
else
|
|
return maxColumn;
|
|
}
|
|
|
|
/// Finds the simplex pivot row, given the column:
|
|
/// If there is no positive factor in the column, the problem is unbounded, nullopt is returned.
|
|
/// Otherwise, returns the row i such that c[i] / x[i] is minimal and x[i] is positive, where
|
|
/// c[i] is the constant factor (not the objective factor!) in row i.
|
|
optional<size_t> findPivotRow(Tableau const& _tableau, size_t _pivotColumn)
|
|
{
|
|
auto positiveColumnEntries =
|
|
ranges::views::iota(size_t(0), _tableau.data.size()) |
|
|
ranges::views::transform([&](size_t i) {
|
|
return make_pair(i, _tableau.data[i][_pivotColumn]);
|
|
}) |
|
|
ranges::views::filter([](pair<size_t, rational> const& _entry) {
|
|
return _entry.second.numerator() > 0;
|
|
});
|
|
if (positiveColumnEntries.empty())
|
|
return nullopt; // unbounded
|
|
|
|
return ranges::min(
|
|
positiveColumnEntries,
|
|
{},
|
|
[&](std::pair<size_t, rational> const& _entry) {
|
|
return _tableau.data[_entry.first][0] / _entry.second;
|
|
}
|
|
).first;
|
|
}
|
|
|
|
/// Performs equivalence transform on @a _tableau, so that
|
|
/// the column @a _pivotColumn is all zeros (including the objective row) except for @a _pivotRow,
|
|
/// where it is 1.
|
|
void performPivot(Tableau& _tableau, size_t _pivotRow, size_t _pivotColumn)
|
|
{
|
|
rational pivot = _tableau.data[_pivotRow][_pivotColumn];
|
|
solAssert(pivot != 0, "");
|
|
if (pivot != 1)
|
|
_tableau.data[_pivotRow] /= pivot;
|
|
solAssert(_tableau.data[_pivotRow][_pivotColumn] == rational(1), "");
|
|
|
|
LinearExpression const& _pivotRowData = _tableau.data[_pivotRow];
|
|
auto subtractMultipleOfPivotRow = [&](LinearExpression& _row) {
|
|
if (_row[_pivotColumn] == rational{1})
|
|
_row -= _pivotRowData;
|
|
else if (_row[_pivotColumn])
|
|
_row -= _row[_pivotColumn] * _pivotRowData;
|
|
};
|
|
|
|
subtractMultipleOfPivotRow(_tableau.objective);
|
|
for (size_t i = 0; i < _tableau.data.size(); ++i)
|
|
if (i != _pivotRow)
|
|
subtractMultipleOfPivotRow(_tableau.data[i]);
|
|
}
|
|
|
|
/// Transforms the tableau such that the last vectors are basis vectors
|
|
/// and their objective coefficients are zero.
|
|
/// Makes various assumptions and should only be used after adding
|
|
/// a certain number of slack variables.
|
|
void selectLastVectorsAsBasis(Tableau& _tableau)
|
|
{
|
|
// We might skip the operation for a column if it is already the correct
|
|
// unit vector and its objective coefficient is zero.
|
|
size_t columns = _tableau.objective.size();
|
|
size_t rows = _tableau.data.size();
|
|
for (size_t i = 0; i < rows; ++i)
|
|
performPivot(_tableau, i, columns - rows + i);
|
|
}
|
|
|
|
/// If column @a _column inside tableau is a basis vector
|
|
/// (i.e. one entry is 1, the others are 0), returns the index
|
|
/// of the 1, otherwise nullopt.
|
|
optional<size_t> basisIndex(Tableau const& _tableau, size_t _column)
|
|
{
|
|
optional<size_t> row;
|
|
for (size_t i = 0; i < _tableau.data.size(); ++i)
|
|
if (_tableau.data[i][_column] == bigint(1))
|
|
{
|
|
if (row)
|
|
return std::nullopt;
|
|
else
|
|
row = i;
|
|
}
|
|
else if (_tableau.data[i][_column] != 0)
|
|
return std::nullopt;
|
|
return row;
|
|
}
|
|
|
|
/// @returns a solution vector, assuming one exists.
|
|
/// The solution vector minimizes the objective function if the tableau
|
|
/// is the result of the simplex algorithm.
|
|
vector<rational> solutionVector(Tableau const& _tableau)
|
|
{
|
|
vector<rational> result;
|
|
vector<bool> rowsSeen(_tableau.data.size(), false);
|
|
for (size_t j = 1; j < _tableau.objective.size(); j++)
|
|
{
|
|
optional<size_t> row = basisIndex(_tableau, j);
|
|
if (row && rowsSeen[*row])
|
|
row = nullopt;
|
|
result.emplace_back(row ? _tableau.data[*row][0] : rational{});
|
|
if (row)
|
|
rowsSeen[*row] = true;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Solve the LP A x = b s.t. min c^T x
|
|
/// Here, c is _tableau.objective and the first column of _tableau.data
|
|
/// encodes b and the other columns encode A
|
|
/// Assumes the tableau has a trivial basic feasible solution.
|
|
/// Tries for a number of iterations and then gives up.
|
|
pair<LPResult, Tableau> simplexEq(Tableau _tableau)
|
|
{
|
|
size_t const iterations = min<size_t>(60, 50 + _tableau.objective.size() * 2);
|
|
for (size_t step = 0; step <= iterations; ++step)
|
|
{
|
|
optional<size_t> pivotColumn = findPivotColumn(_tableau);
|
|
if (!pivotColumn)
|
|
return make_pair(LPResult::Feasible, move(_tableau));
|
|
optional<size_t> pivotRow = findPivotRow(_tableau, *pivotColumn);
|
|
if (!pivotRow)
|
|
return make_pair(LPResult::Unbounded, move(_tableau));
|
|
performPivot(_tableau, *pivotRow, *pivotColumn);
|
|
}
|
|
return make_pair(LPResult::Unknown, Tableau{});
|
|
}
|
|
|
|
/// We add slack variables to find a basic feasible solution.
|
|
/// In particular, there is a slack variable for each row
|
|
/// which is weighted negatively. Setting the new slack
|
|
/// variables to one and all other variables to zero yields
|
|
/// a basic feasible solution.
|
|
/// If the optimal solution has all slack variables set to zero,
|
|
/// this is a basic feasible solution. Otherwise, the original
|
|
/// problem is infeasible.
|
|
/// This function returns the modified tableau with the original
|
|
/// objective function and the slack variables removed.
|
|
pair<LPResult, Tableau> simplexPhaseI(Tableau _tableau)
|
|
{
|
|
LinearExpression originalObjective = _tableau.objective;
|
|
|
|
size_t rows = _tableau.data.size();
|
|
size_t columns = _tableau.objective.size();
|
|
for (size_t i = 0; i < rows; ++i)
|
|
{
|
|
if (_tableau.data[i][0] < 0)
|
|
_tableau.data[i] *= -1;
|
|
_tableau.data[i].resize(columns + rows);
|
|
_tableau.data[i][columns + i] = 1;
|
|
}
|
|
_tableau.objective = {};
|
|
_tableau.objective.resize(columns);
|
|
_tableau.objective.resize(columns + rows, rational{-1});
|
|
|
|
// This sets the objective factors of the slack variables
|
|
// to zero (and thus selects a basic feasible solution).
|
|
selectLastVectorsAsBasis(_tableau);
|
|
|
|
LPResult result;
|
|
tie(result, _tableau) = simplexEq(move(_tableau));
|
|
solAssert(result == LPResult::Feasible || result == LPResult::Unbounded, "");
|
|
|
|
vector<rational> optimum = solutionVector(_tableau);
|
|
|
|
// If the solution needs a nonzero factor for a slack variable,
|
|
// the original system is infeasible.
|
|
for (size_t i = columns - 1; i < optimum.size(); ++i)
|
|
if (optimum[i] != 0)
|
|
return make_pair(LPResult::Infeasible, Tableau{});
|
|
|
|
// Restore original objective and remove slack variables.
|
|
_tableau.objective = move(originalObjective);
|
|
for (auto& row: _tableau.data)
|
|
row.resize(columns);
|
|
|
|
return make_pair(LPResult::Feasible, move(_tableau));
|
|
}
|
|
|
|
/// Returns true if the all-zero solution is not a solution for the tableau.
|
|
bool needsPhaseI(Tableau const& _tableau)
|
|
{
|
|
for (auto const& row: _tableau.data)
|
|
if (row[0] < 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Solve the LP Ax <= b s.t. min c^Tx
|
|
pair<LPResult, vector<rational>> simplex(vector<Constraint> _constraints, LinearExpression _objectives)
|
|
{
|
|
Tableau tableau;
|
|
tableau.objective = move(_objectives);
|
|
bool hasEquations = false;
|
|
tie(tableau.data, hasEquations) = toEquationalForm(_constraints);
|
|
tableau.objective.resize(tableau.data.at(0).size());
|
|
|
|
if (hasEquations || needsPhaseI(tableau))
|
|
{
|
|
LPResult result;
|
|
tie(result, tableau) = simplexPhaseI(move(tableau));
|
|
if (result == LPResult::Infeasible || result == LPResult::Unknown)
|
|
return make_pair(result, vector<rational>{});
|
|
solAssert(result == LPResult::Feasible, "");
|
|
}
|
|
// We know that the system is satisfiable and we know a solution,
|
|
// but it might not be optimal.
|
|
LPResult result;
|
|
tie(result, tableau) = simplexEq(move(tableau));
|
|
solAssert(result == LPResult::Feasible || result == LPResult::Unbounded, "");
|
|
return make_pair(result, solutionVector(tableau));
|
|
}
|
|
|
|
/// Turns all bounds into constraints.
|
|
/// @returns false if the bounds make the state infeasible.
|
|
bool boundsToConstraints(SolvingState& _state)
|
|
{
|
|
size_t columns = _state.variableNames.size();
|
|
|
|
// Bound zero should not exist because the variable zero does not exist.
|
|
for (auto const& [varIndex, bounds]: _state.bounds | ranges::views::enumerate | ranges::views::tail)
|
|
{
|
|
if (bounds.lower && bounds.upper)
|
|
{
|
|
if (*bounds.lower > *bounds.upper)
|
|
return false;
|
|
if (*bounds.lower == *bounds.upper)
|
|
{
|
|
LinearExpression c;
|
|
c.resize(columns);
|
|
c[0] = *bounds.lower;
|
|
c[varIndex] = bigint(1);
|
|
_state.constraints.emplace_back(Constraint{move(c), true});
|
|
continue;
|
|
}
|
|
}
|
|
if (bounds.lower && *bounds.lower > 0)
|
|
{
|
|
LinearExpression c;
|
|
c.resize(columns);
|
|
c[0] = -*bounds.lower;
|
|
c[varIndex] = bigint(-1);
|
|
_state.constraints.emplace_back(Constraint{move(c), false});
|
|
}
|
|
if (bounds.upper)
|
|
{
|
|
LinearExpression c;
|
|
c.resize(columns);
|
|
c[0] = *bounds.upper;
|
|
c[varIndex] = bigint(1);
|
|
_state.constraints.emplace_back(Constraint{move(c), false});
|
|
}
|
|
}
|
|
_state.bounds.clear();
|
|
return true;
|
|
}
|
|
|
|
/// Removes incides set to true from a vector-like data structure.
|
|
template <class T>
|
|
void eraseIndices(T& _data, vector<bool> const& _indicesToRemove)
|
|
{
|
|
T result;
|
|
for (size_t i = 0; i < _data.size(); i++)
|
|
if (!_indicesToRemove[i])
|
|
result.push_back(move(_data[i]));
|
|
_data = move(result);
|
|
}
|
|
|
|
|
|
void removeColumns(SolvingState& _state, vector<bool> const& _columnsToRemove)
|
|
{
|
|
eraseIndices(_state.bounds, _columnsToRemove);
|
|
for (Constraint& constraint: _state.constraints)
|
|
eraseIndices(constraint.data, _columnsToRemove);
|
|
eraseIndices(_state.variableNames, _columnsToRemove);
|
|
}
|
|
|
|
// TODO move this into a simplifier class
|
|
|
|
/// Turn constraints of the form ax <= b into an upper bound on x.
|
|
/// @returns false if the system is infeasible.
|
|
bool extractDirectConstraints(SolvingState& _state, bool& _changed)
|
|
{
|
|
vector<bool> constraintsToRemove(_state.constraints.size(), false);
|
|
bool needsRemoval = false;
|
|
for (auto const& [index, constraint]: _state.constraints | ranges::views::enumerate)
|
|
{
|
|
auto nonzeroCoefficients = constraint.data | ranges::views::enumerate | ranges::views::tail | ranges::views::filter(
|
|
[](std::pair<size_t, rational> const& _x) { return !!_x.second; }
|
|
);
|
|
// TODO we can exit early on in the loop above since we only care about zero, one or more than one nonzero entries.
|
|
// TODO could also use iterators and exit if we can advance it twice.
|
|
auto numNonzero = ranges::distance(nonzeroCoefficients);
|
|
if (numNonzero > 1)
|
|
continue;
|
|
constraintsToRemove[index] = true;
|
|
needsRemoval = true;
|
|
if (numNonzero == 0)
|
|
{
|
|
// 0 <= b or 0 = b
|
|
if (
|
|
constraint.data.front().numerator() < 0 ||
|
|
(constraint.equality && constraint.data.front())
|
|
)
|
|
return false; // Infeasible.
|
|
}
|
|
else
|
|
{
|
|
auto&& [varIndex, factor] = nonzeroCoefficients.front();
|
|
// a * x <= b
|
|
rational bound = constraint.data[0] / factor;
|
|
if (
|
|
(factor >= 0 || constraint.equality) &&
|
|
(!_state.bounds[varIndex].upper || bound < _state.bounds[varIndex].upper)
|
|
)
|
|
_state.bounds[varIndex].upper = bound;
|
|
if (
|
|
(factor <= 0 || constraint.equality) &&
|
|
(!_state.bounds[varIndex].lower || bound > _state.bounds[varIndex].lower)
|
|
)
|
|
// Lower bound must be at least zero.
|
|
_state.bounds[varIndex].lower = max(rational{}, bound);
|
|
}
|
|
}
|
|
if (needsRemoval)
|
|
{
|
|
_changed = true;
|
|
eraseIndices(_state.constraints, constraintsToRemove);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Remove variables that have equal lower and upper bound.
|
|
/// @returns false if the system is infeasible.
|
|
bool removeFixedVariables(SolvingState& _state, map<string, rational>& _model, bool& _changed)
|
|
{
|
|
for (auto const& [index, bounds]: _state.bounds | ranges::views::enumerate)
|
|
{
|
|
if (!bounds.upper || (!bounds.lower && bounds.upper->numerator() > 0))
|
|
continue;
|
|
// Lower bound must be at least zero.
|
|
rational lower = max(rational{}, bounds.lower ? *bounds.lower : rational{});
|
|
rational upper = *bounds.upper;
|
|
if (upper < lower)
|
|
return false; // Infeasible.
|
|
if (upper != lower)
|
|
continue;
|
|
_model[_state.variableNames.at(index)] = lower;
|
|
_state.bounds[index] = {};
|
|
_changed = true;
|
|
|
|
// substitute variable
|
|
for (Constraint& constraint: _state.constraints)
|
|
if (constraint.data[index])
|
|
{
|
|
constraint.data[0] -= constraint.data[index] * lower;
|
|
constraint.data[index] = 0;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool removeEmptyColumns(SolvingState& _state, map<string, rational>& _model, bool& _changed)
|
|
{
|
|
vector<bool> variablesSeen(_state.bounds.size(), false);
|
|
for (auto const& constraint: _state.constraints)
|
|
{
|
|
for (auto&& [index, factor]: constraint.data | ranges::views::enumerate | ranges::views::tail)
|
|
if (factor)
|
|
variablesSeen[index] = true;
|
|
}
|
|
|
|
// TODO we could assert that any variable we remove does not have conflicting bounds.
|
|
// (We also remove the bounds).
|
|
|
|
vector<bool> variablesToRemove(variablesSeen.size(), false);
|
|
bool needsRemoval = false;
|
|
for (auto&& [i, seen]: variablesSeen | ranges::views::enumerate | ranges::views::tail)
|
|
if (!seen)
|
|
{
|
|
variablesToRemove[i] = true;
|
|
needsRemoval = true;
|
|
// TODO actually it is unbounded if _state.bounds.at(i).upper is nullopt.
|
|
if (_state.bounds.at(i).lower || _state.bounds.at(i).upper)
|
|
_model[_state.variableNames.at(i)] =
|
|
_state.bounds.at(i).upper ?
|
|
*_state.bounds.at(i).upper :
|
|
*_state.bounds.at(i).lower;
|
|
}
|
|
if (needsRemoval)
|
|
{
|
|
_changed = true;
|
|
removeColumns(_state, variablesToRemove);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
auto nonZeroEntriesInColumn(SolvingState const& _state, size_t _column)
|
|
{
|
|
return
|
|
_state.constraints |
|
|
ranges::views::enumerate |
|
|
ranges::views::filter([=](auto const& _entry) { return _entry.second.data[_column] != 0; }) |
|
|
ranges::views::transform([](auto const& _entry) { return _entry.first; });
|
|
}
|
|
|
|
pair<vector<bool>, vector<bool>> connectedComponent(SolvingState const& _state, size_t _column)
|
|
{
|
|
solAssert(_state.variableNames.size() >= 2, "");
|
|
|
|
vector<bool> includedColumns(_state.variableNames.size(), false);
|
|
vector<bool> includedRows(_state.constraints.size(), false);
|
|
stack<size_t> columnsToProcess;
|
|
columnsToProcess.push(_column);
|
|
while (!columnsToProcess.empty())
|
|
{
|
|
size_t column = columnsToProcess.top();
|
|
columnsToProcess.pop();
|
|
if (includedColumns[column])
|
|
continue;
|
|
includedColumns[column] = true;
|
|
|
|
for (size_t row: nonZeroEntriesInColumn(_state, column))
|
|
{
|
|
if (includedRows[row])
|
|
continue;
|
|
includedRows[row] = true;
|
|
for (auto const& [index, entry]: _state.constraints[row].data | ranges::views::enumerate | ranges::views::tail)
|
|
if (entry && !includedColumns[index])
|
|
columnsToProcess.push(index);
|
|
}
|
|
}
|
|
return make_pair(move(includedColumns), move(includedRows));
|
|
}
|
|
|
|
struct ProblemSplitter
|
|
{
|
|
ProblemSplitter(SolvingState const& _state):
|
|
state(_state),
|
|
column(1),
|
|
seenColumns(vector<bool>(state.variableNames.size(), false))
|
|
{}
|
|
|
|
operator bool() const
|
|
{
|
|
return column < state.variableNames.size();
|
|
}
|
|
|
|
SolvingState next()
|
|
{
|
|
vector<bool> includedColumns;
|
|
vector<bool> includedRows;
|
|
tie(includedColumns, includedRows) = connectedComponent(state, column);
|
|
|
|
// Update state.
|
|
seenColumns |= includedColumns;
|
|
++column;
|
|
while (column < state.variableNames.size() && seenColumns[column])
|
|
++column;
|
|
|
|
// Happens in case of not removed empty column.
|
|
// Currently not happening because those are removed during the simplification stage.
|
|
// TODO If this is the case, we should actually also check the bounds.
|
|
if (includedRows.empty())
|
|
return next();
|
|
|
|
SolvingState splitOff;
|
|
|
|
splitOff.variableNames.emplace_back();
|
|
splitOff.bounds.emplace_back();
|
|
|
|
for (auto&& [i, included]: includedColumns | ranges::views::enumerate | ranges::views::tail)
|
|
{
|
|
if (!included)
|
|
continue;
|
|
splitOff.variableNames.emplace_back(move(state.variableNames[i]));
|
|
splitOff.bounds.emplace_back(move(state.bounds[i]));
|
|
}
|
|
for (auto&& [i, included]: includedRows | ranges::views::enumerate)
|
|
{
|
|
if (!included)
|
|
continue;
|
|
Constraint splitRow{{}, state.constraints[i].equality};
|
|
for (size_t j = 0; j < state.constraints[i].data.size(); j++)
|
|
if (j == 0 || includedColumns[j])
|
|
splitRow.data.push_back(state.constraints[i].data[j]);
|
|
splitOff.constraints.push_back(move(splitRow));
|
|
}
|
|
|
|
return splitOff;
|
|
}
|
|
|
|
SolvingState const& state;
|
|
size_t column = 1;
|
|
vector<bool> seenColumns;
|
|
};
|
|
|
|
|
|
/// Simplifies the solving state according to some rules (remove rows without variables, etc).
|
|
/// @returns false if the state is determined to be infeasible during this process.
|
|
bool simplifySolvingState(SolvingState& _state, map<string, rational>& _model)
|
|
{
|
|
// - Constraints with exactly one nonzero coefficient represent "a x <= b"
|
|
// and thus are turned into bounds.
|
|
// - Constraints with zero nonzero coefficients are constant relations.
|
|
// If such a relation is false, answer "infeasible", otherwise remove the constraint.
|
|
// - Empty columns can be removed.
|
|
// - Variables with matching bounds can be removed from the problem by substitution.
|
|
|
|
bool changed = true;
|
|
while (changed)
|
|
{
|
|
changed = false;
|
|
|
|
if (!removeFixedVariables(_state, _model, changed))
|
|
return false;
|
|
|
|
if (!extractDirectConstraints(_state, changed))
|
|
return false;
|
|
|
|
if (!removeFixedVariables(_state, _model, changed))
|
|
return false;
|
|
|
|
if (!removeEmptyColumns(_state, _model, changed))
|
|
return false;
|
|
}
|
|
|
|
// TODO return the values selected for named variables in order to
|
|
// be used when returning the model.
|
|
return true;
|
|
}
|
|
|
|
void normalizeRowLengths(SolvingState& _state)
|
|
{
|
|
size_t vars = max(_state.variableNames.size(), _state.bounds.size());
|
|
for (Constraint const& c: _state.constraints)
|
|
vars = max(vars, c.data.size());
|
|
_state.variableNames.resize(vars);
|
|
_state.bounds.resize(vars);
|
|
for (Constraint& c: _state.constraints)
|
|
c.data.resize(vars);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
bool Constraint::operator<(Constraint const& _other) const
|
|
{
|
|
if (equality != _other.equality)
|
|
return equality < _other.equality;
|
|
|
|
for (size_t i = 0; i < max(data.size(), _other.data.size()); ++i)
|
|
{
|
|
rational const& a = data.get(i);
|
|
rational const& b = _other.data.get(i);
|
|
if (a != b)
|
|
return a < b;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Constraint::operator==(Constraint const& _other) const
|
|
{
|
|
if (equality != _other.equality)
|
|
return false;
|
|
|
|
for (size_t i = 0; i < max(data.size(), _other.data.size()); ++i)
|
|
if (data.get(i) != _other.data.get(i))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool SolvingState::operator<(SolvingState const& _other) const
|
|
{
|
|
if (variableNames == _other.variableNames)
|
|
{
|
|
if (bounds == _other.bounds)
|
|
return constraints < _other.constraints;
|
|
else
|
|
return bounds < _other.bounds;
|
|
}
|
|
else
|
|
return variableNames < _other.variableNames;
|
|
}
|
|
|
|
bool SolvingState::operator==(SolvingState const& _other) const
|
|
{
|
|
return
|
|
variableNames == _other.variableNames &&
|
|
bounds == _other.bounds &&
|
|
constraints == _other.constraints;
|
|
}
|
|
|
|
string SolvingState::toString() const
|
|
{
|
|
string result;
|
|
|
|
for (Constraint const& constraint: constraints)
|
|
{
|
|
vector<string> line;
|
|
for (auto&& [index, multiplier]: constraint.data | ranges::views::enumerate)
|
|
if (index > 0 && multiplier != 0)
|
|
{
|
|
string mult =
|
|
multiplier == -1 ?
|
|
"-" :
|
|
multiplier == 1 ?
|
|
"" :
|
|
::toString(multiplier) + " ";
|
|
line.emplace_back(mult + variableNames.at(index));
|
|
}
|
|
result +=
|
|
joinHumanReadable(line, " + ") +
|
|
(constraint.equality ? " = " : " <= ") +
|
|
::toString(constraint.data.front()) +
|
|
"\n";
|
|
}
|
|
result += "Bounds:\n";
|
|
for (auto&& [index, bounds]: bounds | ranges::views::enumerate)
|
|
{
|
|
if (!bounds.lower && !bounds.upper)
|
|
continue;
|
|
if (bounds.lower)
|
|
result += ::toString(*bounds.lower) + " <= ";
|
|
result += variableNames.at(index);
|
|
if (bounds.upper)
|
|
result += " <= " + ::toString(*bounds.upper);
|
|
result += "\n";
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
pair<LPResult, map<string, rational>> LPSolver::check(SolvingState _state)
|
|
{
|
|
normalizeRowLengths(_state);
|
|
|
|
map<string, rational> model;
|
|
|
|
if (!simplifySolvingState(_state, model))
|
|
return {LPResult::Infeasible, {}};
|
|
|
|
bool canOnlyBeUnknown = false;
|
|
ProblemSplitter splitter(_state);
|
|
while (splitter)
|
|
{
|
|
SolvingState split = splitter.next();
|
|
solAssert(!split.constraints.empty(), "");
|
|
solAssert(split.variableNames.size() >= 2, "");
|
|
|
|
LPResult lpResult;
|
|
vector<rational> solution;
|
|
auto it = m_cache.find(split);
|
|
if (it != m_cache.end())
|
|
tie(lpResult, solution) = it->second;
|
|
else
|
|
{
|
|
SolvingState orig = split;
|
|
if (!boundsToConstraints(split))
|
|
lpResult = LPResult::Infeasible;
|
|
else
|
|
{
|
|
LinearExpression objectives;
|
|
objectives.resize(1);
|
|
objectives.resize(split.constraints.front().data.size(), rational(bigint(1)));
|
|
tie(lpResult, solution) = simplex(split.constraints, move(objectives));
|
|
}
|
|
m_cache.emplace(move(orig), make_pair(lpResult, solution));
|
|
}
|
|
|
|
switch (lpResult)
|
|
{
|
|
case LPResult::Feasible:
|
|
case LPResult::Unbounded:
|
|
break;
|
|
case LPResult::Infeasible:
|
|
return {LPResult::Infeasible, {}};
|
|
case LPResult::Unknown:
|
|
// We do not stop here, because another independent query can still be infeasible.
|
|
canOnlyBeUnknown = true;
|
|
break;
|
|
}
|
|
for (auto&& [index, value]: solution | ranges::views::enumerate)
|
|
if (index + 1 < split.variableNames.size())
|
|
model[split.variableNames.at(index + 1)] = value;
|
|
}
|
|
|
|
if (canOnlyBeUnknown)
|
|
return {LPResult::Unknown, {}};
|
|
|
|
return {LPResult::Feasible, move(model)};
|
|
}
|
|
|