solidity/libsolidity/codegen/ir/IRGeneratorForStatements.cpp
2019-05-07 12:35:05 +02:00

448 lines
14 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Component that translates Solidity code into Yul at statement level and below.
*/
#include <libsolidity/codegen/ir/IRGeneratorForStatements.h>
#include <libsolidity/codegen/ir/IRGenerationContext.h>
#include <libsolidity/codegen/ir/IRLValue.h>
#include <libsolidity/codegen/YulUtilFunctions.h>
#include <libsolidity/ast/TypeProvider.h>
#include <libyul/AsmPrinter.h>
#include <libyul/AsmData.h>
#include <libyul/optimiser/ASTCopier.h>
#include <libdevcore/StringUtils.h>
using namespace std;
using namespace dev;
using namespace dev::solidity;
namespace
{
struct CopyTranslate: public yul::ASTCopier
{
using ExternalRefsMap = std::map<yul::Identifier const*, InlineAssemblyAnnotation::ExternalIdentifierInfo>;
CopyTranslate(IRGenerationContext& _context, ExternalRefsMap const& _references):
m_context(_context), m_references(_references) {}
using ASTCopier::operator();
yul::YulString translateIdentifier(yul::YulString _name) override
{
return yul::YulString{"usr$" + _name.str()};
}
yul::Identifier translate(yul::Identifier const& _identifier) override
{
if (!m_references.count(&_identifier))
return ASTCopier::translate(_identifier);
auto const& reference = m_references.at(&_identifier);
auto const varDecl = dynamic_cast<VariableDeclaration const*>(reference.declaration);
solUnimplementedAssert(varDecl, "");
solUnimplementedAssert(
reference.isOffset == false && reference.isSlot == false,
""
);
return yul::Identifier{
_identifier.location,
yul::YulString{m_context.localVariableName(*varDecl)}
};
}
private:
IRGenerationContext& m_context;
ExternalRefsMap const& m_references;
};
}
string IRGeneratorForStatements::code() const
{
solAssert(!m_currentLValue, "LValue not reset!");
return m_code.str();
}
void IRGeneratorForStatements::endVisit(VariableDeclarationStatement const& _varDeclStatement)
{
for (auto const& decl: _varDeclStatement.declarations())
if (decl)
m_context.addLocalVariable(*decl);
if (Expression const* expression = _varDeclStatement.initialValue())
{
solUnimplementedAssert(_varDeclStatement.declarations().size() == 1, "");
VariableDeclaration const& varDecl = *_varDeclStatement.declarations().front();
m_code <<
"let " <<
m_context.localVariableName(varDecl) <<
" := " <<
expressionAsType(*expression, *varDecl.type()) <<
"\n";
}
else
for (auto const& decl: _varDeclStatement.declarations())
if (decl)
m_code << "let " << m_context.localVariableName(*decl) << "\n";
}
bool IRGeneratorForStatements::visit(Assignment const& _assignment)
{
solUnimplementedAssert(_assignment.assignmentOperator() == Token::Assign, "");
_assignment.rightHandSide().accept(*this);
Type const* intermediateType = _assignment.rightHandSide().annotation().type->closestTemporaryType(
&type(_assignment.leftHandSide())
);
string intermediateValue = m_context.newYulVariable();
m_code << "let " << intermediateValue << " := " << expressionAsType(_assignment.rightHandSide(), *intermediateType) << "\n";
_assignment.leftHandSide().accept(*this);
solAssert(!!m_currentLValue, "LValue not retrieved.");
m_currentLValue->storeValue(intermediateValue, *intermediateType);
m_currentLValue.reset();
defineExpression(_assignment) << intermediateValue << "\n";
return false;
}
bool IRGeneratorForStatements::visit(ForStatement const& _for)
{
m_code << "for {\n";
if (_for.initializationExpression())
_for.initializationExpression()->accept(*this);
m_code << "} return_flag {\n";
if (_for.loopExpression())
_for.loopExpression()->accept(*this);
m_code << "}\n";
if (_for.condition())
{
_for.condition()->accept(*this);
m_code <<
"if iszero(" <<
expressionAsType(*_for.condition(), *TypeProvider::boolean()) <<
") { break }\n";
}
_for.body().accept(*this);
m_code << "}\n";
// Bubble up the return condition.
m_code << "if iszero(return_flag) { break }\n";
return false;
}
bool IRGeneratorForStatements::visit(Continue const&)
{
m_code << "continue\n";
return false;
}
bool IRGeneratorForStatements::visit(Break const&)
{
m_code << "break\n";
return false;
}
void IRGeneratorForStatements::endVisit(Return const& _return)
{
if (Expression const* value = _return.expression())
{
solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer.");
vector<ASTPointer<VariableDeclaration>> const& returnParameters =
_return.annotation().functionReturnParameters->parameters();
TypePointers types;
for (auto const& retVariable: returnParameters)
types.push_back(retVariable->annotation().type);
// TODO support tuples
solUnimplementedAssert(types.size() == 1, "Multi-returns not implemented.");
m_code <<
m_context.localVariableName(*returnParameters.front()) <<
" := " <<
expressionAsType(*value, *types.front()) <<
"\n";
}
m_code << "return_flag := 0\n" << "break\n";
}
void IRGeneratorForStatements::endVisit(UnaryOperation const& _unaryOperation)
{
if (_unaryOperation.annotation().type->category() == Type::Category::RationalNumber)
defineExpression(_unaryOperation) <<
formatNumber(_unaryOperation.annotation().type->literalValue(nullptr)) <<
"\n";
else
solUnimplementedAssert(false, "");
}
void IRGeneratorForStatements::endVisit(BinaryOperation const& _binOp)
{
solAssert(!!_binOp.annotation().commonType, "");
TypePointer commonType = _binOp.annotation().commonType;
langutil::Token op = _binOp.getOperator();
if (op == Token::And || op == Token::Or)
// special case: short-circuiting
solUnimplementedAssert(false, "");
else if (commonType->category() == Type::Category::RationalNumber)
defineExpression(_binOp) <<
toCompactHexWithPrefix(commonType->literalValue(nullptr)) <<
"\n";
else if (TokenTraits::isCompareOp(op))
{
solUnimplementedAssert(commonType->category() != Type::Category::Function, "");
solAssert(commonType->isValueType(), "");
bool isSigned = false;
if (auto type = dynamic_cast<IntegerType const*>(commonType))
isSigned = type->isSigned();
string args =
expressionAsType(_binOp.leftExpression(), *commonType) +
", " +
expressionAsType(_binOp.rightExpression(), *commonType);
string expr;
if (op == Token::Equal)
expr = "eq(" + move(args) + ")";
else if (op == Token::NotEqual)
expr = "iszero(eq(" + move(args) + "))";
else if (op == Token::GreaterThanOrEqual)
expr = "iszero(" + string(isSigned ? "slt(" : "lt(") + move(args) + "))";
else if (op == Token::LessThanOrEqual)
expr = "iszero(" + string(isSigned ? "sgt(" : "gt(") + move(args) + "))";
else if (op == Token::GreaterThan)
expr = (isSigned ? "sgt(" : "gt(") + move(args) + ")";
else if (op == Token::LessThan)
expr = (isSigned ? "slt(" : "lt(") + move(args) + ")";
else
solAssert(false, "Unknown comparison operator.");
defineExpression(_binOp) << expr << "\n";
}
else
{
solUnimplementedAssert(_binOp.getOperator() == Token::Add, "");
if (IntegerType const* type = dynamic_cast<IntegerType const*>(commonType))
{
solUnimplementedAssert(!type->isSigned(), "");
defineExpression(_binOp) <<
m_utils.overflowCheckedUIntAddFunction(type->numBits()) <<
"(" <<
expressionAsType(_binOp.leftExpression(), *commonType) <<
", " <<
expressionAsType(_binOp.rightExpression(), *commonType) <<
")\n";
}
else
solUnimplementedAssert(false, "");
}
}
void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall)
{
solUnimplementedAssert(
_functionCall.annotation().kind == FunctionCallKind::FunctionCall ||
_functionCall.annotation().kind == FunctionCallKind::TypeConversion,
"This type of function call is not yet implemented"
);
Type const& funcType = type(_functionCall.expression());
if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
{
solAssert(funcType.category() == Type::Category::TypeType, "Expected category to be TypeType");
solAssert(_functionCall.arguments().size() == 1, "Expected one argument for type conversion");
defineExpression(_functionCall) <<
expressionAsType(*_functionCall.arguments().front(), type(_functionCall)) <<
"\n";
return;
}
FunctionTypePointer functionType = dynamic_cast<FunctionType const*>(&funcType);
TypePointers parameterTypes = functionType->parameterTypes();
vector<ASTPointer<Expression const>> const& callArguments = _functionCall.arguments();
vector<ASTPointer<ASTString>> const& callArgumentNames = _functionCall.names();
if (!functionType->takesArbitraryParameters())
solAssert(callArguments.size() == parameterTypes.size(), "");
vector<ASTPointer<Expression const>> arguments;
if (callArgumentNames.empty())
// normal arguments
arguments = callArguments;
else
// named arguments
for (auto const& parameterName: functionType->parameterNames())
{
auto const it = std::find_if(callArgumentNames.cbegin(), callArgumentNames.cend(), [&](ASTPointer<ASTString> const& _argName) {
return *_argName == parameterName;
});
solAssert(it != callArgumentNames.cend(), "");
arguments.push_back(callArguments[std::distance(callArgumentNames.begin(), it)]);
}
solUnimplementedAssert(!functionType->bound(), "");
switch (functionType->kind())
{
case FunctionType::Kind::Internal:
{
vector<string> args;
for (unsigned i = 0; i < arguments.size(); ++i)
if (functionType->takesArbitraryParameters())
args.emplace_back(m_context.variable(*arguments[i]));
else
args.emplace_back(expressionAsType(*arguments[i], *parameterTypes[i]));
if (auto identifier = dynamic_cast<Identifier const*>(&_functionCall.expression()))
{
solAssert(!functionType->bound(), "");
if (auto functionDef = dynamic_cast<FunctionDefinition const*>(identifier->annotation().referencedDeclaration))
{
// @TODO The function can very well return multiple vars.
defineExpression(_functionCall) <<
m_context.virtualFunctionName(*functionDef) <<
"(" <<
joinHumanReadable(args) <<
")\n";
return;
}
}
// @TODO The function can very well return multiple vars.
args = vector<string>{m_context.variable(_functionCall.expression())} + args;
defineExpression(_functionCall) <<
m_context.internalDispatch(functionType->parameterTypes().size(), functionType->returnParameterTypes().size()) <<
"(" <<
joinHumanReadable(args) <<
")\n";
break;
}
default:
solUnimplemented("");
}
}
bool IRGeneratorForStatements::visit(InlineAssembly const& _inlineAsm)
{
CopyTranslate bodyCopier{m_context, _inlineAsm.annotation().externalReferences};
yul::Statement modified = bodyCopier(_inlineAsm.operations());
solAssert(modified.type() == typeid(yul::Block), "");
m_code << yul::AsmPrinter()(boost::get<yul::Block>(std::move(modified))) << "\n";
return false;
}
bool IRGeneratorForStatements::visit(Identifier const& _identifier)
{
Declaration const* declaration = _identifier.annotation().referencedDeclaration;
if (FunctionDefinition const* functionDef = dynamic_cast<FunctionDefinition const*>(declaration))
defineExpression(_identifier) << to_string(m_context.virtualFunction(*functionDef).id()) << "\n";
else if (VariableDeclaration const* varDecl = dynamic_cast<VariableDeclaration const*>(declaration))
{
// TODO for the constant case, we have to be careful:
// If the value is visited twice, `defineExpression` is called twice on
// the same expression.
solUnimplementedAssert(!varDecl->isConstant(), "");
unique_ptr<IRLValue> lvalue;
if (m_context.isLocalVariable(*varDecl))
lvalue = make_unique<IRLocalVariable>(m_code, m_context, *varDecl);
else if (m_context.isStateVariable(*varDecl))
lvalue = make_unique<IRStorageItem>(m_code, m_context, *varDecl);
else
solAssert(false, "Invalid variable kind.");
setLValue(_identifier, move(lvalue));
}
else
solUnimplemented("");
return false;
}
bool IRGeneratorForStatements::visit(Literal const& _literal)
{
Type const& literalType = type(_literal);
switch (literalType.category())
{
case Type::Category::RationalNumber:
case Type::Category::Bool:
case Type::Category::Address:
defineExpression(_literal) << toCompactHexWithPrefix(literalType.literalValue(&_literal)) << "\n";
break;
case Type::Category::StringLiteral:
break; // will be done during conversion
default:
solUnimplemented("Only integer, boolean and string literals implemented for now.");
}
return false;
}
string IRGeneratorForStatements::expressionAsType(Expression const& _expression, Type const& _to)
{
Type const& from = type(_expression);
if (from.sizeOnStack() == 0)
{
solAssert(from != _to, "");
return m_utils.conversionFunction(from, _to) + "()";
}
else
{
string varName = m_context.variable(_expression);
if (from == _to)
return varName;
else
return m_utils.conversionFunction(from, _to) + "(" + std::move(varName) + ")";
}
}
ostream& IRGeneratorForStatements::defineExpression(Expression const& _expression)
{
return m_code << "let " << m_context.variable(_expression) << " := ";
}
void IRGeneratorForStatements::setLValue(Expression const& _expression, unique_ptr<IRLValue> _lvalue)
{
solAssert(!m_currentLValue, "");
if (_expression.annotation().lValueRequested)
// Do not define the expression, so it cannot be used as value.
m_currentLValue = std::move(_lvalue);
else
defineExpression(_expression) << _lvalue->retrieveValue() << "\n";
}
Type const& IRGeneratorForStatements::type(Expression const& _expression)
{
solAssert(_expression.annotation().type, "Type of expression not set.");
return *_expression.annotation().type;
}