solidity/test/libsolidity/SolidityNameAndTypeResolution.cpp
2018-04-12 21:01:08 +02:00

7566 lines
179 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Unit tests for the name and type resolution of the solidity parser.
*/
#include <test/libsolidity/AnalysisFramework.h>
#include <test/Options.h>
#include <libsolidity/ast/AST.h>
#include <libdevcore/SHA3.h>
#include <boost/test/unit_test.hpp>
#include <string>
using namespace std;
namespace dev
{
namespace solidity
{
namespace test
{
BOOST_FIXTURE_TEST_SUITE(SolidityNameAndTypeResolution, AnalysisFramework)
BOOST_AUTO_TEST_CASE(name_references)
{
char const* text = R"(
contract test {
uint256 variable;
function f(uint256) public returns (uint out) { f(variable); test; out; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(undeclared_name)
{
char const* text = R"(
contract test {
uint256 variable;
function f(uint256 arg) public {
f(notfound);
}
}
)";
CHECK_ERROR(text, DeclarationError, "Undeclared identifier.");
}
BOOST_AUTO_TEST_CASE(undeclared_name_is_not_fatal)
{
char const* text = R"(
contract test {
uint256 variable;
function f(uint256 arg) public {
f(notfound);
f(notfound);
}
}
)";
CHECK_ERROR_ALLOW_MULTI(text, DeclarationError, (vector<string>{"Undeclared identifier", "Undeclared identifier"}));
}
BOOST_AUTO_TEST_CASE(reference_to_later_declaration)
{
char const* text = R"(
contract test {
function g() public { f(); }
function f() public {}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(type_inference_smoke_test)
{
char const* text = R"(
contract test {
function f(uint256 arg1, uint32 arg2) public returns (bool ret) {
var x = arg1 + arg2 == 8; ret = x;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(type_checking_return)
{
char const* text = R"(
contract test {
function f() public returns (bool r) { return 1 >= 2; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(type_checking_return_wrong_number)
{
char const* text = R"(
contract test {
function f() public returns (bool r1, bool r2) { return 1 >= 2; }
}
)";
CHECK_ERROR(text, TypeError, "Different number of arguments in return statement than in returns declaration.");
}
BOOST_AUTO_TEST_CASE(type_checking_return_wrong_type)
{
char const* text = R"(
contract test {
function f() public returns (uint256 r) { return 1 >= 2; }
}
)";
CHECK_ERROR(text, TypeError, "Return argument type bool is not implicitly convertible to expected type (type of first return variable) uint256.");
}
BOOST_AUTO_TEST_CASE(type_checking_function_call)
{
char const* text = R"(
contract test {
function f() public returns (bool) { return g(12, true) == 3; }
function g(uint256, bool) public returns (uint256) { }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(type_conversion_for_comparison)
{
char const* text = R"(
contract test {
function f() public { uint32(2) == int64(2); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(type_conversion_for_comparison_invalid)
{
char const* text = R"(
contract test {
function f() public { int32(2) == uint64(2); }
}
)";
CHECK_ERROR(text, TypeError, "Operator == not compatible with types int32 and uint64");
}
BOOST_AUTO_TEST_CASE(type_inference_explicit_conversion)
{
char const* text = R"(
contract test {
function f() public returns (int256 r) { var x = int256(uint32(2)); return x; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(large_string_literal)
{
char const* text = R"(
contract test {
function f() public { var x = "123456789012345678901234567890123"; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(balance)
{
char const* text = R"(
contract test {
function fun() public {
uint256 x = address(0).balance;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(balance_invalid)
{
char const* text = R"(
contract test {
function fun() public {
address(0).balance = 7;
}
}
)";
CHECK_ERROR(text, TypeError, "Expression has to be an lvalue.");
}
BOOST_AUTO_TEST_CASE(assignment_to_mapping)
{
char const* text = R"(
contract test {
struct str {
mapping(uint=>uint) map;
}
str data;
function fun() public {
var a = data.map;
data.map = a;
}
}
)";
CHECK_ERROR(text, TypeError, "Mappings cannot be assigned to.");
}
BOOST_AUTO_TEST_CASE(assignment_to_struct)
{
char const* text = R"(
contract test {
struct str {
mapping(uint=>uint) map;
}
str data;
function fun() public {
var a = data;
data = a;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(returns_in_constructor)
{
char const* text = R"(
contract test {
function test() public returns (uint a) { }
}
)";
CHECK_ERROR(text, TypeError, "Non-empty \"returns\" directive for constructor.");
}
BOOST_AUTO_TEST_CASE(forward_function_reference)
{
char const* text = R"(
contract First {
function fun() public returns (bool) {
return Second(1).fun(1, true, 3) > 0;
}
}
contract Second {
function fun(uint, bool, uint) public returns (uint) {
if (First(2).fun() == true) return 1;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(comparison_bitop_precedence)
{
char const* text = R"(
contract First {
function fun() public returns (bool ret) {
return 1 & 2 == 8 & 9 && 1 ^ 2 < 4 | 6;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(comparison_of_function_types)
{
char const* text = R"(
contract C {
function f() public returns (bool ret) {
return this.f < this.f;
}
}
)";
CHECK_ERROR(text, TypeError, "Operator < not compatible");
text = R"(
contract C {
function f() public returns (bool ret) {
return f < f;
}
}
)";
CHECK_ERROR(text, TypeError, "Operator < not compatible");
text = R"(
contract C {
function f() public returns (bool ret) {
return f == f;
}
function g() public returns (bool ret) {
return f != f;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(comparison_of_mapping_types)
{
char const* text = R"(
contract C {
mapping(uint => uint) x;
function f() public returns (bool ret) {
var y = x;
return x == y;
}
}
)";
CHECK_ERROR(text, TypeError, "Operator == not compatible");
}
BOOST_AUTO_TEST_CASE(function_no_implementation)
{
SourceUnit const* sourceUnit = nullptr;
char const* text = R"(
contract test {
function functionName(bytes32 input) public returns (bytes32 out);
}
)";
sourceUnit = parseAndAnalyse(text);
std::vector<ASTPointer<ASTNode>> nodes = sourceUnit->nodes();
ContractDefinition* contract = dynamic_cast<ContractDefinition*>(nodes[1].get());
BOOST_REQUIRE(contract);
BOOST_CHECK(!contract->annotation().unimplementedFunctions.empty());
BOOST_CHECK(!contract->definedFunctions()[0]->isImplemented());
}
BOOST_AUTO_TEST_CASE(abstract_contract)
{
SourceUnit const* sourceUnit = nullptr;
char const* text = R"(
contract base { function foo(); }
contract derived is base { function foo() public {} }
)";
sourceUnit = parseAndAnalyse(text);
std::vector<ASTPointer<ASTNode>> nodes = sourceUnit->nodes();
ContractDefinition* base = dynamic_cast<ContractDefinition*>(nodes[1].get());
ContractDefinition* derived = dynamic_cast<ContractDefinition*>(nodes[2].get());
BOOST_REQUIRE(base);
BOOST_CHECK(!base->annotation().unimplementedFunctions.empty());
BOOST_CHECK(!base->definedFunctions()[0]->isImplemented());
BOOST_REQUIRE(derived);
BOOST_CHECK(derived->annotation().unimplementedFunctions.empty());
BOOST_CHECK(derived->definedFunctions()[0]->isImplemented());
}
BOOST_AUTO_TEST_CASE(abstract_contract_with_overload)
{
SourceUnit const* sourceUnit = nullptr;
char const* text = R"(
contract base { function foo(bool); }
contract derived is base { function foo(uint) public {} }
)";
sourceUnit = parseAndAnalyse(text);
std::vector<ASTPointer<ASTNode>> nodes = sourceUnit->nodes();
ContractDefinition* base = dynamic_cast<ContractDefinition*>(nodes[1].get());
ContractDefinition* derived = dynamic_cast<ContractDefinition*>(nodes[2].get());
BOOST_REQUIRE(base);
BOOST_CHECK(!base->annotation().unimplementedFunctions.empty());
BOOST_REQUIRE(derived);
BOOST_CHECK(!derived->annotation().unimplementedFunctions.empty());
}
BOOST_AUTO_TEST_CASE(create_abstract_contract)
{
char const* text = R"(
contract base { function foo(); }
contract derived {
base b;
function foo() public { b = new base(); }
}
)";
CHECK_ERROR(text, TypeError, "Trying to create an instance of an abstract contract.");
}
BOOST_AUTO_TEST_CASE(redeclare_implemented_abstract_function_as_abstract)
{
char const* text = R"(
contract base { function foo(); }
contract derived is base { function foo() public {} }
contract wrong is derived { function foo(); }
)";
CHECK_ERROR(text, TypeError, "Redeclaring an already implemented function as abstract");
}
BOOST_AUTO_TEST_CASE(implement_abstract_via_constructor)
{
SourceUnit const* sourceUnit = nullptr;
char const* text = R"(
contract base { function foo(); }
contract foo is base { function foo() public {} }
)";
sourceUnit = parseAndAnalyse(text);
std::vector<ASTPointer<ASTNode>> nodes = sourceUnit->nodes();
BOOST_CHECK_EQUAL(nodes.size(), 3);
ContractDefinition* derived = dynamic_cast<ContractDefinition*>(nodes[2].get());
BOOST_REQUIRE(derived);
BOOST_CHECK(!derived->annotation().unimplementedFunctions.empty());
}
BOOST_AUTO_TEST_CASE(function_canonical_signature)
{
SourceUnit const* sourceUnit = nullptr;
char const* text = R"(
contract Test {
function foo(uint256 arg1, uint64 arg2, bool arg3) public returns (uint256 ret) {
ret = arg1 + arg2;
}
}
)";
sourceUnit = parseAndAnalyse(text);
for (ASTPointer<ASTNode> const& node: sourceUnit->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
{
auto functions = contract->definedFunctions();
BOOST_CHECK_EQUAL("foo(uint256,uint64,bool)", functions[0]->externalSignature());
}
}
BOOST_AUTO_TEST_CASE(function_canonical_signature_type_aliases)
{
SourceUnit const* sourceUnit = nullptr;
char const* text = R"(
contract Test {
function boo(uint, bytes32, address) public returns (uint ret) {
ret = 5;
}
}
)";
sourceUnit = parseAndAnalyse(text);
for (ASTPointer<ASTNode> const& node: sourceUnit->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
{
auto functions = contract->definedFunctions();
if (functions.empty())
continue;
BOOST_CHECK_EQUAL("boo(uint256,bytes32,address)", functions[0]->externalSignature());
}
}
BOOST_AUTO_TEST_CASE(function_external_types)
{
SourceUnit const* sourceUnit = nullptr;
char const* text = R"(
contract C {
uint a;
}
contract Test {
function boo(uint, bool, bytes8, bool[2], uint[], C, address[]) external returns (uint ret) {
ret = 5;
}
}
)";
sourceUnit = parseAndAnalyse(text);
for (ASTPointer<ASTNode> const& node: sourceUnit->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
{
auto functions = contract->definedFunctions();
if (functions.empty())
continue;
BOOST_CHECK_EQUAL("boo(uint256,bool,bytes8,bool[2],uint256[],address,address[])", functions[0]->externalSignature());
}
}
BOOST_AUTO_TEST_CASE(enum_external_type)
{
// bug #1801
SourceUnit const* sourceUnit = nullptr;
char const* text = R"(
contract Test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
function boo(ActionChoices enumArg) external returns (uint ret) {
ret = 5;
}
}
)";
sourceUnit = parseAndAnalyse(text);
for (ASTPointer<ASTNode> const& node: sourceUnit->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
{
auto functions = contract->definedFunctions();
if (functions.empty())
continue;
BOOST_CHECK_EQUAL("boo(uint8)", functions[0]->externalSignature());
}
}
BOOST_AUTO_TEST_CASE(external_structs)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract Test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
struct Empty {}
struct Nested { X[2][] a; uint y; }
struct X { bytes32 x; Test t; Empty[] e; }
function f(ActionChoices, uint, Empty) external {}
function g(Test, Nested) external {}
function h(function(Nested) external returns (uint)[]) external {}
function i(Nested[]) external {}
}
)";
SourceUnit const* sourceUnit = parseAndAnalyse(text);
for (ASTPointer<ASTNode> const& node: sourceUnit->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
{
auto functions = contract->definedFunctions();
BOOST_REQUIRE(!functions.empty());
BOOST_CHECK_EQUAL("f(uint8,uint256,())", functions[0]->externalSignature());
BOOST_CHECK_EQUAL("g(address,((bytes32,address,()[])[2][],uint256))", functions[1]->externalSignature());
BOOST_CHECK_EQUAL("h(function[])", functions[2]->externalSignature());
BOOST_CHECK_EQUAL("i(((bytes32,address,()[])[2][],uint256)[])", functions[3]->externalSignature());
}
}
BOOST_AUTO_TEST_CASE(external_structs_in_libraries)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
library Test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
struct Empty {}
struct Nested { X[2][] a; uint y; }
struct X { bytes32 x; Test t; Empty[] e; }
function f(ActionChoices, uint, Empty) external {}
function g(Test, Nested) external {}
function h(function(Nested) external returns (uint)[]) external {}
function i(Nested[]) external {}
}
)";
SourceUnit const* sourceUnit = parseAndAnalyse(text);
for (ASTPointer<ASTNode> const& node: sourceUnit->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
{
auto functions = contract->definedFunctions();
BOOST_REQUIRE(!functions.empty());
BOOST_CHECK_EQUAL("f(Test.ActionChoices,uint256,Test.Empty)", functions[0]->externalSignature());
BOOST_CHECK_EQUAL("g(Test,Test.Nested)", functions[1]->externalSignature());
BOOST_CHECK_EQUAL("h(function[])", functions[2]->externalSignature());
BOOST_CHECK_EQUAL("i(Test.Nested[])", functions[3]->externalSignature());
}
}
BOOST_AUTO_TEST_CASE(struct_with_mapping_in_library)
{
char const* text = R"(
library Test {
struct Nested { mapping(uint => uint)[2][] a; uint y; }
struct X { Nested n; }
function f(X storage x) external {}
}
)";
SourceUnit const* sourceUnit = parseAndAnalyse(text);
for (ASTPointer<ASTNode> const& node: sourceUnit->nodes())
if (ContractDefinition* contract = dynamic_cast<ContractDefinition*>(node.get()))
{
auto functions = contract->definedFunctions();
BOOST_REQUIRE(!functions.empty());
BOOST_CHECK_EQUAL("f(Test.X storage)", functions[0]->externalSignature());
}
}
BOOST_AUTO_TEST_CASE(functions_with_identical_structs_in_interface)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S1 { }
struct S2 { }
function f(S1) pure {}
function f(S2) pure {}
}
)";
CHECK_ERROR(text, TypeError, "Function overload clash during conversion to external types for arguments");
}
BOOST_AUTO_TEST_CASE(functions_with_different_structs_in_interface)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S1 { function() external a; }
struct S2 { bytes24 a; }
function f(S1) pure {}
function f(S2) pure {}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(functions_with_stucts_of_non_external_types_in_interface)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S { function() internal a; }
function f(S) {}
}
)";
CHECK_ERROR(text, TypeError, "Internal or recursive type is not allowed for public or external functions.");
}
BOOST_AUTO_TEST_CASE(functions_with_stucts_of_non_external_types_in_interface_2)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S { mapping(uint => uint) a; }
function f(S) {}
}
)";
CHECK_ERROR(text, TypeError, "Internal or recursive type is not allowed for public or external functions.");
}
BOOST_AUTO_TEST_CASE(functions_with_stucts_of_non_external_types_in_interface_nested)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract C {
struct T { mapping(uint => uint) a; }
struct S { T[][2] b; }
function f(S) {}
}
)";
CHECK_ERROR(text, TypeError, "Internal or recursive type is not allowed for public or external functions.");
}
BOOST_AUTO_TEST_CASE(returning_multi_dimensional_arrays_new_abi)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract C {
function f() public pure returns (string[][]) {}
}
)";
CHECK_WARNING(text, "Experimental features");
}
BOOST_AUTO_TEST_CASE(returning_multi_dimensional_arrays)
{
char const* text = R"(
contract C {
function f() public pure returns (string[][]) {}
}
)";
CHECK_ERROR(text, TypeError, "only supported in the new experimental ABI encoder");
}
BOOST_AUTO_TEST_CASE(returning_multi_dimensional_static_arrays)
{
char const* text = R"(
contract C {
function f() public pure returns (uint[][2]) {}
}
)";
CHECK_ERROR(text, TypeError, "only supported in the new experimental ABI encoder");
}
BOOST_AUTO_TEST_CASE(returning_arrays_in_structs_new_abi)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S { string[] s; }
function f() public pure returns (S) {}
}
)";
CHECK_WARNING(text, "Experimental features");
}
BOOST_AUTO_TEST_CASE(returning_arrays_in_structs_arrays)
{
char const* text = R"(
contract C {
struct S { string[] s; }
function f() public pure returns (S x) {}
}
)";
CHECK_ERROR(text, TypeError, "only supported in the new experimental ABI encoder");
}
BOOST_AUTO_TEST_CASE(function_external_call_allowed_conversion)
{
char const* text = R"(
contract C {}
contract Test {
function externalCall() public {
C arg;
this.g(arg);
}
function g (C c) external {}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(function_external_call_not_allowed_conversion)
{
char const* text = R"(
contract C {}
contract Test {
function externalCall() public {
address arg;
this.g(arg);
}
function g (C c) external {}
}
)";
CHECK_ERROR(text, TypeError, "Invalid type for argument in function call. Invalid implicit conversion from address to contract C requested.");
}
BOOST_AUTO_TEST_CASE(function_internal_allowed_conversion)
{
char const* text = R"(
contract C {
uint a;
}
contract Test {
C a;
function g (C c) public {}
function internalCall() public {
g(a);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(function_internal_not_allowed_conversion)
{
char const* text = R"(
contract C {
uint a;
}
contract Test {
address a;
function g (C c) public {}
function internalCall() public {
g(a);
}
}
)";
CHECK_ERROR(text, TypeError, "Invalid type for argument in function call. Invalid implicit conversion from address to contract C requested.");
}
BOOST_AUTO_TEST_CASE(hash_collision_in_interface)
{
char const* text = R"(
contract test {
function gsf() public { }
function tgeo() public { }
}
)";
CHECK_ERROR(text, TypeError, "Function signature hash collision for tgeo()");
}
BOOST_AUTO_TEST_CASE(inheritance_basic)
{
char const* text = R"(
contract base { uint baseMember; struct BaseType { uint element; } }
contract derived is base {
BaseType data;
function f() public { baseMember = 7; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inheritance_diamond_basic)
{
char const* text = R"(
contract root { function rootFunction() public {} }
contract inter1 is root { function f() public {} }
contract inter2 is root { function f() public {} }
contract derived is root, inter2, inter1 {
function g() public { f(); rootFunction(); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(cyclic_inheritance)
{
char const* text = R"(
contract A is B { }
contract B is A { }
)";
CHECK_ERROR_ALLOW_MULTI(text, TypeError, (vector<string>{"Definition of base has to precede definition of derived contract"}));
}
BOOST_AUTO_TEST_CASE(legal_override_direct)
{
char const* text = R"(
contract B { function f() public {} }
contract C is B { function f(uint i) public {} }
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(legal_override_indirect)
{
char const* text = R"(
contract A { function f(uint a) public {} }
contract B { function f() public {} }
contract C is A, B { }
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(illegal_override_visibility)
{
char const* text = R"(
contract B { function f() internal {} }
contract C is B { function f() public {} }
)";
CHECK_ERROR(text, TypeError, "Overriding function visibility differs");
}
BOOST_AUTO_TEST_CASE(illegal_override_remove_constness)
{
char const* text = R"(
contract B { function f() constant {} }
contract C is B { function f() public {} }
)";
CHECK_ERROR(text, TypeError, "Overriding function changes state mutability from \"view\" to \"nonpayable\".");
}
BOOST_AUTO_TEST_CASE(illegal_override_add_constness)
{
char const* text = R"(
contract B { function f() public {} }
contract C is B { function f() constant {} }
)";
CHECK_ERROR(text, TypeError, "Overriding function changes state mutability from \"nonpayable\" to \"view\".");
}
BOOST_AUTO_TEST_CASE(complex_inheritance)
{
char const* text = R"(
contract A { function f() public { uint8 x = C(0).g(); } }
contract B { function f() public {} function g() public returns (uint8) {} }
contract C is A, B { }
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(constructor_visibility)
{
// The constructor of a base class should not be visible in the derived class
char const* text = R"(
contract A { function A() public { } }
contract B is A { function f() public { A x = A(0); } }
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(overriding_constructor)
{
// It is fine to "override" constructor of a base class since it is invisible
char const* text = R"(
contract A { function A() public { } }
contract B is A { function A() public returns (uint8 r) {} }
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(missing_base_constructor_arguments)
{
char const* text = R"(
contract A { function A(uint a) public { } }
contract B is A { }
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(base_constructor_arguments_override)
{
char const* text = R"(
contract A { function A(uint a) public { } }
contract B is A { }
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(new_constructor_syntax)
{
char const* text = R"(
contract A { constructor() public {} }
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(old_constructor_syntax)
{
char const* text = R"(
contract A { function A() public {} }
)";
CHECK_WARNING(
text,
"Defining constructors as functions with the same name as the contract is deprecated."
);
text = R"(
pragma experimental "v0.5.0";
contract A { function A() public {} }
)";
CHECK_ERROR(
text,
SyntaxError,
"Functions are not allowed to have the same name as the contract."
);
}
BOOST_AUTO_TEST_CASE(implicit_derived_to_base_conversion)
{
char const* text = R"(
contract A { }
contract B is A {
function f() public { A a = B(1); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(implicit_base_to_derived_conversion)
{
char const* text = R"(
contract A { }
contract B is A {
function f() public { B b = A(1); }
}
)";
CHECK_ERROR(text, TypeError, "Type contract A is not implicitly convertible to expected type contract B.");
}
BOOST_AUTO_TEST_CASE(super_excludes_current_contract)
{
char const* text = R"(
contract A {
function b() public {}
}
contract B is A {
function f() public {
super.f();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"f\" not found or not visible after argument-dependent lookup in contract super B");
}
BOOST_AUTO_TEST_CASE(state_variable_accessors)
{
char const* text = R"(
contract test {
function fun() public {
uint64(2);
}
uint256 public foo;
mapping(uint=>bytes4) public map;
mapping(uint=>mapping(uint=>bytes4)) public multiple_map;
}
)";
SourceUnit const* source;
ContractDefinition const* contract;
source = parseAndAnalyse(text);
BOOST_REQUIRE((contract = retrieveContractByName(*source, "test")) != nullptr);
FunctionTypePointer function = retrieveFunctionBySignature(*contract, "foo()");
BOOST_REQUIRE(function && function->hasDeclaration());
auto returnParams = function->returnParameterTypes();
BOOST_CHECK_EQUAL(returnParams.at(0)->canonicalName(), "uint256");
BOOST_CHECK(function->stateMutability() == StateMutability::View);
function = retrieveFunctionBySignature(*contract, "map(uint256)");
BOOST_REQUIRE(function && function->hasDeclaration());
auto params = function->parameterTypes();
BOOST_CHECK_EQUAL(params.at(0)->canonicalName(), "uint256");
returnParams = function->returnParameterTypes();
BOOST_CHECK_EQUAL(returnParams.at(0)->canonicalName(), "bytes4");
BOOST_CHECK(function->stateMutability() == StateMutability::View);
function = retrieveFunctionBySignature(*contract, "multiple_map(uint256,uint256)");
BOOST_REQUIRE(function && function->hasDeclaration());
params = function->parameterTypes();
BOOST_CHECK_EQUAL(params.at(0)->canonicalName(), "uint256");
BOOST_CHECK_EQUAL(params.at(1)->canonicalName(), "uint256");
returnParams = function->returnParameterTypes();
BOOST_CHECK_EQUAL(returnParams.at(0)->canonicalName(), "bytes4");
BOOST_CHECK(function->stateMutability() == StateMutability::View);
}
BOOST_AUTO_TEST_CASE(function_clash_with_state_variable_accessor)
{
char const* text = R"(
contract test {
function fun() public {
uint64(2);
}
uint256 foo;
function foo() public {}
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier already declared.");
}
BOOST_AUTO_TEST_CASE(private_state_variable)
{
char const* text = R"(
contract test {
function fun() public {
uint64(2);
}
uint256 private foo;
uint256 internal bar;
}
)";
ContractDefinition const* contract;
SourceUnit const* source = parseAndAnalyse(text);
BOOST_CHECK((contract = retrieveContractByName(*source, "test")) != nullptr);
FunctionTypePointer function;
function = retrieveFunctionBySignature(*contract, "foo()");
BOOST_CHECK_MESSAGE(function == nullptr, "Accessor function of a private variable should not exist");
function = retrieveFunctionBySignature(*contract, "bar()");
BOOST_CHECK_MESSAGE(function == nullptr, "Accessor function of an internal variable should not exist");
}
BOOST_AUTO_TEST_CASE(missing_state_variable)
{
char const* text = R"(
contract Scope {
function getStateVar() constant public returns (uint stateVar) {
stateVar = Scope.stateVar; // should fail.
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"stateVar\" not found or not visible after argument-dependent lookup in type(contract Scope)");
}
BOOST_AUTO_TEST_CASE(base_class_state_variable_accessor)
{
// test for issue #1126 https://github.com/ethereum/cpp-ethereum/issues/1126
char const* text = R"(
contract Parent {
uint256 public m_aMember;
}
contract Child is Parent {
function foo() public returns (uint256) { return Parent.m_aMember; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(struct_accessor_one_array_only)
{
char const* sourceCode = R"(
contract test {
struct Data { uint[15] m_array; }
Data public data;
}
)";
CHECK_ERROR(sourceCode, TypeError, "Internal or recursive type is not allowed for public state variables.");
}
BOOST_AUTO_TEST_CASE(base_class_state_variable_internal_member)
{
char const* text = R"(
contract Parent {
uint256 internal m_aMember;
}
contract Child is Parent {
function foo() public returns (uint256) { return Parent.m_aMember; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(state_variable_member_of_wrong_class1)
{
char const* text = R"(
contract Parent1 {
uint256 internal m_aMember1;
}
contract Parent2 is Parent1 {
uint256 internal m_aMember2;
}
contract Child is Parent2 {
function foo() public returns (uint256) { return Parent2.m_aMember1; }
}
)";
CHECK_ERROR(text, TypeError, "Member \"m_aMember1\" not found or not visible after argument-dependent lookup in type(contract Parent2)");
}
BOOST_AUTO_TEST_CASE(state_variable_member_of_wrong_class2)
{
char const* text = R"(
contract Parent1 {
uint256 internal m_aMember1;
}
contract Parent2 is Parent1 {
uint256 internal m_aMember2;
}
contract Child is Parent2 {
function foo() public returns (uint256) { return Child.m_aMember2; }
uint256 public m_aMember3;
}
)";
CHECK_ERROR(text, TypeError, "Member \"m_aMember2\" not found or not visible after argument-dependent lookup in type(contract Child)");
}
BOOST_AUTO_TEST_CASE(fallback_function)
{
char const* text = R"(
contract C {
uint x;
function() public { x = 2; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(fallback_function_with_arguments)
{
char const* text = R"(
contract C {
uint x;
function(uint a) public { x = 2; }
}
)";
CHECK_ERROR(text, TypeError, "Fallback function cannot take parameters.");
}
BOOST_AUTO_TEST_CASE(fallback_function_in_library)
{
char const* text = R"(
library C {
function() public {}
}
)";
CHECK_ERROR(text, TypeError, "Libraries cannot have fallback functions.");
}
BOOST_AUTO_TEST_CASE(fallback_function_with_return_parameters)
{
char const* text = R"(
contract C {
function() public returns (uint) { }
}
)";
CHECK_ERROR(text, TypeError, "Fallback function cannot return values.");
}
BOOST_AUTO_TEST_CASE(fallback_function_with_constant_modifier)
{
char const* text = R"(
contract C {
uint x;
function() constant { x = 2; }
}
)";
CHECK_ERROR(text, TypeError, "Fallback function must be payable or non-payable");
}
BOOST_AUTO_TEST_CASE(fallback_function_twice)
{
char const* text = R"(
contract C {
uint x;
function() public { x = 2; }
function() public { x = 3; }
}
)";
CHECK_ERROR_ALLOW_MULTI(text, DeclarationError, (vector<string>{
"Function with same name and arguments defined twice.",
"Only one fallback function is"
}));
}
BOOST_AUTO_TEST_CASE(fallback_function_inheritance)
{
char const* text = R"(
contract A {
uint x;
function() public { x = 1; }
}
contract C is A {
function() public { x = 2; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(event)
{
char const* text = R"(
contract c {
event e(uint indexed a, bytes3 indexed s, bool indexed b);
function f() public { e(2, "abc", true); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(event_too_many_indexed)
{
char const* text = R"(
contract c {
event e(uint indexed a, bytes3 indexed b, bool indexed c, uint indexed d);
}
)";
CHECK_ERROR(text, TypeError, "More than 3 indexed arguments for event.");
}
BOOST_AUTO_TEST_CASE(anonymous_event_four_indexed)
{
char const* text = R"(
contract c {
event e(uint indexed a, bytes3 indexed b, bool indexed c, uint indexed d) anonymous;
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(anonymous_event_too_many_indexed)
{
char const* text = R"(
contract c {
event e(uint indexed a, bytes3 indexed b, bool indexed c, uint indexed d, uint indexed e) anonymous;
}
)";
CHECK_ERROR(text, TypeError, "More than 4 indexed arguments for anonymous event.");
}
BOOST_AUTO_TEST_CASE(events_with_same_name)
{
char const* text = R"(
contract TestIt {
event A();
event A(uint i);
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(events_with_same_name_unnamed_arguments)
{
char const* text = R"(
contract test {
event A(uint);
event A(uint, uint);
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(events_with_same_name_different_types)
{
char const* text = R"(
contract test {
event A(uint);
event A(bytes);
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(double_event_declaration)
{
char const* text = R"(
contract test {
event A(uint i);
event A(uint i);
}
)";
CHECK_ERROR(text, DeclarationError, "Event with same name and arguments defined twice.");
}
BOOST_AUTO_TEST_CASE(double_event_declaration_ignores_anonymous)
{
char const* text = R"(
contract test {
event A(uint i);
event A(uint i) anonymous;
}
)";
CHECK_ERROR(text, DeclarationError, "Event with same name and arguments defined twice.");
}
BOOST_AUTO_TEST_CASE(double_event_declaration_ignores_indexed)
{
char const* text = R"(
contract test {
event A(uint i);
event A(uint indexed i);
}
)";
CHECK_ERROR(text, DeclarationError, "Event with same name and arguments defined twice.");
}
BOOST_AUTO_TEST_CASE(event_call)
{
char const* text = R"(
contract c {
event e(uint a, bytes3 indexed s, bool indexed b);
function f() public { e(2, "abc", true); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(event_function_inheritance_clash)
{
char const* text = R"(
contract A {
function dup() public returns (uint) {
return 1;
}
}
contract B {
event dup();
}
contract C is A, B {
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier already declared.");
}
BOOST_AUTO_TEST_CASE(function_event_inheritance_clash)
{
char const* text = R"(
contract B {
event dup();
}
contract A {
function dup() public returns (uint) {
return 1;
}
}
contract C is B, A {
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier already declared.");
}
BOOST_AUTO_TEST_CASE(function_event_in_contract_clash)
{
char const* text = R"(
contract A {
event dup();
function dup() public returns (uint) {
return 1;
}
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier already declared.");
}
BOOST_AUTO_TEST_CASE(event_inheritance)
{
char const* text = R"(
contract base {
event e(uint a, bytes3 indexed s, bool indexed b);
}
contract c is base {
function f() public { e(2, "abc", true); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(multiple_events_argument_clash)
{
char const* text = R"(
contract c {
event e1(uint a, uint e1, uint e2);
event e2(uint a, uint e1, uint e2);
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(access_to_default_function_visibility)
{
char const* text = R"(
contract c {
function f() public {}
}
contract d {
function g() public { c(0).f(); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(access_to_internal_function)
{
char const* text = R"(
contract c {
function f() internal {}
}
contract d {
function g() public { c(0).f(); }
}
)";
CHECK_ERROR(text, TypeError, "Member \"f\" not found or not visible after argument-dependent lookup in contract c");
}
BOOST_AUTO_TEST_CASE(access_to_default_state_variable_visibility)
{
char const* text = R"(
contract c {
uint a;
}
contract d {
function g() public { c(0).a(); }
}
)";
CHECK_ERROR(text, TypeError, "Member \"a\" not found or not visible after argument-dependent lookup in contract c");
}
BOOST_AUTO_TEST_CASE(access_to_internal_state_variable)
{
char const* text = R"(
contract c {
uint public a;
}
contract d {
function g() public { c(0).a(); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(error_count_in_named_args)
{
char const* sourceCode = R"(
contract test {
function a(uint a, uint b) public returns (uint r) {
r = a + b;
}
function b() public returns (uint r) {
r = a({a: 1});
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Wrong argument count for function call: 1 arguments given but expected 2.");
}
BOOST_AUTO_TEST_CASE(empty_in_named_args)
{
char const* sourceCode = R"(
contract test {
function a(uint a, uint b) public returns (uint r) {
r = a + b;
}
function b() public returns (uint r) {
r = a({});
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Wrong argument count for function call: 0 arguments given but expected 2.");
}
BOOST_AUTO_TEST_CASE(duplicate_parameter_names_in_named_args)
{
char const* sourceCode = R"(
contract test {
function a(uint a, uint b) public returns (uint r) {
r = a + b;
}
function b() public returns (uint r) {
r = a({a: 1, a: 2});
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Duplicate named argument.");
}
BOOST_AUTO_TEST_CASE(invalid_parameter_names_in_named_args)
{
char const* sourceCode = R"(
contract test {
function a(uint a, uint b) public returns (uint r) {
r = a + b;
}
function b() public returns (uint r) {
r = a({a: 1, c: 2});
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Named argument does not match function declaration.");
}
BOOST_AUTO_TEST_CASE(empty_name_input_parameter)
{
char const* text = R"(
contract test {
function f(uint) public { }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(constant_input_parameter)
{
char const* text = R"(
contract test {
function f(uint[] constant a) public { }
}
)";
CHECK_ERROR_ALLOW_MULTI(text, TypeError, (vector<string>{
"Illegal use of \"constant\" specifier",
"Constants of non-value type not yet implemented",
"Uninitialized \"constant\" variable"
}));
}
BOOST_AUTO_TEST_CASE(empty_name_return_parameter)
{
char const* text = R"(
contract test {
function f() public returns (bool) { }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(empty_name_input_parameter_with_named_one)
{
char const* text = R"(
contract test {
function f(uint, uint k) public returns (uint ret_k) {
return k;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(empty_name_return_parameter_with_named_one)
{
char const* text = R"(
contract test {
function f() public returns (uint ret_k, uint) {
return 5;
}
}
)";
CHECK_ERROR(text, TypeError, "Different number of arguments in return statement than in returns declaration.");
}
BOOST_AUTO_TEST_CASE(disallow_declaration_of_void_type)
{
char const* sourceCode = R"(
contract c {
function f() public { var (x) = f(); }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Not enough components (0) in value to assign all variables (1).");
}
BOOST_AUTO_TEST_CASE(overflow_caused_by_ether_units)
{
char const* sourceCodeFine = R"(
contract c {
function c () public {
a = 115792089237316195423570985008687907853269984665640564039458;
}
uint256 a;
}
)";
CHECK_SUCCESS(sourceCodeFine);
char const* sourceCode = R"(
contract c {
function c () public {
a = 115792089237316195423570985008687907853269984665640564039458 ether;
}
uint256 a;
}
)";
CHECK_ERROR(sourceCode, TypeError, "Type int_const 1157...(70 digits omitted)...0000 is not implicitly convertible to expected type uint256.");
}
BOOST_AUTO_TEST_CASE(exp_operator_exponent_too_big)
{
char const* sourceCode = R"(
contract test {
function f() public returns (uint d) { return 2 ** 10000000000; }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Operator ** not compatible with types int_const 2 and int_const 10000000000");
}
BOOST_AUTO_TEST_CASE(exp_warn_literal_base)
{
char const* sourceCode = R"(
contract test {
function f() pure public returns(uint) {
uint8 x = 100;
return 10**x;
}
}
)";
CHECK_WARNING(sourceCode, "might overflow");
sourceCode = R"(
contract test {
function f() pure public returns(uint) {
uint8 x = 100;
return uint8(10)**x;
}
}
)";
CHECK_SUCCESS(sourceCode);
sourceCode = R"(
contract test {
function f() pure public returns(uint) {
return 2**80;
}
}
)";
CHECK_SUCCESS(sourceCode);
}
BOOST_AUTO_TEST_CASE(shift_warn_literal_base)
{
char const* sourceCode = R"(
contract test {
function f() pure public returns(uint) {
uint8 x = 100;
return 10 << x;
}
}
)";
CHECK_WARNING(sourceCode, "might overflow");
sourceCode = R"(
contract test {
function f() pure public returns(uint) {
uint8 x = 100;
return uint8(10) << x;
}
}
)";
CHECK_SUCCESS(sourceCode);
sourceCode = R"(
contract test {
function f() pure public returns(uint) {
return 2 << 80;
}
}
)";
CHECK_SUCCESS(sourceCode);
sourceCode = R"(
contract test {
function f() pure public returns(uint) {
uint8 x = 100;
return 10 >> x;
}
}
)";
CHECK_SUCCESS(sourceCode);
}
BOOST_AUTO_TEST_CASE(warn_var_from_zero)
{
char const* sourceCode = R"(
contract test {
function f() pure public returns (uint) {
var i = 1;
return i;
}
}
)";
CHECK_WARNING_ALLOW_MULTI(sourceCode, (std::vector<std::string>{
"uint8, which can hold values between 0 and 255",
"Use of the \"var\" keyword is deprecated."
}));
sourceCode = R"(
contract test {
function f() pure public {
var i = 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
i;
}
}
)";
CHECK_WARNING_ALLOW_MULTI(sourceCode, (std::vector<std::string>{
"uint256, which can hold values between 0 and 115792089237316195423570985008687907853269984665640564039457584007913129639935",
"Use of the \"var\" keyword is deprecated."
}));
sourceCode = R"(
contract test {
function f() pure public {
var i = -2;
i;
}
}
)";
CHECK_WARNING_ALLOW_MULTI(sourceCode, (std::vector<std::string>{
"int8, which can hold values between -128 and 127",
"Use of the \"var\" keyword is deprecated."
}));
sourceCode = R"(
contract test {
function f() pure public {
for (var i = 0; i < msg.data.length; i++) { }
}
}
)";
CHECK_WARNING_ALLOW_MULTI(sourceCode, (std::vector<std::string>{
"uint8, which can hold",
"Use of the \"var\" keyword is deprecated."
}));
}
BOOST_AUTO_TEST_CASE(enum_member_access)
{
char const* text = R"(
contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
function test()
{
choices = ActionChoices.GoStraight;
}
ActionChoices choices;
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(enum_member_access_accross_contracts)
{
char const* text = R"(
contract Interface {
enum MyEnum { One, Two }
}
contract Impl {
function test() public returns (Interface.MyEnum) {
return Interface.MyEnum.One;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(enum_invalid_member_access)
{
char const* text = R"(
contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
function test() public {
choices = ActionChoices.RunAroundWavingYourHands;
}
ActionChoices choices;
}
)";
CHECK_ERROR(text, TypeError, "Member \"RunAroundWavingYourHands\" not found or not visible after argument-dependent lookup in type(enum test.ActionChoices)");
}
BOOST_AUTO_TEST_CASE(enum_invalid_direct_member_access)
{
char const* text = R"(
contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
function test() public {
choices = Sit;
}
ActionChoices choices;
}
)";
CHECK_ERROR(text, DeclarationError, "Undeclared identifier.");
}
BOOST_AUTO_TEST_CASE(enum_explicit_conversion_is_okay)
{
char const* text = R"(
contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
function test() public {
a = uint256(ActionChoices.GoStraight);
b = uint64(ActionChoices.Sit);
}
uint256 a;
uint64 b;
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(int_to_enum_explicit_conversion_is_okay)
{
char const* text = R"(
contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
function test() public {
a = 2;
b = ActionChoices(a);
}
uint256 a;
ActionChoices b;
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(enum_implicit_conversion_is_not_okay_256)
{
char const* text = R"(
contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
function test() public {
a = ActionChoices.GoStraight;
}
uint256 a;
}
)";
CHECK_ERROR(text, TypeError, "Type enum test.ActionChoices is not implicitly convertible to expected type uint256.");
}
BOOST_AUTO_TEST_CASE(enum_implicit_conversion_is_not_okay_64)
{
char const* text = R"(
contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, Sit }
function test() public {
b = ActionChoices.Sit;
}
uint64 b;
}
)";
CHECK_ERROR(text, TypeError, "Type enum test.ActionChoices is not implicitly convertible to expected type uint64.");
}
BOOST_AUTO_TEST_CASE(enum_to_enum_conversion_is_not_okay)
{
char const* text = R"(
contract test {
enum Paper { Up, Down, Left, Right }
enum Ground { North, South, West, East }
function test() public {
Ground(Paper.Up);
}
}
)";
CHECK_ERROR(text, TypeError, "Explicit type conversion not allowed from \"enum test.Paper\" to \"enum test.Ground\".");
}
BOOST_AUTO_TEST_CASE(enum_duplicate_values)
{
char const* text = R"(
contract test {
enum ActionChoices { GoLeft, GoRight, GoLeft, Sit }
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier already declared.");
}
BOOST_AUTO_TEST_CASE(enum_name_resolution_under_current_contract_name)
{
char const* text = R"(
contract A {
enum Foo {
First,
Second
}
function a() public {
A.Foo;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(private_visibility)
{
char const* sourceCode = R"(
contract base {
function f() private {}
}
contract derived is base {
function g() public { f(); }
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Undeclared identifier.");
}
BOOST_AUTO_TEST_CASE(private_visibility_via_explicit_base_access)
{
char const* sourceCode = R"(
contract base {
function f() private {}
}
contract derived is base {
function g() public { base.f(); }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Member \"f\" not found or not visible after argument-dependent lookup in type(contract base)");
}
BOOST_AUTO_TEST_CASE(external_visibility)
{
char const* sourceCode = R"(
contract c {
function f() external {}
function g() public { f(); }
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Undeclared identifier.");
}
BOOST_AUTO_TEST_CASE(similar_name_suggestions_expected)
{
char const* sourceCode = R"(
contract c {
function func() {}
function g() public { fun(); }
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Undeclared identifier. Did you mean \"func\"?");
}
BOOST_AUTO_TEST_CASE(no_name_suggestion)
{
char const* sourceCode = R"(
contract c {
function g() public { fun(); }
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Undeclared identifier.");
}
BOOST_AUTO_TEST_CASE(multiple_similar_suggestions)
{
char const* sourceCode = R"(
contract c {
function g() public {
uint var1 = 1;
uint var2 = 1;
uint var3 = 1;
uint var4 = 1;
uint var5 = varx;
}
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Undeclared identifier. Did you mean \"var1\", \"var2\", \"var3\", \"var4\" or \"var5\"?");
}
BOOST_AUTO_TEST_CASE(multiple_scopes_suggestions)
{
char const* sourceCode = R"(
contract c {
uint log9 = 2;
function g() public {
uint log8 = 3;
uint var1 = lgox;
}
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Undeclared identifier. Did you mean \"log8\", \"log9\", \"log0\", \"log1\", \"log2\", \"log3\" or \"log4\"?");
}
BOOST_AUTO_TEST_CASE(inheritence_suggestions)
{
char const* sourceCode = R"(
contract a { function func() public {} }
contract c is a {
function g() public {
uint var1 = fun();
}
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Undeclared identifier. Did you mean \"func\"?");
}
BOOST_AUTO_TEST_CASE(no_spurious_suggestions)
{
char const* sourceCode = R"(
contract c {
function g() public {
uint va = 1;
uint vb = vaxyz;
}
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Undeclared identifier.");
sourceCode = R"(
contract c {
function g() public {
uint va = 1;
uint vb = x;
}
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Undeclared identifier.");
}
BOOST_AUTO_TEST_CASE(external_base_visibility)
{
char const* sourceCode = R"(
contract base {
function f() external {}
}
contract derived is base {
function g() public { base.f(); }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Member \"f\" not found or not visible after argument-dependent lookup in type(contract base)");
}
BOOST_AUTO_TEST_CASE(external_argument_assign)
{
char const* sourceCode = R"(
contract c {
function f(uint a) external { a = 1; }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Expression has to be an lvalue.");
}
BOOST_AUTO_TEST_CASE(external_argument_increment)
{
char const* sourceCode = R"(
contract c {
function f(uint a) external { a++; }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Expression has to be an lvalue.");
}
BOOST_AUTO_TEST_CASE(external_argument_delete)
{
char const* sourceCode = R"(
contract c {
function f(uint a) external { delete a; }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Expression has to be an lvalue.");
}
BOOST_AUTO_TEST_CASE(test_for_bug_override_function_with_bytearray_type)
{
char const* sourceCode = R"(
contract Vehicle {
function f(bytes) external returns (uint256 r) {r = 1;}
}
contract Bike is Vehicle {
function f(bytes) external returns (uint256 r) {r = 42;}
}
)";
CHECK_SUCCESS(sourceCode);
}
BOOST_AUTO_TEST_CASE(array_with_nonconstant_length)
{
char const* text = R"(
contract c {
function f(uint a) public { uint8[a] x; }
}
)";
CHECK_ERROR(text, TypeError, "Invalid array length, expected integer literal or constant expression.");
}
BOOST_AUTO_TEST_CASE(array_with_negative_length)
{
char const* text = R"(
contract c {
function f(uint a) public { uint8[-1] x; }
}
)";
CHECK_ERROR(text, TypeError, "Array with negative length specified");
}
BOOST_AUTO_TEST_CASE(array_copy_with_different_types1)
{
char const* text = R"(
contract c {
bytes a;
uint[] b;
function f() public { b = a; }
}
)";
CHECK_ERROR(text, TypeError, "Type bytes storage ref is not implicitly convertible to expected type uint256[] storage ref.");
}
BOOST_AUTO_TEST_CASE(array_copy_with_different_types2)
{
char const* text = R"(
contract c {
uint32[] a;
uint8[] b;
function f() public { b = a; }
}
)";
CHECK_ERROR(text, TypeError, "Type uint32[] storage ref is not implicitly convertible to expected type uint8[] storage ref.");
}
BOOST_AUTO_TEST_CASE(array_copy_with_different_types_conversion_possible)
{
char const* text = R"(
contract c {
uint32[] a;
uint8[] b;
function f() public { a = b; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(array_copy_with_different_types_static_dynamic)
{
char const* text = R"(
contract c {
uint32[] a;
uint8[80] b;
function f() public { a = b; }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(array_copy_with_different_types_dynamic_static)
{
char const* text = R"(
contract c {
uint[] a;
uint[80] b;
function f() public { b = a; }
}
)";
CHECK_ERROR(text, TypeError, "Type uint256[] storage ref is not implicitly convertible to expected type uint256[80] storage ref.");
}
BOOST_AUTO_TEST_CASE(array_of_undeclared_type)
{
char const* text = R"(
contract c {
a[] public foo;
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier not found or not unique.");
}
BOOST_AUTO_TEST_CASE(storage_variable_initialization_with_incorrect_type_int)
{
char const* text = R"(
contract c {
uint8 a = 1000;
}
)";
CHECK_ERROR(text, TypeError, "Type int_const 1000 is not implicitly convertible to expected type uint8.");
}
BOOST_AUTO_TEST_CASE(storage_variable_initialization_with_incorrect_type_string)
{
char const* text = R"(
contract c {
uint a = "abc";
}
)";
CHECK_ERROR(text, TypeError, "Type literal_string \"abc\" is not implicitly convertible to expected type uint256.");
}
BOOST_AUTO_TEST_CASE(test_fromElementaryTypeName)
{
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::Int, 0, 0)) == *make_shared<IntegerType>(256, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 8, 0)) == *make_shared<IntegerType>(8, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 16, 0)) == *make_shared<IntegerType>(16, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 24, 0)) == *make_shared<IntegerType>(24, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 32, 0)) == *make_shared<IntegerType>(32, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 40, 0)) == *make_shared<IntegerType>(40, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 48, 0)) == *make_shared<IntegerType>(48, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 56, 0)) == *make_shared<IntegerType>(56, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 64, 0)) == *make_shared<IntegerType>(64, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 72, 0)) == *make_shared<IntegerType>(72, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 80, 0)) == *make_shared<IntegerType>(80, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 88, 0)) == *make_shared<IntegerType>(88, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 96, 0)) == *make_shared<IntegerType>(96, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 104, 0)) == *make_shared<IntegerType>(104, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 112, 0)) == *make_shared<IntegerType>(112, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 120, 0)) == *make_shared<IntegerType>(120, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 128, 0)) == *make_shared<IntegerType>(128, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 136, 0)) == *make_shared<IntegerType>(136, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 144, 0)) == *make_shared<IntegerType>(144, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 152, 0)) == *make_shared<IntegerType>(152, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 160, 0)) == *make_shared<IntegerType>(160, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 168, 0)) == *make_shared<IntegerType>(168, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 176, 0)) == *make_shared<IntegerType>(176, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 184, 0)) == *make_shared<IntegerType>(184, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 192, 0)) == *make_shared<IntegerType>(192, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 200, 0)) == *make_shared<IntegerType>(200, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 208, 0)) == *make_shared<IntegerType>(208, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 216, 0)) == *make_shared<IntegerType>(216, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 224, 0)) == *make_shared<IntegerType>(224, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 232, 0)) == *make_shared<IntegerType>(232, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 240, 0)) == *make_shared<IntegerType>(240, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 248, 0)) == *make_shared<IntegerType>(248, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::IntM, 256, 0)) == *make_shared<IntegerType>(256, IntegerType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UInt, 0, 0)) == *make_shared<IntegerType>(256, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 8, 0)) == *make_shared<IntegerType>(8, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 16, 0)) == *make_shared<IntegerType>(16, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 24, 0)) == *make_shared<IntegerType>(24, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 32, 0)) == *make_shared<IntegerType>(32, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 40, 0)) == *make_shared<IntegerType>(40, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 48, 0)) == *make_shared<IntegerType>(48, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 56, 0)) == *make_shared<IntegerType>(56, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 64, 0)) == *make_shared<IntegerType>(64, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 72, 0)) == *make_shared<IntegerType>(72, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 80, 0)) == *make_shared<IntegerType>(80, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 88, 0)) == *make_shared<IntegerType>(88, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 96, 0)) == *make_shared<IntegerType>(96, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 104, 0)) == *make_shared<IntegerType>(104, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 112, 0)) == *make_shared<IntegerType>(112, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 120, 0)) == *make_shared<IntegerType>(120, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 128, 0)) == *make_shared<IntegerType>(128, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 136, 0)) == *make_shared<IntegerType>(136, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 144, 0)) == *make_shared<IntegerType>(144, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 152, 0)) == *make_shared<IntegerType>(152, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 160, 0)) == *make_shared<IntegerType>(160, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 168, 0)) == *make_shared<IntegerType>(168, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 176, 0)) == *make_shared<IntegerType>(176, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 184, 0)) == *make_shared<IntegerType>(184, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 192, 0)) == *make_shared<IntegerType>(192, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 200, 0)) == *make_shared<IntegerType>(200, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 208, 0)) == *make_shared<IntegerType>(208, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 216, 0)) == *make_shared<IntegerType>(216, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 224, 0)) == *make_shared<IntegerType>(224, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 232, 0)) == *make_shared<IntegerType>(232, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 240, 0)) == *make_shared<IntegerType>(240, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 248, 0)) == *make_shared<IntegerType>(248, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UIntM, 256, 0)) == *make_shared<IntegerType>(256, IntegerType::Modifier::Unsigned));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::Byte, 0, 0)) == *make_shared<FixedBytesType>(1));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 1, 0)) == *make_shared<FixedBytesType>(1));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 2, 0)) == *make_shared<FixedBytesType>(2));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 3, 0)) == *make_shared<FixedBytesType>(3));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 4, 0)) == *make_shared<FixedBytesType>(4));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 5, 0)) == *make_shared<FixedBytesType>(5));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 6, 0)) == *make_shared<FixedBytesType>(6));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 7, 0)) == *make_shared<FixedBytesType>(7));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 8, 0)) == *make_shared<FixedBytesType>(8));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 9, 0)) == *make_shared<FixedBytesType>(9));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 10, 0)) == *make_shared<FixedBytesType>(10));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 11, 0)) == *make_shared<FixedBytesType>(11));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 12, 0)) == *make_shared<FixedBytesType>(12));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 13, 0)) == *make_shared<FixedBytesType>(13));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 14, 0)) == *make_shared<FixedBytesType>(14));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 15, 0)) == *make_shared<FixedBytesType>(15));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 16, 0)) == *make_shared<FixedBytesType>(16));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 17, 0)) == *make_shared<FixedBytesType>(17));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 18, 0)) == *make_shared<FixedBytesType>(18));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 19, 0)) == *make_shared<FixedBytesType>(19));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 20, 0)) == *make_shared<FixedBytesType>(20));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 21, 0)) == *make_shared<FixedBytesType>(21));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 22, 0)) == *make_shared<FixedBytesType>(22));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 23, 0)) == *make_shared<FixedBytesType>(23));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 24, 0)) == *make_shared<FixedBytesType>(24));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 25, 0)) == *make_shared<FixedBytesType>(25));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 26, 0)) == *make_shared<FixedBytesType>(26));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 27, 0)) == *make_shared<FixedBytesType>(27));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 28, 0)) == *make_shared<FixedBytesType>(28));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 29, 0)) == *make_shared<FixedBytesType>(29));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 30, 0)) == *make_shared<FixedBytesType>(30));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 31, 0)) == *make_shared<FixedBytesType>(31));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::BytesM, 32, 0)) == *make_shared<FixedBytesType>(32));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::Fixed, 0, 0)) == *make_shared<FixedPointType>(128, 18, FixedPointType::Modifier::Signed));
BOOST_CHECK(*Type::fromElementaryTypeName(ElementaryTypeNameToken(Token::UFixed, 0, 0)) == *make_shared<FixedPointType>(128, 18, FixedPointType::Modifier::Unsigned));
}
BOOST_AUTO_TEST_CASE(test_byte_is_alias_of_byte1)
{
char const* text = R"(
contract c {
bytes arr;
function f() public { byte a = arr[0];}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(warns_assigning_decimal_to_bytesxx)
{
char const* text = R"(
contract Foo {
bytes32 a = 7;
}
)";
CHECK_WARNING(text, "Decimal literal assigned to bytesXX variable will be left-aligned.");
}
BOOST_AUTO_TEST_CASE(does_not_warn_assigning_hex_number_to_bytesxx)
{
char const* text = R"(
contract Foo {
bytes32 a = 0x1234;
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(explicit_conversion_from_decimal_to_bytesxx)
{
char const* text = R"(
contract Foo {
bytes32 a = bytes32(7);
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(combining_hex_and_denomination)
{
char const* text = R"(
contract Foo {
uint constant x = 0x01 wei;
}
)";
CHECK_WARNING(text, "Hexadecimal numbers with unit denominations are deprecated.");
char const* textV050 = R"(
pragma experimental "v0.5.0";
contract Foo {
uint constant x = 0x01 wei;
}
)";
CHECK_ERROR(textV050, TypeError, "Hexadecimal numbers cannot be used with unit denominations.");
}
BOOST_AUTO_TEST_CASE(assigning_value_to_const_variable)
{
char const* text = R"(
contract Foo {
function changeIt() public { x = 9; }
uint constant x = 56;
}
)";
CHECK_ERROR(text, TypeError, "Cannot assign to a constant variable.");
}
BOOST_AUTO_TEST_CASE(assigning_state_to_const_variable_0_4_x)
{
char const* text = R"(
contract C {
address constant x = msg.sender;
}
)";
CHECK_WARNING(text, "Initial value for constant variable has to be compile-time constant.");
}
BOOST_AUTO_TEST_CASE(assigning_state_to_const_variable)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
address constant x = msg.sender;
}
)";
CHECK_ERROR(text, TypeError, "Initial value for constant variable has to be compile-time constant.");
}
BOOST_AUTO_TEST_CASE(constant_string_literal_disallows_assignment)
{
char const* text = R"(
contract Test {
string constant x = "abefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabca";
function f() public {
x[0] = "f";
}
}
)";
// Even if this is made possible in the future, we should not allow assignment
// to elements of constant arrays.
CHECK_ERROR(text, TypeError, "Index access for string is not possible.");
}
BOOST_AUTO_TEST_CASE(assign_constant_function_value_to_constant_0_4_x)
{
char const* text = R"(
contract C {
function () constant returns (uint) x;
uint constant y = x();
}
)";
CHECK_WARNING(text, "Initial value for constant variable has to be compile-time constant.");
}
BOOST_AUTO_TEST_CASE(assign_constant_function_value_to_constant)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function () constant returns (uint) x;
uint constant y = x();
}
)";
CHECK_ERROR(text, TypeError, "Initial value for constant variable has to be compile-time constant.");
}
BOOST_AUTO_TEST_CASE(assignment_to_const_var_involving_conversion)
{
char const* text = R"(
contract C {
C constant x = C(0x123);
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(assignment_to_const_var_involving_expression)
{
char const* text = R"(
contract C {
uint constant x = 0x123 + 0x456;
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(assignment_to_const_var_involving_keccak)
{
char const* text = R"(
contract C {
bytes32 constant x = keccak256("abc");
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(assignment_to_const_array_vars)
{
char const* text = R"(
contract C {
uint[3] constant x = [uint(1), 2, 3];
}
)";
CHECK_ERROR(text, TypeError, "implemented");
}
BOOST_AUTO_TEST_CASE(assignment_to_const_string_bytes)
{
char const* text = R"(
contract C {
bytes constant a = "\x00\x01\x02";
bytes constant b = hex"000102";
string constant c = "hello";
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(constant_struct)
{
char const* text = R"(
contract C {
struct S { uint x; uint[] y; }
S constant x = S(5, new uint[](4));
}
)";
CHECK_ERROR(text, TypeError, "implemented");
}
BOOST_AUTO_TEST_CASE(address_is_constant)
{
char const* text = R"(
contract C {
address constant x = 0x1212121212121212121212121212121212121212;
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(uninitialized_const_variable)
{
char const* text = R"(
contract Foo {
uint constant y;
}
)";
CHECK_ERROR(text, TypeError, "Uninitialized \"constant\" variable.");
}
BOOST_AUTO_TEST_CASE(overloaded_function_cannot_resolve)
{
char const* sourceCode = R"(
contract test {
function f() public returns (uint) { return 1; }
function f(uint a) public returns (uint) { return a; }
function g() public returns (uint) { return f(3, 5); }
}
)";
CHECK_ERROR(sourceCode, TypeError, "No matching declaration found after argument-dependent lookup.");
}
BOOST_AUTO_TEST_CASE(ambiguous_overloaded_function)
{
// literal 1 can be both converted to uint and uint8, so the call is ambiguous.
char const* sourceCode = R"(
contract test {
function f(uint8 a) public returns (uint) { return a; }
function f(uint a) public returns (uint) { return 2*a; }
function g() public returns (uint) { return f(1); }
}
)";
CHECK_ERROR(sourceCode, TypeError, "No unique declaration found after argument-dependent lookup.");
}
BOOST_AUTO_TEST_CASE(assignment_of_nonoverloaded_function)
{
char const* sourceCode = R"(
contract test {
function f(uint a) public returns (uint) { return 2 * a; }
function g() public returns (uint) { var x = f; return x(7); }
}
)";
CHECK_SUCCESS(sourceCode);
}
BOOST_AUTO_TEST_CASE(assignment_of_overloaded_function)
{
char const* sourceCode = R"(
contract test {
function f() public returns (uint) { return 1; }
function f(uint a) public returns (uint) { return 2 * a; }
function g() public returns (uint) { var x = f; return x(7); }
}
)";
CHECK_ERROR(sourceCode, TypeError, "No matching declaration found after variable lookup.");
}
BOOST_AUTO_TEST_CASE(external_types_clash)
{
char const* sourceCode = R"(
contract base {
enum a { X }
function f(a) public { }
}
contract test is base {
function f(uint8 a) public { }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Function overload clash during conversion to external types for arguments.");
}
BOOST_AUTO_TEST_CASE(override_changes_return_types)
{
char const* sourceCode = R"(
contract base {
function f(uint a) public returns (uint) { }
}
contract test is base {
function f(uint a) public returns (uint8) { }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Overriding function return types differ");
}
BOOST_AUTO_TEST_CASE(multiple_constructors)
{
char const* sourceCode = R"(
contract test {
function test(uint a) public { }
function test() public {}
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "More than one constructor defined");
}
BOOST_AUTO_TEST_CASE(equal_overload)
{
char const* sourceCode = R"(
contract C {
function test(uint a) public returns (uint b) { }
function test(uint a) external {}
}
)";
CHECK_ALLOW_MULTI(sourceCode, (vector<pair<Error::Type, string>>{
{Error::Type::DeclarationError, "Function with same name and arguments defined twice."},
{Error::Type::TypeError, "Overriding function visibility differs"}
}));
}
BOOST_AUTO_TEST_CASE(uninitialized_var)
{
char const* sourceCode = R"(
contract C {
function f() public returns (uint) { var x; return 2; }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Assignment necessary for type detection.");
}
BOOST_AUTO_TEST_CASE(string)
{
char const* sourceCode = R"(
contract C {
string s;
function f(string x) external { s = x; }
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(sourceCode));
}
BOOST_AUTO_TEST_CASE(invalid_utf8_implicit)
{
char const* sourceCode = R"(
contract C {
string s = "\xa0\x00";
}
)";
CHECK_ERROR(sourceCode, TypeError, "invalid UTF-8");
}
BOOST_AUTO_TEST_CASE(invalid_utf8_explicit)
{
char const* sourceCode = R"(
contract C {
string s = string("\xa0\x00");
}
)";
CHECK_ERROR(sourceCode, TypeError, "Explicit type conversion not allowed");
}
BOOST_AUTO_TEST_CASE(large_utf8_codepoint)
{
char const* sourceCode = R"(
contract C {
string s = "\xf0\x9f\xa6\x84";
}
)";
CHECK_SUCCESS(sourceCode);
}
BOOST_AUTO_TEST_CASE(string_index)
{
char const* sourceCode = R"(
contract C {
string s;
function f() public { var a = s[2]; }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Index access for string is not possible.");
}
BOOST_AUTO_TEST_CASE(string_length)
{
char const* sourceCode = R"(
contract C {
string s;
function f() public { var a = s.length; }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Member \"length\" not found or not visible after argument-dependent lookup in string storage ref");
}
BOOST_AUTO_TEST_CASE(negative_integers_to_signed_out_of_bound)
{
char const* sourceCode = R"(
contract test {
int8 public i = -129;
}
)";
CHECK_ERROR(sourceCode, TypeError, "Type int_const -129 is not implicitly convertible to expected type int8.");
}
BOOST_AUTO_TEST_CASE(negative_integers_to_signed_min)
{
char const* sourceCode = R"(
contract test {
int8 public i = -128;
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(sourceCode));
}
BOOST_AUTO_TEST_CASE(positive_integers_to_signed_out_of_bound)
{
char const* sourceCode = R"(
contract test {
int8 public j = 128;
}
)";
CHECK_ERROR(sourceCode, TypeError, "Type int_const 128 is not implicitly convertible to expected type int8.");
}
BOOST_AUTO_TEST_CASE(positive_integers_to_signed_out_of_bound_max)
{
char const* sourceCode = R"(
contract test {
int8 public j = 127;
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(sourceCode));
}
BOOST_AUTO_TEST_CASE(negative_integers_to_unsigned)
{
char const* sourceCode = R"(
contract test {
uint8 public x = -1;
}
)";
CHECK_ERROR(sourceCode, TypeError, "Type int_const -1 is not implicitly convertible to expected type uint8.");
}
BOOST_AUTO_TEST_CASE(positive_integers_to_unsigned_out_of_bound)
{
char const* sourceCode = R"(
contract test {
uint8 public x = 700;
}
)";
CHECK_ERROR(sourceCode, TypeError, "Type int_const 700 is not implicitly convertible to expected type uint8.");
}
BOOST_AUTO_TEST_CASE(integer_boolean_operators)
{
char const* sourceCode1 = R"(
contract test { function() public { uint x = 1; uint y = 2; x || y; } }
)";
CHECK_ERROR(sourceCode1, TypeError, "Operator || not compatible with types uint256 and uint256");
char const* sourceCode2 = R"(
contract test { function() public { uint x = 1; uint y = 2; x && y; } }
)";
CHECK_ERROR(sourceCode2, TypeError, "Operator && not compatible with types uint256 and uint256");
char const* sourceCode3 = R"(
contract test { function() public { uint x = 1; !x; } }
)";
CHECK_ERROR(sourceCode3, TypeError, "Unary operator ! cannot be applied to type uint256");
}
BOOST_AUTO_TEST_CASE(exp_signed_variable)
{
char const* sourceCode1 = R"(
contract test { function() public { uint x = 3; int y = -4; x ** y; } }
)";
CHECK_ERROR(sourceCode1, TypeError, "Operator ** not compatible with types uint256 and int256");
char const* sourceCode2 = R"(
contract test { function() public { uint x = 3; int y = -4; y ** x; } }
)";
CHECK_ERROR(sourceCode2, TypeError, "Operator ** not compatible with types int256 and uint256");
char const* sourceCode3 = R"(
contract test { function() public { int x = -3; int y = -4; x ** y; } }
)";
CHECK_ERROR(sourceCode3, TypeError, "Operator ** not compatible with types int256 and int256");
}
BOOST_AUTO_TEST_CASE(reference_compare_operators)
{
char const* sourceCode1 = R"(
contract test { bytes a; bytes b; function() public { a == b; } }
)";
CHECK_ERROR(sourceCode1, TypeError, "Operator == not compatible with types bytes storage ref and bytes storage ref");
char const* sourceCode2 = R"(
contract test { struct s {uint a;} s x; s y; function() public { x == y; } }
)";
CHECK_ERROR(sourceCode2, TypeError, "Operator == not compatible with types struct test.s storage ref and struct test.s storage ref");
}
BOOST_AUTO_TEST_CASE(overwrite_memory_location_external)
{
char const* sourceCode = R"(
contract C {
function f(uint[] memory a) external {}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Location has to be calldata for external functions (remove the \"memory\" or \"storage\" keyword).");
}
BOOST_AUTO_TEST_CASE(overwrite_storage_location_external)
{
char const* sourceCode = R"(
contract C {
function f(uint[] storage a) external {}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Location has to be calldata for external functions (remove the \"memory\" or \"storage\" keyword).");
}
BOOST_AUTO_TEST_CASE(storage_location_local_variables)
{
char const* sourceCode = R"(
contract C {
function f() public {
uint[] storage x;
uint[] memory y;
uint[] memory z;
x;y;z;
}
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(sourceCode));
}
BOOST_AUTO_TEST_CASE(no_mappings_in_memory_array)
{
char const* sourceCode = R"(
contract C {
function f() public {
mapping(uint=>uint)[] memory x;
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Type mapping(uint256 => uint256)[] memory is only valid in storage.");
}
BOOST_AUTO_TEST_CASE(assignment_mem_to_local_storage_variable)
{
char const* sourceCode = R"(
contract C {
uint[] data;
function f(uint[] x) public {
var dataRef = data;
dataRef = x;
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Type uint256[] memory is not implicitly convertible to expected type uint256[] storage pointer.");
}
BOOST_AUTO_TEST_CASE(storage_assign_to_different_local_variable)
{
char const* sourceCode = R"(
contract C {
uint[] data;
uint8[] otherData;
function f() public {
uint8[] storage x = otherData;
uint[] storage y = data;
y = x;
// note that data = otherData works
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Type uint8[] storage pointer is not implicitly convertible to expected type uint256[] storage pointer.");
}
BOOST_AUTO_TEST_CASE(uninitialized_mapping_variable)
{
char const* sourceCode = R"(
contract C {
function f() public {
mapping(uint => uint) x;
x;
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Uninitialized mapping. Mappings cannot be created dynamically, you have to assign them from a state variable");
}
BOOST_AUTO_TEST_CASE(uninitialized_mapping_array_variable)
{
char const* sourceCode = R"(
contract C {
function f() pure public {
mapping(uint => uint)[] storage x;
x;
}
}
)";
CHECK_WARNING(sourceCode, "Uninitialized storage pointer");
}
BOOST_AUTO_TEST_CASE(uninitialized_mapping_array_variable_050)
{
char const* sourceCode = R"(
pragma experimental "v0.5.0";
contract C {
function f() pure public {
mapping(uint => uint)[] storage x;
x;
}
}
)";
CHECK_ERROR(sourceCode, DeclarationError, "Uninitialized storage pointer");
}
BOOST_AUTO_TEST_CASE(no_delete_on_storage_pointers)
{
char const* sourceCode = R"(
contract C {
uint[] data;
function f() public {
var x = data;
delete x;
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Unary operator delete cannot be applied to type uint256[] storage pointer");
}
BOOST_AUTO_TEST_CASE(assignment_mem_storage_variable_directly)
{
char const* sourceCode = R"(
contract C {
uint[] data;
function f(uint[] x) public {
data = x;
}
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(sourceCode));
}
BOOST_AUTO_TEST_CASE(function_argument_mem_to_storage)
{
char const* sourceCode = R"(
contract C {
function f(uint[] storage x) private {
}
function g(uint[] x) public {
f(x);
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Invalid type for argument in function call. Invalid implicit conversion from uint256[] memory to uint256[] storage pointer requested.");
}
BOOST_AUTO_TEST_CASE(function_argument_storage_to_mem)
{
char const* sourceCode = R"(
contract C {
function f(uint[] storage x) private {
g(x);
}
function g(uint[] x) public {
}
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(sourceCode));
}
BOOST_AUTO_TEST_CASE(mem_array_assignment_changes_base_type)
{
// Such an assignment is possible in storage, but not in memory
// (because it would incur an otherwise unnecessary copy).
// This requirement might be lifted, though.
char const* sourceCode = R"(
contract C {
function f(uint8[] memory x) private {
uint[] memory y = x;
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Type uint8[] memory is not implicitly convertible to expected type uint256[] memory.");
}
BOOST_AUTO_TEST_CASE(dynamic_return_types_not_possible)
{
char const* sourceCode = R"(
contract C {
function f(uint) public returns (string);
function g() public {
var (x,) = this.f(2);
// we can assign to x but it is not usable.
bytes(x).length;
}
}
)";
if (dev::test::Options::get().evmVersion() == EVMVersion::homestead())
CHECK_ERROR(sourceCode, TypeError, "Explicit type conversion not allowed from \"inaccessible dynamic type\" to \"bytes storage pointer\".");
else
CHECK_WARNING(sourceCode, "Use of the \"var\" keyword is deprecated");
}
BOOST_AUTO_TEST_CASE(memory_arrays_not_resizeable)
{
char const* sourceCode = R"(
contract C {
function f() public {
uint[] memory x;
x.length = 2;
}
}
)";
CHECK_ERROR(sourceCode, TypeError, "Expression has to be an lvalue.");
}
BOOST_AUTO_TEST_CASE(struct_constructor)
{
char const* sourceCode = R"(
contract C {
struct S { uint a; bool x; }
function f() public {
S memory s = S(1, true);
}
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(sourceCode));
}
BOOST_AUTO_TEST_CASE(struct_constructor_nested)
{
char const* sourceCode = R"(
contract C {
struct X { uint x1; uint x2; }
struct S { uint s1; uint[3] s2; X s3; }
function f() public {
uint[3] memory s2;
S memory s = S(1, s2, X(4, 5));
}
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(sourceCode));
}
BOOST_AUTO_TEST_CASE(struct_named_constructor)
{
char const* sourceCode = R"(
contract C {
struct S { uint a; bool x; }
function f() public {
S memory s = S({a: 1, x: true});
}
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(sourceCode));
}
BOOST_AUTO_TEST_CASE(literal_strings)
{
char const* text = R"(
contract Foo {
function f() public {
string memory long = "01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890";
string memory short = "123";
long; short;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(memory_structs_with_mappings)
{
char const* text = R"(
contract Test {
struct S { uint8 a; mapping(uint => uint) b; uint8 c; }
S s;
function f() public {
S memory x;
x.b[1];
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"b\" is not available in struct Test.S memory outside of storage.");
}
BOOST_AUTO_TEST_CASE(string_bytes_conversion)
{
char const* text = R"(
contract Test {
string s;
bytes b;
function h(string _s) external { bytes(_s).length; }
function i(string _s) internal { bytes(_s).length; }
function j() internal { bytes(s).length; }
function k(bytes _b) external { string(_b); }
function l(bytes _b) internal { string(_b); }
function m() internal { string(b); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inheriting_from_library)
{
char const* text = R"(
library Lib {}
contract Test is Lib {}
)";
CHECK_ERROR(text, TypeError, "Libraries cannot be inherited from.");
}
BOOST_AUTO_TEST_CASE(inheriting_library)
{
char const* text = R"(
contract Test {}
library Lib is Test {}
)";
CHECK_ERROR(text, TypeError, "Library is not allowed to inherit.");
}
BOOST_AUTO_TEST_CASE(library_having_variables)
{
char const* text = R"(
library Lib { uint x; }
)";
CHECK_ERROR(text, TypeError, "Library cannot have non-constant state variables");
}
BOOST_AUTO_TEST_CASE(library_constructor)
{
char const* text = R"(
library Lib {
function Lib();
}
)";
CHECK_ERROR_ALLOW_MULTI(text, TypeError, (vector<std::string>{
"Constructor cannot be defined in libraries.",
"Constructor must be implemented if declared."
}));
}
BOOST_AUTO_TEST_CASE(valid_library)
{
char const* text = R"(
library Lib { uint constant x = 9; }
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(call_to_library_function)
{
char const* text = R"(
library Lib {
function min(uint, uint) public returns (uint);
}
contract Test {
function f() public {
uint t = Lib.min(12, 7);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(creating_contract_within_the_contract)
{
char const* sourceCode = R"(
contract Test {
function f() public { var x = new Test(); }
}
)";
CHECK_ERROR(sourceCode, TypeError, "Circular reference for contract creation (cannot create instance of derived or same contract).");
}
BOOST_AUTO_TEST_CASE(array_out_of_bound_access)
{
char const* text = R"(
contract c {
uint[2] dataArray;
function set5th() public returns (bool) {
dataArray[5] = 2;
return true;
}
}
)";
CHECK_ERROR(text, TypeError, "Out of bounds array access.");
}
BOOST_AUTO_TEST_CASE(literal_string_to_storage_pointer)
{
char const* text = R"(
contract C {
function f() public { string x = "abc"; }
}
)";
CHECK_ERROR(text, TypeError, "Type literal_string \"abc\" is not implicitly convertible to expected type string storage pointer.");
}
BOOST_AUTO_TEST_CASE(non_initialized_references)
{
char const* text = R"(
contract c
{
struct s {
uint a;
}
function f() public {
s storage x;
x.a = 2;
}
}
)";
CHECK_WARNING(text, "Uninitialized storage pointer");
}
BOOST_AUTO_TEST_CASE(non_initialized_references_050)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract c
{
struct s {
uint a;
}
function f() public {
s storage x;
}
}
)";
CHECK_ERROR(text, DeclarationError, "Uninitialized storage pointer");
}
BOOST_AUTO_TEST_CASE(keccak256_with_large_integer_constant)
{
char const* text = R"(
contract c
{
function f() public { keccak256(2**500); }
}
)";
CHECK_ERROR(text, TypeError, "Invalid rational number (too large or division by zero).");
}
BOOST_AUTO_TEST_CASE(cyclic_binary_dependency)
{
char const* text = R"(
contract A { function f() public { new B(); } }
contract B { function f() public { new C(); } }
contract C { function f() public { new A(); } }
)";
CHECK_ERROR(text, TypeError, "Circular reference for contract creation (cannot create instance of derived or same contract).");
}
BOOST_AUTO_TEST_CASE(cyclic_binary_dependency_via_inheritance)
{
char const* text = R"(
contract A is B { }
contract B { function f() public { new C(); } }
contract C { function f() public { new A(); } }
)";
CHECK_ERROR(text, TypeError, "Definition of base has to precede definition of derived contract");
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_fail)
{
char const* text = R"(
contract C { function f() public { var (x,y); x = 1; y = 1;} }
)";
CHECK_ERROR(text, TypeError, "Assignment necessary for type detection.");
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fine)
{
char const* text = R"(
contract C {
function three() public returns (uint, uint, uint);
function two() public returns (uint, uint);
function none();
function f() public {
var (a,) = three();
var (b,c,) = two();
var (,d) = three();
var (,e,g) = two();
var (,,) = three();
var () = none();
a;b;c;d;e;g;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_1)
{
char const* text = R"(
contract C {
function one() public returns (uint);
function f() public { var (a, b, ) = one(); }
}
)";
CHECK_ERROR(text, TypeError, "Not enough components (1) in value to assign all variables (2).");
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_2)
{
char const* text = R"(
contract C {
function one() public returns (uint);
function f() public { var (a, , ) = one(); }
}
)";
CHECK_ERROR(text, TypeError, "Not enough components (1) in value to assign all variables (2).");
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_3)
{
char const* text = R"(
contract C {
function one() public returns (uint);
function f() public { var (, , a) = one(); }
}
)";
CHECK_ERROR(text, TypeError, "Not enough components (1) in value to assign all variables (2).");
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_4)
{
char const* text = R"(
contract C {
function one() public returns (uint);
function f() public { var (, a, b) = one(); }
}
)";
CHECK_ERROR(text, TypeError, "Not enough components (1) in value to assign all variables (2).");
}
BOOST_AUTO_TEST_CASE(tuples)
{
char const* text = R"(
contract C {
function f() public {
uint a = (1);
var (b,) = (uint8(1),);
var (c,d) = (uint32(1), 2 + a);
var (e,) = (uint64(1), 2, b);
a;b;c;d;e;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(tuples_empty_components)
{
char const* text = R"(
contract C {
function f() public {
(1,,2);
}
}
)";
CHECK_ERROR(text, TypeError, "Tuple component cannot be empty.");
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_5)
{
char const* text = R"(
contract C {
function one() public returns (uint);
function f() public { var (,) = one(); }
}
)";
CHECK_ERROR(text, TypeError, "Wildcard both at beginning and end of variable declaration list is only allowed if the number of components is equal.");
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_6)
{
char const* text = R"(
contract C {
function two() public returns (uint, uint);
function f() public { var (a, b, c) = two(); }
}
)";
CHECK_ERROR(text, TypeError, "Not enough components (2) in value to assign all variables (3)");
}
BOOST_AUTO_TEST_CASE(tuple_assignment_from_void_function)
{
char const* text = R"(
contract C {
function f() public { }
function g() public {
var (x,) = (f(), f());
}
}
)";
CHECK_ERROR(text, TypeError, "Cannot declare variable with void (empty tuple) type.");
}
BOOST_AUTO_TEST_CASE(tuple_compound_assignment)
{
char const* text = R"(
contract C {
function f() public returns (uint a, uint b) {
(a, b) += (1, 1);
}
}
)";
CHECK_ERROR(text, TypeError, "Compound assignment is not allowed for tuple types.");
}
BOOST_AUTO_TEST_CASE(member_access_parser_ambiguity)
{
char const* text = R"(
contract C {
struct R { uint[10][10] y; }
struct S { uint a; uint b; uint[20][20][20] c; R d; }
S data;
function f() public {
C.S x = data;
C.S memory y;
C.S[10] memory z;
C.S[10];
y.a = 2;
x.c[1][2][3] = 9;
x.d.y[2][2] = 3;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(using_for_library)
{
char const* text = R"(
library D { }
contract C {
using D for uint;
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(using_for_not_library)
{
char const* text = R"(
contract D { }
contract C {
using D for uint;
}
)";
CHECK_ERROR(text, TypeError, "Library name expected.");
}
BOOST_AUTO_TEST_CASE(using_for_function_exists)
{
char const* text = R"(
library D { function double(uint self) public returns (uint) { return 2*self; } }
contract C {
using D for uint;
function f(uint a) public {
a.double;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(using_for_function_on_int)
{
char const* text = R"(
library D { function double(uint self) public returns (uint) { return 2*self; } }
contract C {
using D for uint;
function f(uint a) public returns (uint) {
return a.double();
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(using_for_function_on_struct)
{
char const* text = R"(
library D { struct s { uint a; } function mul(s storage self, uint x) public returns (uint) { return self.a *= x; } }
contract C {
using D for D.s;
D.s x;
function f(uint a) public returns (uint) {
return x.mul(a);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(using_for_overload)
{
char const* text = R"(
library D {
struct s { uint a; }
function mul(s storage self, uint x) public returns (uint) { return self.a *= x; }
function mul(s storage, bytes32) public returns (bytes32) { }
}
contract C {
using D for D.s;
D.s x;
function f(uint a) public returns (uint) {
return x.mul(a);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(using_for_by_name)
{
char const* text = R"(
library D { struct s { uint a; } function mul(s storage self, uint x) public returns (uint) { return self.a *= x; } }
contract C {
using D for D.s;
D.s x;
function f(uint a) public returns (uint) {
return x.mul({x: a});
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(using_for_mismatch)
{
char const* text = R"(
library D { function double(bytes32 self) public returns (uint) { return 2; } }
contract C {
using D for uint;
function f(uint a) public returns (uint) {
return a.double();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"double\" not found or not visible after argument-dependent lookup in uint256");
}
BOOST_AUTO_TEST_CASE(using_for_not_used)
{
// This is an error because the function is only bound to uint.
// Had it been bound to *, it would have worked.
char const* text = R"(
library D { function double(uint self) public returns (uint) { return 2; } }
contract C {
using D for uint;
function f(uint16 a) public returns (uint) {
return a.double();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"double\" not found or not visible after argument-dependent lookup in uint16");
}
BOOST_AUTO_TEST_CASE(library_memory_struct)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
library c {
struct S { uint x; }
function f() public returns (S ) {}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(using_for_arbitrary_mismatch)
{
// Bound to a, but self type does not match.
char const* text = R"(
library D { function double(bytes32 self) public returns (uint) { return 2; } }
contract C {
using D for *;
function f(uint a) public returns (uint) {
return a.double();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"double\" not found or not visible after argument-dependent lookup in uint256");
}
BOOST_AUTO_TEST_CASE(bound_function_in_var)
{
char const* text = R"(
library D { struct s { uint a; } function mul(s storage self, uint x) public returns (uint) { return self.a *= x; } }
contract C {
using D for D.s;
D.s x;
function f(uint a) public returns (uint) {
var g = x.mul;
return g({x: a});
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(create_memory_arrays)
{
char const* text = R"(
library L {
struct R { uint[10][10] y; }
struct S { uint a; uint b; uint[20][20][20] c; R d; }
}
contract C {
function f(uint size) public {
L.S[][] memory x = new L.S[][](10);
var y = new uint[](20);
var z = new bytes(size);
x;y;z;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(mapping_in_memory_array)
{
char const* text = R"(
contract C {
function f(uint size) public {
var x = new mapping(uint => uint)[](4);
}
}
)";
CHECK_ERROR(text, TypeError, "Type cannot live outside storage.");
}
BOOST_AUTO_TEST_CASE(new_for_non_array)
{
char const* text = R"(
contract C {
function f(uint size) public {
var x = new uint(7);
}
}
)";
CHECK_ERROR(text, TypeError, "Contract or array type expected.");
}
BOOST_AUTO_TEST_CASE(invalid_args_creating_memory_array)
{
char const* text = R"(
contract C {
function f(uint size) public {
var x = new uint[]();
}
}
)";
CHECK_ERROR(text, TypeError, "Wrong argument count for function call: 0 arguments given but expected 1.");
}
BOOST_AUTO_TEST_CASE(invalid_args_creating_struct)
{
char const* text = R"(
contract C {
struct S { uint a; uint b; }
function f() public {
var s = S({a: 1});
}
}
)";
CHECK_ERROR(text, TypeError, "Wrong argument count for struct constructor: 1 arguments given but expected 2.");
}
BOOST_AUTO_TEST_CASE(function_overload_array_type)
{
char const* text = R"(
contract M {
function f(uint[]);
function f(int[]);
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_array_declaration_and_passing_implicit_conversion)
{
char const* text = R"(
contract C {
function f() public returns (uint) {
uint8 x = 7;
uint16 y = 8;
uint32 z = 9;
uint32[3] memory ending = [x, y, z];
return (ending[1]);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_array_declaration_and_passing_implicit_conversion_strings)
{
char const* text = R"(
contract C {
function f() public returns (string) {
string memory x = "Hello";
string memory y = "World";
string[2] memory z = [x, y];
return (z[0]);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_array_declaration_const_int_conversion)
{
char const* text = R"(
contract C {
function f() public returns (uint) {
uint8[4] memory z = [1,2,3,5];
return (z[0]);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_array_declaration_const_string_conversion)
{
char const* text = R"(
contract C {
function f() public returns (string) {
string[2] memory z = ["Hello", "World"];
return (z[0]);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_array_declaration_no_type)
{
char const* text = R"(
contract C {
function f() public returns (uint) {
return ([4,5,6][1]);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_array_declaration_no_type_strings)
{
char const* text = R"(
contract C {
function f() public returns (string) {
return (["foo", "man", "choo"][1]);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_struct_declaration_arrays)
{
char const* text = R"(
contract C {
struct S {
uint a;
string b;
}
function f() {
S[2] memory x = [S({a: 1, b: "fish"}), S({a: 2, b: "fish"})];
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(invalid_types_in_inline_array)
{
char const* text = R"(
contract C {
function f() public {
uint[3] x = [45, 'foo', true];
}
}
)";
CHECK_ERROR(text, TypeError, "Unable to deduce common type for array elements.");
}
BOOST_AUTO_TEST_CASE(dynamic_inline_array)
{
char const* text = R"(
contract C {
function f() public {
uint8[4][4] memory dyn = [[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6], [4, 5, 6, 7]];
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(lvalues_as_inline_array)
{
char const* text = R"(
contract C {
function f() public {
[1, 2, 3]++;
[1, 2, 3] = [4, 5, 6];
}
}
)";
CHECK_ERROR(text, TypeError, "Inline array type cannot be declared as LValue.");
}
BOOST_AUTO_TEST_CASE(break_not_in_loop)
{
char const* text = R"(
contract C {
function f() public {
if (true)
break;
}
}
)";
CHECK_ERROR(text, SyntaxError, "\"break\" has to be in a \"for\" or \"while\" loop.");
}
BOOST_AUTO_TEST_CASE(continue_not_in_loop)
{
char const* text = R"(
contract C {
function f() public {
if (true)
continue;
}
}
)";
CHECK_ERROR(text, SyntaxError, "\"continue\" has to be in a \"for\" or \"while\" loop.");
}
BOOST_AUTO_TEST_CASE(continue_not_in_loop_2)
{
char const* text = R"(
contract C {
function f() public {
while (true)
{
}
continue;
}
}
)";
CHECK_ERROR(text, SyntaxError, "\"continue\" has to be in a \"for\" or \"while\" loop.");
}
BOOST_AUTO_TEST_CASE(invalid_different_types_for_conditional_expression)
{
char const* text = R"(
contract C {
function f() public {
true ? true : 2;
}
}
)";
CHECK_ERROR(text, TypeError, "True expression's type bool doesn't match false expression's type uint8.");
}
BOOST_AUTO_TEST_CASE(left_value_in_conditional_expression_not_supported_yet)
{
char const* text = R"(
contract C {
function f() public {
uint x;
uint y;
(true ? x : y) = 1;
}
}
)";
CHECK_ERROR_ALLOW_MULTI(text, TypeError, (std::vector<std::string>{
"Conditional expression as left value is not supported yet.",
"Expression has to be an lvalue"
}));
}
BOOST_AUTO_TEST_CASE(conditional_expression_with_different_struct)
{
char const* text = R"(
contract C {
struct s1 {
uint x;
}
struct s2 {
uint x;
}
function f() public {
s1 memory x;
s2 memory y;
true ? x : y;
}
}
)";
CHECK_ERROR(text, TypeError, "True expression's type struct C.s1 memory doesn't match false expression's type struct C.s2 memory.");
}
BOOST_AUTO_TEST_CASE(conditional_expression_with_different_function_type)
{
char const* text = R"(
contract C {
function x(bool) public {}
function y() public {}
function f() public {
true ? x : y;
}
}
)";
CHECK_ERROR(text, TypeError, "True expression's type function (bool) doesn't match false expression's type function ().");
}
BOOST_AUTO_TEST_CASE(conditional_expression_with_different_enum)
{
char const* text = R"(
contract C {
enum small { A, B, C, D }
enum big { A, B, C, D }
function f() public {
small x;
big y;
true ? x : y;
}
}
)";
CHECK_ERROR(text, TypeError, "True expression's type enum C.small doesn't match false expression's type enum C.big.");
}
BOOST_AUTO_TEST_CASE(conditional_expression_with_different_mapping)
{
char const* text = R"(
contract C {
mapping(uint8 => uint8) table1;
mapping(uint32 => uint8) table2;
function f() public {
true ? table1 : table2;
}
}
)";
CHECK_ERROR(text, TypeError, "True expression's type mapping(uint8 => uint8) doesn't match false expression's type mapping(uint32 => uint8).");
}
BOOST_AUTO_TEST_CASE(conditional_with_all_types)
{
char const* text = R"(
contract C {
struct s1 {
uint x;
}
s1 struct_x;
s1 struct_y;
function fun_x() public {}
function fun_y() public {}
enum small { A, B, C, D }
mapping(uint8 => uint8) table1;
mapping(uint8 => uint8) table2;
function f() public {
// integers
uint x;
uint y;
uint g = true ? x : y;
g += 1; // Avoid unused var warning
// integer constants
uint h = true ? 1 : 3;
h += 1; // Avoid unused var warning
// string literal
var i = true ? "hello" : "world";
i = "used"; //Avoid unused var warning
}
function f2() public {
// bool
bool j = true ? true : false;
j = j && true; // Avoid unused var warning
// real is not there yet.
// array
byte[2] memory a;
byte[2] memory b;
var k = true ? a : b;
k[0] = byte(0); //Avoid unused var warning
bytes memory e;
bytes memory f;
var l = true ? e : f;
l[0] = byte(0); // Avoid unused var warning
// fixed bytes
bytes2 c;
bytes2 d;
var m = true ? c : d;
m &= m;
}
function f3() public {
// contract doesn't fit in here
// struct
struct_x = true ? struct_x : struct_y;
// function
var r = true ? fun_x : fun_y;
r(); // Avoid unused var warning
// enum
small enum_x;
small enum_y;
enum_x = true ? enum_x : enum_y;
// tuple
var (n, o) = true ? (1, 2) : (3, 4);
(n, o) = (o, n); // Avoid unused var warning
// mapping
var p = true ? table1 : table2;
p[0] = 0; // Avoid unused var warning
// typetype
var q = true ? uint32(1) : uint32(2);
q += 1; // Avoid unused var warning
// modifier doesn't fit in here
// magic doesn't fit in here
// module doesn't fit in here
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(index_access_for_bytes)
{
char const* text = R"(
contract C {
bytes20 x;
function f(bytes16 b) public {
b[uint(x[2])];
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(uint7_and_uintM_as_identifier)
{
char const* text = R"(
contract test {
string uintM = "Hello 4 you";
function f() public {
uint8 uint7 = 3;
uint7 = 5;
string memory intM;
uint bytesM = 21;
intM; bytesM;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(varM_disqualified_as_keyword)
{
char const* text = R"(
contract test {
function f() public {
uintM something = 3;
intM should = 4;
bytesM fail = "now";
}
}
)";
CHECK_ERROR_ALLOW_MULTI(text, DeclarationError, (std::vector<std::string>{
"Identifier not found or not unique.",
"Identifier not found or not unique.",
"Identifier not found or not unique."
}));
}
BOOST_AUTO_TEST_CASE(modifier_is_not_a_valid_typename)
{
char const* text = R"(
contract test {
modifier mod() { _; }
function f() public {
mod g;
}
}
)";
CHECK_ERROR(text, TypeError, "Name has to refer to a struct, enum or contract.");
}
BOOST_AUTO_TEST_CASE(modifier_is_not_a_valid_typename_is_not_fatal)
{
char const* text = R"(
contract test {
modifier mod() { _; }
function f() public {
mod g;
g = f;
}
}
)";
CHECK_ERROR_ALLOW_MULTI(text, TypeError, (std::vector<std::string>{"Name has to refer to a struct, enum or contract."}));
}
BOOST_AUTO_TEST_CASE(function_is_not_a_valid_typename)
{
char const* text = R"(
contract test {
function foo() public {
}
function f() public {
foo g;
}
}
)";
CHECK_ERROR(text, TypeError, "Name has to refer to a struct, enum or contract.");
}
BOOST_AUTO_TEST_CASE(long_uint_variable_fails)
{
char const* text = R"(
contract test {
function f() public {
uint99999999999999999999999999 something = 3;
}
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier not found or not unique.");
}
BOOST_AUTO_TEST_CASE(bytes10abc_is_identifier)
{
char const* text = R"(
contract test {
function f() public {
bytes32 bytes10abc = "abc";
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(int10abc_is_identifier)
{
char const* text = R"(
contract test {
function f() public {
uint uint10abc = 3;
int int10abc = 4;
uint10abc; int10abc;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(library_functions_do_not_have_value)
{
char const* text = R"(
library L { function l() public {} }
contract test {
function f() public {
L.l.value;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"value\" not found or not visible after argument-dependent lookup in function ()");
}
BOOST_AUTO_TEST_CASE(invalid_fixed_types_0x7_mxn)
{
char const* text = R"(
contract test {
fixed0x7 a = .3;
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier not found");
}
BOOST_AUTO_TEST_CASE(invalid_fixed_types_long_invalid_identifier)
{
char const* text = R"(
contract test {
fixed99999999999999999999999999999999999999x7 b = 9.5;
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier not found");
}
BOOST_AUTO_TEST_CASE(invalid_fixed_types_7x8_mxn)
{
char const* text = R"(
contract test {
fixed7x8 c = 3.12345678;
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier not found");
}
BOOST_AUTO_TEST_CASE(library_instances_cannot_be_used)
{
char const* text = R"(
library L { function l() public {} }
contract test {
function f() public {
L x;
x.l();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"l\" not found or not visible after argument-dependent lookup in library L");
}
BOOST_AUTO_TEST_CASE(invalid_fixed_type_long)
{
char const* text = R"(
contract test {
function f() public {
fixed8x888888888888888888888888888888888888888888888888888 b;
}
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier not found");
}
BOOST_AUTO_TEST_CASE(fixed_type_int_conversion)
{
char const* text = R"(
contract test {
function f() public {
uint64 a = 3;
int64 b = 4;
fixed c = b;
ufixed d = a;
c; d;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(fixed_type_rational_int_conversion)
{
char const* text = R"(
contract test {
function f() public {
fixed c = 3;
ufixed d = 4;
c; d;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(fixed_type_rational_fraction_conversion)
{
char const* text = R"(
contract test {
function f() public {
fixed a = 4.5;
ufixed d = 2.5;
a; d;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(invalid_int_implicit_conversion_from_fixed)
{
char const* text = R"(
contract test {
function f() public {
fixed a = 4.5;
int b = a;
a; b;
}
}
)";
CHECK_ERROR(text, TypeError, "Type fixed128x18 is not implicitly convertible to expected type int256");
}
BOOST_AUTO_TEST_CASE(rational_unary_operation)
{
char const* text = R"(
contract test {
function f() pure public {
ufixed16x2 a = 3.25;
fixed16x2 b = -3.25;
a; b;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
// Test deprecation warning under < 0.5.0
text = R"(
contract test {
function f() pure public {
ufixed16x2 a = +3.25;
fixed16x2 b = -3.25;
a; b;
}
}
)";
CHECK_WARNING(text, "Use of unary + is deprecated");
text = R"(
contract test {
function f(uint x) pure public {
uint y = +x;
y;
}
}
)";
CHECK_WARNING(text,"Use of unary + is deprecated");
// Test syntax error under 0.5.0
text = R"(
pragma experimental "v0.5.0";
contract test {
function f() pure public {
ufixed16x2 a = +3.25;
fixed16x2 b = -3.25;
a; b;
}
}
)";
CHECK_ERROR(text, SyntaxError, "Use of unary + is deprecated");
text = R"(
pragma experimental "v0.5.0";
contract test {
function f(uint x) pure public {
uint y = +x;
y;
}
}
)";
CHECK_ERROR(text, SyntaxError, "Use of unary + is deprecated");
}
BOOST_AUTO_TEST_CASE(leading_zero_rationals_convert)
{
char const* text = R"(
contract A {
function f() pure public {
ufixed16x2 a = 0.5;
ufixed256x52 b = 0.0000000000000006661338147750939242541790008544921875;
fixed16x2 c = -0.5;
fixed256x52 d = -0.0000000000000006661338147750939242541790008544921875;
a; b; c; d;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(size_capabilities_of_fixed_point_types)
{
char const* text = R"(
contract test {
function f() public {
ufixed256x1 a = 123456781234567979695948382928485849359686494864095409282048094275023098123.5;
ufixed256x77 b = 0.920890746623327805482905058466021565416131529487595827354393978494366605267637;
ufixed224x78 c = 0.000000000001519884736399797998492268541131529487595827354393978494366605267646;
fixed256x1 d = -123456781234567979695948382928485849359686494864095409282048094275023098123.5;
fixed256x76 e = -0.93322335481643744342575580035176794825198893968114429702091846411734101080123;
fixed256x79 g = -0.0001178860664374434257558003517679482519889396811442970209184641173410108012309;
a; b; c; d; e; g;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(zero_handling)
{
char const* text = R"(
contract test {
function f() public {
fixed16x2 a = 0; a;
ufixed32x1 b = 0; b;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(fixed_type_invalid_implicit_conversion_size)
{
char const* text = R"(
contract test {
function f() public {
ufixed a = 11/4;
ufixed248x8 b = a; b;
}
}
)";
CHECK_ERROR(text, TypeError, "Type ufixed128x18 is not implicitly convertible to expected type ufixed248x8");
}
BOOST_AUTO_TEST_CASE(fixed_type_invalid_implicit_conversion_lost_data)
{
char const* text = R"(
contract test {
function f() public {
ufixed256x1 a = 1/3; a;
}
}
)";
CHECK_ERROR(text, TypeError, "is not implicitly convertible to expected type ufixed256x1");
}
BOOST_AUTO_TEST_CASE(fixed_type_valid_explicit_conversions)
{
char const* text = R"(
contract test {
function f() public {
ufixed256x80 a = ufixed256x80(1/3); a;
ufixed248x80 b = ufixed248x80(1/3); b;
ufixed8x1 c = ufixed8x1(1/3); c;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(invalid_array_declaration_with_rational)
{
char const* text = R"(
contract test {
function f() public {
uint[3.5] a; a;
}
}
)";
CHECK_ERROR(text, TypeError, "Array with fractional length specified.");
}
BOOST_AUTO_TEST_CASE(invalid_array_declaration_with_signed_fixed_type)
{
char const* text = R"(
contract test {
function f() public {
uint[fixed(3.5)] a; a;
}
}
)";
CHECK_ERROR(text, TypeError, "Invalid array length, expected integer literal or constant expression.");
}
BOOST_AUTO_TEST_CASE(invalid_array_declaration_with_unsigned_fixed_type)
{
char const* text = R"(
contract test {
function f() public {
uint[ufixed(3.5)] a; a;
}
}
)";
CHECK_ERROR(text, TypeError, "Invalid array length, expected integer literal or constant expression.");
}
BOOST_AUTO_TEST_CASE(rational_to_bytes_implicit_conversion)
{
char const* text = R"(
contract test {
function f() public {
bytes32 c = 3.2; c;
}
}
)";
CHECK_ERROR(text, TypeError, "is not implicitly convertible to expected type bytes32");
}
BOOST_AUTO_TEST_CASE(fixed_to_bytes_implicit_conversion)
{
char const* text = R"(
contract test {
function f() public {
fixed a = 3.25;
bytes32 c = a; c;
}
}
)";
CHECK_ERROR(text, TypeError, "fixed128x18 is not implicitly convertible to expected type bytes32");
}
BOOST_AUTO_TEST_CASE(mapping_with_fixed_literal)
{
char const* text = R"(
contract test {
mapping(ufixed8x1 => string) fixedString;
function f() public {
fixedString[0.5] = "Half";
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(fixed_points_inside_structs)
{
char const* text = R"(
contract test {
struct myStruct {
ufixed a;
int b;
}
myStruct a = myStruct(3.125, 3);
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_array_fixed_types)
{
char const* text = R"(
contract test {
function f() public {
fixed[3] memory a = [fixed(3.5), fixed(-4.25), fixed(967.125)];
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_array_rationals)
{
char const* text = R"(
contract test {
function f() public {
ufixed128x3[4] memory a = [ufixed128x3(3.5), 4.125, 2.5, 4.0];
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(rational_index_access)
{
char const* text = R"(
contract test {
function f() public {
uint[] memory a;
a[.5];
}
}
)";
CHECK_ERROR(text, TypeError, "rational_const 1 / 2 is not implicitly convertible to expected type uint256");
}
BOOST_AUTO_TEST_CASE(rational_to_fixed_literal_expression)
{
char const* text = R"(
contract test {
function f() public {
ufixed64x8 a = 3.5 * 3;
ufixed64x8 b = 4 - 2.5;
ufixed64x8 c = 11 / 4;
ufixed240x5 d = 599 + 0.21875;
ufixed256x80 e = ufixed256x80(35.245 % 12.9);
ufixed256x80 f = ufixed256x80(1.2 % 2);
fixed g = 2 ** -2;
a; b; c; d; e; f; g;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(rational_as_exponent_value_signed)
{
char const* text = R"(
contract test {
function f() public {
fixed g = 2 ** -2.2;
}
}
)";
CHECK_ERROR(text, TypeError, "not compatible with types");
}
BOOST_AUTO_TEST_CASE(rational_as_exponent_value_unsigned)
{
char const* text = R"(
contract test {
function f() public {
ufixed b = 3 ** 2.5;
}
}
)";
CHECK_ERROR(text, TypeError, "not compatible with types");
}
BOOST_AUTO_TEST_CASE(rational_as_exponent_half)
{
char const* text = R"(
contract test {
function f() public {
2 ** (1/2);
}
}
)";
CHECK_ERROR(text, TypeError, "not compatible with types");
}
BOOST_AUTO_TEST_CASE(rational_as_exponent_value_neg_quarter)
{
char const* text = R"(
contract test {
function f() public {
42 ** (-1/4);
}
}
)";
CHECK_ERROR(text, TypeError, "not compatible with types");
}
BOOST_AUTO_TEST_CASE(fixed_point_casting_exponents_15)
{
char const* text = R"(
contract test {
function f() public {
var a = 3 ** ufixed(1.5);
}
}
)";
CHECK_ERROR(text, TypeError, "not compatible with types");
}
BOOST_AUTO_TEST_CASE(fixed_point_casting_exponents_neg)
{
char const* text = R"(
contract test {
function f() public {
var c = 42 ** fixed(-1/4);
}
}
)";
CHECK_ERROR(text, TypeError, "not compatible with types");
}
BOOST_AUTO_TEST_CASE(var_capable_of_holding_constant_rationals)
{
char const* text = R"(
contract test {
function f() public {
var a = 0.12345678;
var b = 12345678.352;
var c = 0.00000009;
a; b; c;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(var_and_rational_with_tuple)
{
char const* text = R"(
contract test {
function f() public {
var (a, b) = (.5, 1/3);
a; b;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(var_handle_divided_integers)
{
char const* text = R"(
contract test {
function f() public {
var x = 1/3;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(rational_bitnot_unary_operation)
{
char const* text = R"(
contract test {
function f() public {
~fixed(3.5);
}
}
)";
CHECK_ERROR(text, TypeError, "cannot be applied");
}
BOOST_AUTO_TEST_CASE(rational_bitor_binary_operation)
{
char const* text = R"(
contract test {
function f() public {
fixed(1.5) | 3;
}
}
)";
CHECK_ERROR(text, TypeError, "not compatible with types");
}
BOOST_AUTO_TEST_CASE(rational_bitxor_binary_operation)
{
char const* text = R"(
contract test {
function f() public {
fixed(1.75) ^ 3;
}
}
)";
CHECK_ERROR(text, TypeError, "not compatible with types");
}
BOOST_AUTO_TEST_CASE(rational_bitand_binary_operation)
{
char const* text = R"(
contract test {
function f() public {
fixed(1.75) & 3;
}
}
)";
CHECK_ERROR(text, TypeError, "not compatible with types");
}
BOOST_AUTO_TEST_CASE(missing_bool_conversion)
{
char const* text = R"(
contract test {
function b(uint a) public {
bool(a == 1);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(integer_and_fixed_interaction)
{
char const* text = R"(
contract test {
function f() public {
ufixed a = uint64(1) + ufixed(2);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(one_divided_by_three_integer_conversion)
{
char const* text = R"(
contract test {
function f() public {
uint a = 1/3;
}
}
)";
CHECK_ERROR(text, TypeError, "is not implicitly convertible to expected type uint256. Try converting to type ufixed256x77");
}
BOOST_AUTO_TEST_CASE(unused_return_value)
{
char const* text = R"(
contract test {
function g() public returns (uint) {}
function f() public {
g();
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(unused_return_value_send)
{
char const* text = R"(
contract test {
function f() public {
address(0x12).send(1);
}
}
)";
CHECK_WARNING(text, "Failure condition of 'send' ignored. Consider using 'transfer' instead.");
}
BOOST_AUTO_TEST_CASE(unused_return_value_call)
{
char const* text = R"(
contract test {
function f() public {
address(0x12).call("abc");
}
}
)";
CHECK_WARNING(text, "Return value of low-level calls not used");
}
BOOST_AUTO_TEST_CASE(unused_return_value_call_value)
{
char const* text = R"(
contract test {
function f() public {
address(0x12).call.value(2)("abc");
}
}
)";
CHECK_WARNING(text, "Return value of low-level calls not used");
}
BOOST_AUTO_TEST_CASE(unused_return_value_callcode)
{
char const* text = R"(
contract test {
function f() public {
address(0x12).callcode("abc");
}
}
)";
CHECK_WARNING_ALLOW_MULTI(text, (std::vector<std::string>{
"Return value of low-level calls not used",
"\"callcode\" has been deprecated"
}));
}
BOOST_AUTO_TEST_CASE(unused_return_value_delegatecall)
{
char const* text = R"(
contract test {
function f() public {
address(0x12).delegatecall("abc");
}
}
)";
CHECK_WARNING(text, "Return value of low-level calls not used");
}
BOOST_AUTO_TEST_CASE(warn_about_callcode)
{
char const* text = R"(
contract test {
function f() pure public {
address(0x12).callcode;
}
}
)";
CHECK_WARNING(text, "\"callcode\" has been deprecated in favour of \"delegatecall\"");
text = R"(
pragma experimental "v0.5.0";
contract test {
function f() pure public {
address(0x12).callcode;
}
}
)";
CHECK_ERROR(text, TypeError, "\"callcode\" has been deprecated in favour of \"delegatecall\"");
}
BOOST_AUTO_TEST_CASE(no_warn_about_callcode_as_function)
{
char const* text = R"(
contract test {
function callcode() pure public {
test.callcode();
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(payable_in_library)
{
char const* text = R"(
library test {
function f() payable public {}
}
)";
CHECK_ERROR(text, TypeError, "Library functions cannot be payable.");
}
BOOST_AUTO_TEST_CASE(payable_external)
{
char const* text = R"(
contract test {
function f() payable external {}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(payable_internal)
{
char const* text = R"(
contract test {
function f() payable internal {}
}
)";
CHECK_ERROR(text, TypeError, "Internal functions cannot be payable.");
}
BOOST_AUTO_TEST_CASE(payable_private)
{
char const* text = R"(
contract test {
function f() payable private {}
}
)";
CHECK_ERROR(text, TypeError, "Internal functions cannot be payable.");
}
BOOST_AUTO_TEST_CASE(illegal_override_payable)
{
char const* text = R"(
contract B { function f() payable public {} }
contract C is B { function f() public {} }
)";
CHECK_ERROR(text, TypeError, "Overriding function changes state mutability from \"payable\" to \"nonpayable\".");
}
BOOST_AUTO_TEST_CASE(illegal_override_payable_nonpayable)
{
char const* text = R"(
contract B { function f() public {} }
contract C is B { function f() payable public {} }
)";
CHECK_ERROR(text, TypeError, "Overriding function changes state mutability from \"nonpayable\" to \"payable\".");
}
BOOST_AUTO_TEST_CASE(function_variable_mixin)
{
// bug #1798 (cpp-ethereum), related to #1286 (solidity)
char const* text = R"(
contract attribute {
bool ok = false;
}
contract func {
function ok() public returns (bool) { return true; }
}
contract attr_func is attribute, func {
function checkOk() public returns (bool) { return ok(); }
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier already declared.");
}
BOOST_AUTO_TEST_CASE(calling_payable)
{
char const* text = R"(
contract receiver { function pay() payable public {} }
contract test {
function f() public { (new receiver()).pay.value(10)(); }
receiver r = new receiver();
function g() public { r.pay.value(10)(); }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(calling_nonpayable)
{
char const* text = R"(
contract receiver { function nopay() public {} }
contract test {
function f() public { (new receiver()).nopay.value(10)(); }
}
)";
CHECK_ERROR(text, TypeError, "Member \"value\" not found or not visible after argument-dependent lookup in function () external - did you forget the \"payable\" modifier?");
}
BOOST_AUTO_TEST_CASE(non_payable_constructor)
{
char const* text = R"(
contract C {
function C() { }
}
contract D {
function f() public returns (uint) {
(new C).value(2)();
return 2;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"value\" not found or not visible after argument-dependent lookup in function () returns (contract C) - did you forget the \"payable\" modifier?");
}
BOOST_AUTO_TEST_CASE(warn_nonpresent_pragma)
{
char const* text = "contract C {}";
auto sourceAndError = parseAnalyseAndReturnError(text, true, false);
BOOST_REQUIRE(!sourceAndError.second.empty());
BOOST_REQUIRE(!!sourceAndError.first);
BOOST_CHECK(searchErrorMessage(*sourceAndError.second.front(), "Source file does not specify required compiler version!"));
}
BOOST_AUTO_TEST_CASE(unsatisfied_version)
{
char const* text = R"(
pragma solidity ^99.99.0;
)";
auto sourceAndError = parseAnalyseAndReturnError(text, false, false, false);
BOOST_REQUIRE(!sourceAndError.second.empty());
BOOST_REQUIRE(!!sourceAndError.first);
BOOST_CHECK(sourceAndError.second.front()->type() == Error::Type::SyntaxError);
BOOST_CHECK(searchErrorMessage(*sourceAndError.second.front(), "Source file requires different compiler version"));
}
BOOST_AUTO_TEST_CASE(invalid_constructor_statemutability)
{
char const* text = R"(
contract test {
function test() constant {}
}
)";
CHECK_ERROR(text, TypeError, "Constructor must be payable or non-payable");
text = R"(
contract test {
function test() view {}
}
)";
CHECK_ERROR(text, TypeError, "Constructor must be payable or non-payable");
text = R"(
contract test {
function test() pure {}
}
)";
CHECK_ERROR(text, TypeError, "Constructor must be payable or non-payable");
}
BOOST_AUTO_TEST_CASE(external_constructor)
{
char const* text = R"(
contract test {
function test() external {}
}
)";
CHECK_ERROR(text, TypeError, "Constructor must be public or internal.");
}
BOOST_AUTO_TEST_CASE(invalid_array_as_statement)
{
char const* text = R"(
contract test {
struct S { uint x; }
function test(uint k) public { S[k]; }
}
)";
CHECK_ERROR(text, TypeError, "Integer constant expected.");
}
BOOST_AUTO_TEST_CASE(using_directive_for_missing_selftype)
{
char const* text = R"(
library B {
function b() public {}
}
contract A {
using B for bytes;
function a() public {
bytes memory x;
x.b();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"b\" not found or not visible after argument-dependent lookup in bytes memory");
}
BOOST_AUTO_TEST_CASE(shift_constant_left_negative_rvalue)
{
char const* text = R"(
contract C {
uint public a = 0x42 << -8;
}
)";
CHECK_ERROR(text, TypeError, "Operator << not compatible with types int_const 66 and int_const -8");
}
BOOST_AUTO_TEST_CASE(shift_constant_right_negative_rvalue)
{
char const* text = R"(
contract C {
uint public a = 0x42 >> -8;
}
)";
CHECK_ERROR(text, TypeError, "Operator >> not compatible with types int_const 66 and int_const -8");
}
BOOST_AUTO_TEST_CASE(shift_constant_left_excessive_rvalue)
{
char const* text = R"(
contract C {
uint public a = 0x42 << 0x100000000;
}
)";
CHECK_ERROR(text, TypeError, "Operator << not compatible with types int_const 66 and int_const 4294967296");
}
BOOST_AUTO_TEST_CASE(shift_constant_right_excessive_rvalue)
{
char const* text = R"(
contract C {
uint public a = 0x42 >> 0x100000000;
}
)";
CHECK_ERROR(text, TypeError, "Operator >> not compatible with types int_const 66 and int_const 4294967296");
}
BOOST_AUTO_TEST_CASE(shift_constant_right_fractional)
{
char const* text = R"(
contract C {
uint public a = 0x42 >> (1 / 2);
}
)";
CHECK_ERROR(text, TypeError, "Operator >> not compatible with types int_const 66 and rational_const 1 / 2");
}
BOOST_AUTO_TEST_CASE(inline_assembly_unbalanced_positive_stack)
{
char const* text = R"(
contract test {
function f() public {
assembly {
1
}
}
}
)";
CHECK_ERROR(text, DeclarationError, "Unbalanced stack at the end of a block: 1 surplus item(s).");
}
BOOST_AUTO_TEST_CASE(inline_assembly_unbalanced_negative_stack)
{
char const* text = R"(
contract test {
function f() public {
assembly {
pop
}
}
}
)";
CHECK_ERROR(text, DeclarationError, "Unbalanced stack at the end of a block: 1 missing item(s).");
}
BOOST_AUTO_TEST_CASE(inline_assembly_unbalanced_two_stack_load)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract c {
uint8 x;
function f() public {
assembly { pop(x) }
}
}
)";
CHECK_ERROR(text, TypeError, "Only local variables are supported. To access storage variables,");
}
BOOST_AUTO_TEST_CASE(inline_assembly_in_modifier)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract test {
modifier m {
uint a = 1;
assembly {
a := 2
}
_;
}
function f() public m {
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(inline_assembly_storage)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract test {
uint x = 1;
function f() public {
assembly {
x := 2
}
}
}
)";
CHECK_ERROR(text, TypeError, "Only local variables are supported. To access storage variables,");
}
BOOST_AUTO_TEST_CASE(inline_assembly_storage_in_modifiers)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract test {
uint x = 1;
modifier m {
assembly {
x := 2
}
_;
}
function f() public m {
}
}
)";
CHECK_ERROR(text, TypeError, "Only local variables are supported. To access storage variables,");
}
BOOST_AUTO_TEST_CASE(inline_assembly_constant_assign)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract test {
uint constant x = 1;
function f() public {
assembly {
x := 2
}
}
}
)";
CHECK_ERROR(text, TypeError, "Constant variables not supported by inline assembly");
}
BOOST_AUTO_TEST_CASE(inline_assembly_constant_access)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract test {
uint constant x = 1;
function f() public {
assembly {
let y := x
}
}
}
)";
CHECK_ERROR(text, TypeError, "Constant variables not supported by inline assembly");
}
BOOST_AUTO_TEST_CASE(inline_assembly_local_variable_access_out_of_functions)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract test {
function f() public {
uint a;
assembly {
function g() -> x { x := a }
}
}
}
)";
CHECK_ERROR(text, DeclarationError, "Cannot access local Solidity variables from inside an inline assembly function.");
}
BOOST_AUTO_TEST_CASE(inline_assembly_local_variable_access_out_of_functions_storage_ptr)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract test {
uint[] r;
function f() public {
uint[] storage a = r;
assembly {
function g() -> x { x := a_offset }
}
}
}
)";
CHECK_ERROR(text, DeclarationError, "Cannot access local Solidity variables from inside an inline assembly function.");
}
BOOST_AUTO_TEST_CASE(inline_assembly_storage_variable_access_out_of_functions)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract test {
uint a;
function f() pure public {
assembly {
function g() -> x { x := a_slot }
}
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(inline_assembly_constant_variable_via_offset)
{
char const* text = R"(
contract test {
uint constant x = 2;
function f() pure public {
assembly {
let r := x_offset
}
}
}
)";
CHECK_ERROR(text, TypeError, "Constant variables not supported by inline assembly.");
}
BOOST_AUTO_TEST_CASE(inline_assembly_calldata_variables)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function f(bytes bytesAsCalldata) external {
assembly {
let x := bytesAsCalldata
}
}
}
)";
CHECK_ERROR(text, TypeError, "Call data elements cannot be accessed directly.");
}
BOOST_AUTO_TEST_CASE(inline_assembly_050_literals_on_stack)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function f() pure public {
assembly {
1
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::SyntaxError, "are not supposed to return"},
{Error::Type::DeclarationError, "Unbalanced stack"},
}));
}
BOOST_AUTO_TEST_CASE(inline_assembly_literals_on_stack)
{
char const* text = R"(
contract C {
function f() pure public {
assembly {
1
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::Warning, "are not supposed to return"},
{Error::Type::DeclarationError, "Unbalanced stack"},
}));
}
BOOST_AUTO_TEST_CASE(inline_assembly_050_bare_instructions)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function f() view public {
assembly {
address
pop
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::SyntaxError, "The use of non-functional"},
{Error::Type::SyntaxError, "The use of non-functional"}
}));
}
BOOST_AUTO_TEST_CASE(inline_assembly_bare_instructions)
{
char const* text = R"(
contract C {
function f() view public {
assembly {
address
pop
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::Warning, "The use of non-functional"},
{Error::Type::Warning, "The use of non-functional"}
}));
}
BOOST_AUTO_TEST_CASE(inline_assembly_050_labels)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function f() pure public {
assembly {
label:
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::SyntaxError, "Jump instructions and labels are low-level"},
{Error::Type::SyntaxError, "The use of labels is deprecated"}
}));
}
BOOST_AUTO_TEST_CASE(inline_assembly_labels)
{
char const* text = R"(
contract C {
function f() pure public {
assembly {
label:
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::Warning, "Jump instructions and labels are low-level"},
{Error::Type::Warning, "The use of labels is deprecated"}
}));
}
BOOST_AUTO_TEST_CASE(inline_assembly_050_jump)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function f() pure public {
assembly {
jump(2)
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::SyntaxError, "Jump instructions and labels are low-level"}
}));
}
BOOST_AUTO_TEST_CASE(inline_assembly_jump)
{
char const* text = R"(
contract C {
function f() pure public {
assembly {
jump(2)
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::TypeError, "Function declared as pure"},
{Error::Type::Warning, "Jump instructions and labels are low-level"}
}));
}
BOOST_AUTO_TEST_CASE(inline_assembly_050_leave_items_on_stack)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function f() pure public {
assembly {
mload(0)
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::SyntaxError, "are not supposed to return"},
{Error::Type::DeclarationError, "Unbalanced stack"},
}));
}
BOOST_AUTO_TEST_CASE(inline_assembly_leave_items_on_stack)
{
char const* text = R"(
contract C {
function f() pure public {
assembly {
mload(0)
}
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::Warning, "are not supposed to return"},
{Error::Type::DeclarationError, "Unbalanced stack"},
}));
}
BOOST_AUTO_TEST_CASE(invalid_mobile_type)
{
char const* text = R"(
contract C {
function f() public {
// Invalid number
[1, 78901234567890123456789012345678901234567890123456789345678901234567890012345678012345678901234567];
}
}
)";
CHECK_ERROR(text, TypeError, "Invalid rational number.");
}
BOOST_AUTO_TEST_CASE(warns_msg_value_in_non_payable_public_function)
{
char const* text = R"(
contract C {
function f() view public {
msg.value;
}
}
)";
CHECK_WARNING(text, "\"msg.value\" used in non-payable function. Do you want to add the \"payable\" modifier to this function?");
}
BOOST_AUTO_TEST_CASE(does_not_warn_msg_value_in_payable_function)
{
char const* text = R"(
contract C {
function f() payable public {
msg.value;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(does_not_warn_msg_value_in_internal_function)
{
char const* text = R"(
contract C {
function f() view internal {
msg.value;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(does_not_warn_msg_value_in_library)
{
char const* text = R"(
library C {
function f() view public {
msg.value;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(does_not_warn_msg_value_in_modifier_following_non_payable_public_function)
{
char const* text = R"(
contract c {
function f() pure public { }
modifier m() { msg.value; _; }
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(assignment_to_constant)
{
char const* text = R"(
contract c {
uint constant a = 1;
function f() public { a = 2; }
}
)";
CHECK_ERROR(text, TypeError, "Cannot assign to a constant variable.");
}
BOOST_AUTO_TEST_CASE(inconstructible_internal_constructor)
{
char const* text = R"(
contract C {
function C() internal {}
}
contract D {
function f() public { var x = new C(); }
}
)";
CHECK_ERROR(text, TypeError, "Contract with internal constructor cannot be created directly.");
}
BOOST_AUTO_TEST_CASE(inconstructible_internal_constructor_inverted)
{
// Previously, the type information for A was not yet available at the point of
// "new A".
char const* text = R"(
contract B {
A a;
function B() public {
a = new A(this);
}
}
contract A {
function A(address a) internal {}
}
)";
CHECK_ERROR(text, TypeError, "Contract with internal constructor cannot be created directly.");
}
BOOST_AUTO_TEST_CASE(constructible_internal_constructor)
{
char const* text = R"(
contract C {
function C() internal {}
}
contract D is C {
function D() public { }
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(return_structs)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract C {
struct S { uint a; T[] sub; }
struct T { uint[] x; }
function f() returns (uint, S) {
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(read_returned_struct)
{
char const* text = R"(
pragma experimental ABIEncoderV2;
contract A {
struct T {
int x;
int y;
}
function g() public returns (T) {
return this.g();
}
}
)";
CHECK_WARNING(text, "Experimental features");
}
BOOST_AUTO_TEST_CASE(address_checksum_type_deduction)
{
char const* text = R"(
contract C {
function f() public {
var x = 0xfA0bFc97E48458494Ccd857e1A85DC91F7F0046E;
x.send(2);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(invalid_address_checksum)
{
char const* text = R"(
contract C {
function f() pure public {
address x = 0xFA0bFc97E48458494Ccd857e1A85DC91F7F0046E;
x;
}
}
)";
CHECK_WARNING(text, "This looks like an address but has an invalid checksum.");
}
BOOST_AUTO_TEST_CASE(invalid_address_no_checksum)
{
char const* text = R"(
contract C {
function f() pure public {
address x = 0xfa0bfc97e48458494ccd857e1a85dc91f7f0046e;
x;
}
}
)";
CHECK_WARNING(text, "This looks like an address but has an invalid checksum.");
}
BOOST_AUTO_TEST_CASE(invalid_address_length_short)
{
char const* text = R"(
contract C {
function f() pure public {
address x = 0xA0bFc97E48458494Ccd857e1A85DC91F7F0046E;
x;
}
}
)";
CHECK_WARNING(text, "This looks like an address but has an invalid checksum.");
}
BOOST_AUTO_TEST_CASE(invalid_address_length_long)
{
char const* text = R"(
contract C {
function f() pure public {
address x = 0xFA0bFc97E48458494Ccd857e1A85DC91F7F0046E0;
x;
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::Warning, "This looks like an address but has an invalid checksum."},
{Error::Type::TypeError, "not implicitly convertible"}
}));
}
BOOST_AUTO_TEST_CASE(address_test_for_bug_in_implementation)
{
// A previous implementation claimed the string would be an address
char const* text = R"(
contract AddrString {
address public test = "0xCA35b7d915458EF540aDe6068dFe2F44E8fa733c";
}
)";
CHECK_ERROR(text, TypeError, "is not implicitly convertible to expected type address");
text = R"(
contract AddrString {
function f() public returns (address) {
return "0xCA35b7d915458EF540aDe6068dFe2F44E8fa733c";
}
}
)";
CHECK_ERROR(text, TypeError, "is not implicitly convertible to expected type");
}
BOOST_AUTO_TEST_CASE(early_exit_on_fatal_errors)
{
// This tests a crash that occured because we did not stop for fatal errors.
char const* text = R"(
contract C {
struct S {
ftring a;
}
S public s;
function s() s {
}
}
)";
CHECK_ERROR(text, DeclarationError, "Identifier not found or not unique");
}
BOOST_AUTO_TEST_CASE(address_methods)
{
char const* text = R"(
contract C {
function f() public {
address addr;
uint balance = addr.balance;
bool callRet = addr.call();
bool callcodeRet = addr.callcode();
bool delegatecallRet = addr.delegatecall();
bool sendRet = addr.send(1);
addr.transfer(1);
callRet; callcodeRet; delegatecallRet; sendRet;
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(interface)
{
char const* text = R"(
interface I {
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(interface_constructor)
{
char const* text = R"(
interface I {
function I();
}
)";
CHECK_ERROR_ALLOW_MULTI(text, TypeError, (std::vector<std::string>{
"Constructor cannot be defined in interfaces",
"Constructor must be implemented if declared.",
}));
}
BOOST_AUTO_TEST_CASE(interface_functions)
{
char const* text = R"(
interface I {
function();
function f();
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(interface_function_bodies)
{
char const* text = R"(
interface I {
function f() public {
}
}
)";
CHECK_ERROR(text, TypeError, "Functions in interfaces cannot have an implementation");
}
BOOST_AUTO_TEST_CASE(interface_events)
{
char const* text = R"(
interface I {
event E();
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(interface_inheritance)
{
char const* text = R"(
interface A {
}
interface I is A {
}
)";
CHECK_ERROR(text, TypeError, "Interfaces cannot inherit");
}
BOOST_AUTO_TEST_CASE(interface_structs)
{
char const* text = R"(
interface I {
struct A {
}
}
)";
CHECK_ERROR(text, TypeError, "Structs cannot be defined in interfaces");
}
BOOST_AUTO_TEST_CASE(interface_variables)
{
char const* text = R"(
interface I {
uint a;
}
)";
CHECK_ERROR(text, TypeError, "Variables cannot be declared in interfaces");
}
BOOST_AUTO_TEST_CASE(interface_function_parameters)
{
char const* text = R"(
interface I {
function f(uint a) public returns (bool);
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(interface_enums)
{
char const* text = R"(
interface I {
enum A { B, C }
}
)";
CHECK_ERROR(text, TypeError, "Enumerable cannot be declared in interfaces");
}
BOOST_AUTO_TEST_CASE(using_interface)
{
char const* text = R"(
interface I {
function f();
}
contract C is I {
function f() public {
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(using_interface_complex)
{
char const* text = R"(
interface I {
event A();
function f();
function g();
function();
}
contract C is I {
function f() public {
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(interface_implement_public_contract)
{
char const* text = R"(
interface I {
function f() external;
}
contract C is I {
function f() public {
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(warn_about_throw)
{
char const* text = R"(
contract C {
function f() pure public {
throw;
}
}
)";
CHECK_WARNING(text, "\"throw\" is deprecated in favour of \"revert()\", \"require()\" and \"assert()\"");
text = R"(
pragma experimental "v0.5.0";
contract C {
function f() pure public {
throw;
}
}
)";
CHECK_ERROR(text, SyntaxError, "\"throw\" is deprecated in favour of \"revert()\", \"require()\" and \"assert()\"");
}
BOOST_AUTO_TEST_CASE(bare_revert)
{
char const* text = R"(
contract C {
function f(uint x) pure public {
if (x > 7)
revert;
}
}
)";
CHECK_ERROR(text, TypeError, "No matching declaration found");
}
BOOST_AUTO_TEST_CASE(revert_with_reason)
{
char const* text = R"(
contract C {
function f(uint x) pure public {
if (x > 7)
revert("abc");
else
revert();
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(bare_others)
{
CHECK_WARNING("contract C { function f() pure public { selfdestruct; } }", "Statement has no effect.");
CHECK_WARNING("contract C { function f() pure public { assert; } }", "Statement has no effect.");
// This is different because it does have overloads.
CHECK_ERROR("contract C { function f() pure public { require; } }", TypeError, "No matching declaration found after variable lookup.");
CHECK_WARNING("contract C { function f() pure public { suicide; } }", "Statement has no effect.");
}
BOOST_AUTO_TEST_CASE(pure_statement_in_for_loop)
{
char const* text = R"(
contract C {
function f() pure public {
for (uint x = 0; x < 10; true)
x++;
}
}
)";
CHECK_WARNING(text, "Statement has no effect.");
}
BOOST_AUTO_TEST_CASE(pure_statement_check_for_regular_for_loop)
{
char const* text = R"(
contract C {
function f() pure public {
for (uint x = 0; true; x++)
{}
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(warn_multiple_storage_storage_copies)
{
char const* text = R"(
contract C {
struct S { uint a; uint b; }
S x; S y;
function f() public {
(x, y) = (y, x);
}
}
)";
CHECK_WARNING(text, "This assignment performs two copies to storage.");
}
BOOST_AUTO_TEST_CASE(warn_multiple_storage_storage_copies_fill_right)
{
char const* text = R"(
contract C {
struct S { uint a; uint b; }
S x; S y;
function f() public {
(x, y, ) = (y, x, 1, 2);
}
}
)";
CHECK_WARNING(text, "This assignment performs two copies to storage.");
}
BOOST_AUTO_TEST_CASE(warn_multiple_storage_storage_copies_fill_left)
{
char const* text = R"(
contract C {
struct S { uint a; uint b; }
S x; S y;
function f() public {
(,x, y) = (1, 2, y, x);
}
}
)";
CHECK_WARNING(text, "This assignment performs two copies to storage.");
}
BOOST_AUTO_TEST_CASE(nowarn_swap_memory)
{
char const* text = R"(
contract C {
struct S { uint a; uint b; }
function f() pure public {
S memory x;
S memory y;
(x, y) = (y, x);
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(nowarn_swap_storage_pointers)
{
char const* text = R"(
contract C {
struct S { uint a; uint b; }
S x; S y;
function f() public {
S storage x_local = x;
S storage y_local = y;
S storage z_local = x;
(x, y_local, x_local, z_local) = (y, x_local, y_local, y);
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(warn_unused_local)
{
char const* text = R"(
contract C {
function f() pure public {
uint a;
}
}
)";
CHECK_WARNING(text, "Unused local variable.");
}
BOOST_AUTO_TEST_CASE(warn_unused_local_assigned)
{
char const* text = R"(
contract C {
function f() pure public {
uint a = 1;
}
}
)";
CHECK_WARNING(text, "Unused local variable.");
}
BOOST_AUTO_TEST_CASE(warn_unused_function_parameter)
{
char const* text = R"(
contract C {
function f(uint a) pure public {
}
}
)";
CHECK_WARNING(text, "Unused function parameter. Remove or comment out the variable name to silence this warning.");
text = R"(
contract C {
function f(uint a) pure public {
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(warn_unused_return_parameter)
{
char const* text = R"(
contract C {
function f() pure public returns (uint a) {
}
}
)";
CHECK_WARNING(text, "Unused function parameter. Remove or comment out the variable name to silence this warning.");
text = R"(
contract C {
function f() pure public returns (uint a) {
return;
}
}
)";
CHECK_WARNING(text, "Unused function parameter. Remove or comment out the variable name to silence this warning.");
text = R"(
contract C {
function f() pure public returns (uint) {
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
contract C {
function f() pure public returns (uint a) {
a = 1;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
contract C {
function f() pure public returns (uint a) {
return 1;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(no_unused_warning_interface_arguments)
{
char const* text = R"(
interface I {
function f(uint a) pure external returns (uint b);
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(no_unused_warning_abstract_arguments)
{
char const* text = R"(
contract C {
function f(uint a) pure public returns (uint b);
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(no_unused_warnings)
{
char const* text = R"(
contract C {
function f(uint a) pure public returns (uint b) {
uint c = 1;
b = a + c;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(no_unused_dec_after_use)
{
char const* text = R"(
contract C {
function f() pure public {
a = 7;
uint a;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(no_unused_inline_asm)
{
char const* text = R"(
contract C {
function f() pure public {
uint a;
assembly {
a := 1
}
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(shadowing_builtins_with_functions)
{
char const* text = R"(
contract C {
function keccak256() pure public {}
}
)";
CHECK_WARNING(text, "shadows a builtin symbol");
}
BOOST_AUTO_TEST_CASE(shadowing_builtins_with_variables)
{
char const* text = R"(
contract C {
function f() pure public {
uint msg;
msg;
}
}
)";
CHECK_WARNING(text, "shadows a builtin symbol");
}
BOOST_AUTO_TEST_CASE(shadowing_builtins_with_storage_variables)
{
char const* text = R"(
contract C {
uint msg;
}
)";
CHECK_WARNING(text, "shadows a builtin symbol");
}
BOOST_AUTO_TEST_CASE(shadowing_builtin_at_global_scope)
{
char const* text = R"(
contract msg {
}
)";
CHECK_WARNING(text, "shadows a builtin symbol");
}
BOOST_AUTO_TEST_CASE(shadowing_builtins_with_parameters)
{
char const* text = R"(
contract C {
function f(uint require) pure public {
require = 2;
}
}
)";
CHECK_WARNING(text, "shadows a builtin symbol");
}
BOOST_AUTO_TEST_CASE(shadowing_builtins_with_return_parameters)
{
char const* text = R"(
contract C {
function f() pure public returns (uint require) {
require = 2;
}
}
)";
CHECK_WARNING(text, "shadows a builtin symbol");
}
BOOST_AUTO_TEST_CASE(shadowing_builtins_with_events)
{
char const* text = R"(
contract C {
event keccak256();
}
)";
CHECK_WARNING(text, "shadows a builtin symbol");
}
BOOST_AUTO_TEST_CASE(shadowing_builtins_ignores_struct)
{
char const* text = R"(
contract C {
struct a {
uint msg;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(shadowing_builtins_ignores_constructor)
{
char const* text = R"(
contract C {
constructor() public {}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(function_overload_is_not_shadowing)
{
char const* text = R"(
contract C {
function f() pure public {}
function f(uint) pure public {}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(function_override_is_not_shadowing)
{
char const* text = R"(
contract D { function f() pure public {} }
contract C is D {
function f(uint) pure public {}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(event_parameter_cannot_shadow_state_variable)
{
char const* text = R"(
contract C {
address a;
event E(address a);
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(callable_crash)
{
char const* text = R"(
contract C {
struct S { uint a; bool x; }
S public s;
function C() public {
3({a: 1, x: true});
}
}
)";
CHECK_ERROR(text, TypeError, "Type is not callable");
}
BOOST_AUTO_TEST_CASE(error_transfer_non_payable_fallback)
{
// This used to be a test for a.transfer to generate a warning
// because A's fallback function is not payable.
char const* text = R"(
contract A {
function() public {}
}
contract B {
A a;
function() public {
a.transfer(100);
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::Warning, "Using contract member \"transfer\" inherited from the address type is deprecated"},
{Error::Type::TypeError, "Value transfer to a contract without a payable fallback function"}
}));
}
BOOST_AUTO_TEST_CASE(error_transfer_no_fallback)
{
// This used to be a test for a.transfer to generate a warning
// because A does not have a payable fallback function.
std::string text = R"(
contract A {}
contract B {
A a;
function() public {
a.transfer(100);
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::Warning, "Using contract member \"transfer\" inherited from the address type is deprecated"},
{Error::Type::TypeError, "Value transfer to a contract without a payable fallback function"}
}));
}
BOOST_AUTO_TEST_CASE(error_send_non_payable_fallback)
{
// This used to be a test for a.send to generate a warning
// because A does not have a payable fallback function.
std::string text = R"(
contract A {
function() public {}
}
contract B {
A a;
function() public {
require(a.send(100));
}
}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::Warning, "Using contract member \"send\" inherited from the address type is deprecated"},
{Error::Type::TypeError, "Value transfer to a contract without a payable fallback function"}
}));
}
BOOST_AUTO_TEST_CASE(does_not_error_transfer_payable_fallback)
{
// This used to be a test for a.transfer to generate a warning
// because A does not have a payable fallback function.
char const* text = R"(
contract A {
function() payable public {}
}
contract B {
A a;
function() public {
a.transfer(100);
}
}
)";
CHECK_WARNING(text, "Using contract member \"transfer\" inherited from the address type is deprecated.");
}
BOOST_AUTO_TEST_CASE(does_not_error_transfer_regular_function)
{
char const* text = R"(
contract A {
function transfer() pure public {}
}
contract B {
A a;
function() public {
a.transfer();
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(returndatasize_as_variable)
{
char const* text = R"(
contract c { function f() public { uint returndatasize; assembly { returndatasize }}}
)";
vector<pair<Error::Type, std::string>> expectations(vector<pair<Error::Type, std::string>>{
{Error::Type::Warning, "Variable is shadowed in inline assembly by an instruction of the same name"},
{Error::Type::Warning, "The use of non-functional instructions is deprecated."},
{Error::Type::DeclarationError, "Unbalanced stack"}
});
if (!dev::test::Options::get().evmVersion().supportsReturndata())
expectations.emplace_back(make_pair(Error::Type::Warning, std::string("\"returndatasize\" instruction is only available for Byzantium-compatible")));
CHECK_ALLOW_MULTI(text, expectations);
}
BOOST_AUTO_TEST_CASE(create2_as_variable)
{
char const* text = R"(
contract c { function f() public { uint create2; assembly { create2(0, 0, 0, 0) } }}
)";
CHECK_ALLOW_MULTI(text, (std::vector<std::pair<Error::Type, std::string>>{
{Error::Type::Warning, "Variable is shadowed in inline assembly by an instruction of the same name"},
{Error::Type::Warning, "The \"create2\" instruction is not supported by the VM version"},
{Error::Type::DeclarationError, "Unbalanced stack"},
{Error::Type::Warning, "not supposed to return values"}
}));
}
BOOST_AUTO_TEST_CASE(warn_unspecified_storage)
{
char const* text = R"(
contract C {
struct S { uint a; string b; }
S x;
function f() view public {
S storage y = x;
y;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
contract C {
struct S { uint a; }
S x;
function f() view public {
S y = x;
y;
}
}
)";
CHECK_WARNING(text, "Variable is declared as a storage pointer. Use an explicit \"storage\" keyword to silence this warning");
text = R"(
pragma experimental "v0.5.0";
contract C {
struct S { uint a; }
S x;
function f() view public {
S y = x;
y;
}
}
)";
CHECK_ERROR(text, TypeError, "Storage location must be specified as either \"memory\" or \"storage\".");
}
BOOST_AUTO_TEST_CASE(storage_location_non_array_or_struct_disallowed)
{
char const* text = R"(
contract C {
function f(uint storage a) public { }
}
)";
CHECK_ERROR(text, TypeError, "Storage location can only be given for array or struct types.");
}
BOOST_AUTO_TEST_CASE(storage_location_non_array_or_struct_disallowed_is_not_fatal)
{
char const* text = R"(
contract C {
function f(uint storage a) public {
a = f;
}
}
)";
CHECK_ERROR_ALLOW_MULTI(text, TypeError, (std::vector<std::string>{"Storage location can only be given for array or struct types."}));
}
BOOST_AUTO_TEST_CASE(implicit_conversion_disallowed)
{
char const* text = R"(
contract C {
function f() public returns (bytes4) {
uint32 tmp = 1;
return tmp;
}
}
)";
CHECK_ERROR(text, TypeError, "Return argument type uint32 is not implicitly convertible to expected type (type of first return variable) bytes4.");
}
BOOST_AUTO_TEST_CASE(too_large_arrays_for_calldata)
{
char const* text = R"(
contract C {
function f(uint[85678901234] a) pure external {
}
}
)";
CHECK_ERROR(text, TypeError, "Array is too large to be encoded.");
text = R"(
contract C {
function f(uint[85678901234] a) pure internal {
}
}
)";
CHECK_ERROR(text, TypeError, "Array is too large to be encoded.");
text = R"(
contract C {
function f(uint[85678901234] a) pure public {
}
}
)";
CHECK_ERROR(text, TypeError, "Array is too large to be encoded.");
}
BOOST_AUTO_TEST_CASE(explicit_literal_to_storage_string)
{
char const* text = R"(
contract C {
function f() pure public {
string memory x = "abc";
x;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
contract C {
function f() pure public {
string storage x = "abc";
}
}
)";
CHECK_ERROR(text, TypeError, "Type literal_string \"abc\" is not implicitly convertible to expected type string storage pointer.");
text = R"(
contract C {
function f() pure public {
string x = "abc";
}
}
)";
CHECK_ERROR(text, TypeError, "Type literal_string \"abc\" is not implicitly convertible to expected type string storage pointer.");
text = R"(
contract C {
function f() pure public {
string("abc");
}
}
)";
CHECK_ERROR(text, TypeError, "Explicit type conversion not allowed from \"literal_string \"abc\"\" to \"string storage pointer\"");
}
BOOST_AUTO_TEST_CASE(modifiers_access_storage_pointer)
{
char const* text = R"(
contract C {
struct S { uint a; }
modifier m(S storage x) {
x;
_;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(function_types_sig)
{
char const* text = R"(
contract C {
function f() view returns (bytes4) {
return f.selector;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"selector\" not found");
text = R"(
contract C {
function g() pure internal {
}
function f() view returns (bytes4) {
return g.selector;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"selector\" not found");
text = R"(
contract C {
function f() view returns (bytes4) {
function () g;
return g.selector;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"selector\" not found");
text = R"(
contract C {
function f() pure external returns (bytes4) {
return this.f.selector;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
contract C {
function h() pure external {
}
function f() view external returns (bytes4) {
var g = this.h;
return g.selector;
}
}
)";
CHECK_WARNING(text, "Use of the \"var\" keyword is deprecated.");
text = R"(
contract C {
function h() pure external {
}
function f() view external returns (bytes4) {
function () pure external g = this.h;
return g.selector;
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
contract C {
function h() pure external {
}
function f() view external returns (bytes4) {
function () pure external g = this.h;
var i = g;
return i.selector;
}
}
)";
CHECK_WARNING(text, "Use of the \"var\" keyword is deprecated.");
}
BOOST_AUTO_TEST_CASE(using_this_in_constructor)
{
char const* text = R"(
contract C {
constructor() public {
this.f();
}
function f() pure public {
}
}
)";
CHECK_WARNING(text, "\"this\" used in constructor");
}
BOOST_AUTO_TEST_CASE(do_not_crash_on_not_lvalue)
{
// This checks for a bug that caused a crash because of continued analysis.
char const* text = R"(
contract C {
mapping (uint => uint) m;
function f() public {
m(1) = 2;
}
}
)";
CHECK_ERROR_ALLOW_MULTI(text, TypeError, (std::vector<std::string>{
"is not callable",
"Expression has to be an lvalue",
"Type int_const 2 is not implicitly"
}));
}
BOOST_AUTO_TEST_CASE(builtin_reject_gas)
{
char const* text = R"(
contract C {
function f() public {
keccak256.gas();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"gas\" not found or not visible after argument-dependent lookup");
text = R"(
contract C {
function f() public {
sha256.gas();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"gas\" not found or not visible after argument-dependent lookup");
text = R"(
contract C {
function f() public {
ripemd160.gas();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"gas\" not found or not visible after argument-dependent lookup");
text = R"(
contract C {
function f() public {
ecrecover.gas();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"gas\" not found or not visible after argument-dependent lookup");
}
BOOST_AUTO_TEST_CASE(gasleft)
{
char const* text = R"(
contract C {
function f() public view returns (uint256 val) { return msg.gas; }
}
)";
CHECK_WARNING(text, "\"msg.gas\" has been deprecated in favor of \"gasleft()\"");
text = R"(
contract C {
function f() public view returns (uint256 val) { return gasleft(); }
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
pragma experimental "v0.5.0";
contract C {
function f() public returns (uint256 val) { return msg.gas; }
}
)";
CHECK_ERROR(text, TypeError, "\"msg.gas\" has been deprecated in favor of \"gasleft()\"");
}
BOOST_AUTO_TEST_CASE(gasleft_shadowing)
{
char const* text = R"(
contract C {
function gasleft() public pure returns (bytes32 val) { return "abc"; }
function f() public pure returns (bytes32 val) { return gasleft(); }
}
)";
CHECK_WARNING(text, "This declaration shadows a builtin symbol.");
text = R"(
contract C {
uint gasleft;
function f() public { gasleft = 42; }
}
)";
CHECK_WARNING(text, "This declaration shadows a builtin symbol.");
}
BOOST_AUTO_TEST_CASE(builtin_reject_value)
{
char const* text = R"(
contract C {
function f() public {
keccak256.value();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"value\" not found or not visible after argument-dependent lookup");
text = R"(
contract C {
function f() public {
sha256.value();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"value\" not found or not visible after argument-dependent lookup");
text = R"(
contract C {
function f() public {
ripemd160.value();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"value\" not found or not visible after argument-dependent lookup");
text = R"(
contract C {
function f() public {
ecrecover.value();
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"value\" not found or not visible after argument-dependent lookup");
}
BOOST_AUTO_TEST_CASE(constructor_without_implementation)
{
char const* text = R"(
contract C {
function C();
}
)";
CHECK_ERROR(text, TypeError, "Constructor must be implemented if declared.");
}
BOOST_AUTO_TEST_CASE(large_storage_array_fine)
{
char const* text = R"(
contract C {
uint[2**64 - 1] x;
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(large_storage_array_simple)
{
char const* text = R"(
contract C {
uint[2**64] x;
}
)";
CHECK_WARNING(text, "covers a large part of storage and thus makes collisions likely");
}
BOOST_AUTO_TEST_CASE(large_storage_arrays_combined)
{
char const* text = R"(
contract C {
uint[200][200][2**30][][2**30] x;
}
)";
CHECK_WARNING(text, "covers a large part of storage and thus makes collisions likely");
}
BOOST_AUTO_TEST_CASE(large_storage_arrays_struct)
{
char const* text = R"(
contract C {
struct S { uint[2**30] x; uint[2**50] y; }
S[2**20] x;
}
)";
CHECK_WARNING(text, "covers a large part of storage and thus makes collisions likely");
}
BOOST_AUTO_TEST_CASE(large_storage_array_mapping)
{
char const* text = R"(
contract C {
mapping(uint => uint[2**100]) x;
}
)";
CHECK_WARNING(text, "covers a large part of storage and thus makes collisions likely");
}
BOOST_AUTO_TEST_CASE(library_function_without_implementation)
{
char const* text = R"(
library L {
function f() public;
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
library L {
function f() internal;
}
)";
CHECK_ERROR(text, TypeError, "Internal library function must be implemented if declared.");
text = R"(
library L {
function f() private;
}
)";
CHECK_ERROR(text, TypeError, "Internal library function must be implemented if declared.");
}
BOOST_AUTO_TEST_CASE(using_for_with_non_library)
{
// This tests a crash that was resolved by making the first error fatal.
char const* text = R"(
library L {
struct S { uint d; }
using S for S;
function f(S _s) internal {
_s.d = 1;
}
}
)";
CHECK_ERROR(text, TypeError, "Library name expected.");
}
BOOST_AUTO_TEST_CASE(experimental_pragma)
{
char const* text = R"(
pragma experimental;
)";
CHECK_ERROR(text, SyntaxError, "Experimental feature name is missing.");
text = R"(
pragma experimental 123;
)";
CHECK_ERROR(text, SyntaxError, "Unsupported experimental feature name.");
text = R"(
pragma experimental unsupportedName;
)";
CHECK_ERROR(text, SyntaxError, "Unsupported experimental feature name.");
text = R"(
pragma experimental "unsupportedName";
)";
CHECK_ERROR(text, SyntaxError, "Unsupported experimental feature name.");
text = R"(
pragma experimental "";
)";
CHECK_ERROR(text, SyntaxError, "Empty experimental feature name is invalid.");
text = R"(
pragma experimental unsupportedName unsupportedName;
)";
CHECK_ERROR(text, SyntaxError, "Stray arguments.");
text = R"(
pragma experimental __test;
)";
CHECK_WARNING(text, "Experimental features are turned on. Do not use experimental features on live deployments.");
text = R"(
pragma experimental __test;
pragma experimental __test;
)";
CHECK_ERROR_ALLOW_MULTI(text, SyntaxError, (std::vector<std::string>{"Duplicate experimental feature name."}));
}
BOOST_AUTO_TEST_CASE(reject_interface_creation)
{
char const* text = R"(
interface I {}
contract C {
function f() public {
new I();
}
}
)";
CHECK_ERROR(text, TypeError, "Cannot instantiate an interface.");
}
BOOST_AUTO_TEST_CASE(accept_library_creation)
{
char const* text = R"(
library L {}
contract C {
function f() public {
new L();
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(reject_interface_constructors)
{
char const* text = R"(
interface I {}
contract C is I(2) {}
)";
CHECK_ERROR(text, TypeError, "Wrong argument count for constructor call: 1 arguments given but expected 0.");
}
BOOST_AUTO_TEST_CASE(non_external_fallback)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function () external { }
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
pragma experimental "v0.5.0";
contract C {
function () internal { }
}
)";
CHECK_ERROR(text, TypeError, "Fallback function must be defined as \"external\".");
text = R"(
pragma experimental "v0.5.0";
contract C {
function () private { }
}
)";
CHECK_ERROR(text, TypeError, "Fallback function must be defined as \"external\".");
text = R"(
pragma experimental "v0.5.0";
contract C {
function () public { }
}
)";
CHECK_ERROR(text, TypeError, "Fallback function must be defined as \"external\".");
}
BOOST_AUTO_TEST_CASE(invalid_literal_in_tuple)
{
char const* text = R"(
contract C {
function f() pure public {
uint x;
(x, ) = (1E111);
}
}
)";
CHECK_ERROR(text, TypeError, "is not implicitly convertible to expected type");
text = R"(
contract C {
function f() pure public {
uint x;
(x, ) = (1, 1E111);
}
}
)";
CHECK_ERROR(text, TypeError, "Invalid rational number.");
text = R"(
contract C {
function f() pure public {
uint x;
(x, ) = (1E111, 1);
}
}
)";
CHECK_ERROR(text, TypeError, "Invalid rational number.");
text = R"(
contract C {
function f() pure public {
(2**270, 1);
}
}
)";
CHECK_ERROR(text, TypeError, "Invalid rational number.");
text = R"(
contract C {
function f() pure public {
((2**270) / 2**100, 1);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(warn_about_sha3)
{
char const* text = R"(
contract test {
function f() pure public {
bytes32 x = sha3(uint8(1));
x;
}
}
)";
CHECK_WARNING(text, "\"sha3\" has been deprecated in favour of \"keccak256\"");
}
BOOST_AUTO_TEST_CASE(warn_about_suicide)
{
char const* text = R"(
contract test {
function f() public {
suicide(1);
}
}
)";
CHECK_WARNING(text, "\"suicide\" has been deprecated in favour of \"selfdestruct\"");
}
BOOST_AUTO_TEST_CASE(address_overload_resolution)
{
char const* text = R"(
contract C {
function balance() returns (uint) {
this.balance; // to avoid pureness warning
return 1;
}
function transfer(uint amount) {
address(this).transfer(amount); // to avoid pureness warning
}
}
contract D {
function f() {
var x = (new C()).balance();
x;
(new C()).transfer(5);
}
}
)";
CHECK_SUCCESS(text);
}
BOOST_AUTO_TEST_CASE(array_length_invalid_expression)
{
char const* text = R"(
contract C {
uint[-true] ids;
}
)";
CHECK_ERROR(text, TypeError, "Invalid array length, expected integer literal or constant expression.");
text = R"(
contract C {
uint[true/1] ids;
}
)";
CHECK_ERROR(text, TypeError, "Invalid array length, expected integer literal or constant expression.");
text = R"(
contract C {
uint[1/true] ids;
}
)";
CHECK_ERROR(text, TypeError, "Invalid array length, expected integer literal or constant expression.");
text = R"(
contract C {
uint[1.111111E1111111111111] ids;
}
)";
CHECK_ERROR(text, TypeError, "Invalid array length, expected integer literal or constant expression.");
text = R"(
contract C {
uint[3/0] ids;
}
)";
CHECK_ERROR(text, TypeError, "Operator / not compatible with types int_const 3 and int_const 0");
}
BOOST_AUTO_TEST_CASE(warn_about_address_members_on_contract)
{
std::string text = R"(
contract C {
function f() view public {
this.balance;
}
}
)";
CHECK_WARNING(text, "Using contract member \"balance\" inherited from the address type is deprecated.");
text = R"(
contract C {
function f() view public {
this.transfer;
}
}
)";
CHECK_ALLOW_MULTI(text, (vector<pair<Error::Type, std::string>>{
{Error::Type::Warning, "Using contract member \"transfer\" inherited from the address type is deprecated"},
{Error::Type::TypeError, "Value transfer to a contract without a payable fallback function"}
}));
text = R"(
contract C {
function f() view public {
this.send;
}
}
)";
CHECK_ALLOW_MULTI(text, (vector<pair<Error::Type, std::string>>{
{Error::Type::Warning, "Using contract member \"send\" inherited from the address type is deprecated"},
{Error::Type::TypeError, "Value transfer to a contract without a payable fallback function"}
}));
text = R"(
contract C {
function f() view public {
this.call;
}
}
)";
CHECK_WARNING(text, "Using contract member \"call\" inherited from the address type is deprecated.");
text = R"(
contract C {
function f() view public {
this.callcode;
}
}
)";
CHECK_ALLOW_MULTI(text, (vector<pair<Error::Type, std::string>>{
{Error::Type::Warning, "Using contract member \"callcode\" inherited from the address type is deprecated"},
{Error::Type::Warning, "\"callcode\" has been deprecated in favour of \"delegatecall\""}
}));
text = R"(
contract C {
function f() view public {
this.delegatecall;
}
}
)";
CHECK_WARNING(text, "Using contract member \"delegatecall\" inherited from the address type is deprecated.");
}
BOOST_AUTO_TEST_CASE(warn_about_address_members_on_non_this_contract)
{
std::string text = R"(
contract C {
function f() view public {
C c;
c.balance;
}
}
)";
CHECK_WARNING(text, "Using contract member \"balance\" inherited from the address type is deprecated");
text = R"(
contract C {
function f() view public {
C c;
c.transfer;
}
}
)";
CHECK_ALLOW_MULTI(text, (vector<pair<Error::Type, std::string>>{
{Error::Type::Warning, "Using contract member \"transfer\" inherited from the address type is deprecated"},
{Error::Type::TypeError, "Value transfer to a contract without a payable fallback function"}
}));
text = R"(
contract C {
function f() view public {
C c;
c.send;
}
}
)";
CHECK_ALLOW_MULTI(text, (vector<pair<Error::Type, std::string>>{
{Error::Type::Warning, "Using contract member \"send\" inherited from the address type is deprecated"},
{Error::Type::TypeError, "Value transfer to a contract without a payable fallback function"}
}));
text = R"(
contract C {
function f() pure public {
C c;
c.call;
}
}
)";
CHECK_WARNING(text, "Using contract member \"call\" inherited from the address type is deprecated");
text = R"(
contract C {
function f() pure public {
C c;
c.callcode;
}
}
)";
CHECK_WARNING_ALLOW_MULTI(text, (std::vector<std::string>{
"Using contract member \"callcode\" inherited from the address type is deprecated",
"\"callcode\" has been deprecated in favour of \"delegatecall\""
}));
text = R"(
contract C {
function f() pure public {
C c;
c.delegatecall;
}
}
)";
CHECK_WARNING(text, "Using contract member \"delegatecall\" inherited from the address type is deprecated");
}
BOOST_AUTO_TEST_CASE(no_address_members_on_contract)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function f() public {
this.balance;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"balance\" not found or not visible after argument-dependent lookup in contract");
text = R"(
pragma experimental "v0.5.0";
contract C {
function f() public {
this.transfer;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"transfer\" not found or not visible after argument-dependent lookup in contract");
text = R"(
pragma experimental "v0.5.0";
contract C {
function f() public {
this.send;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"send\" not found or not visible after argument-dependent lookup in contract");
text = R"(
pragma experimental "v0.5.0";
contract C {
function f() public {
this.call;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"call\" not found or not visible after argument-dependent lookup in contract");
text = R"(
pragma experimental "v0.5.0";
contract C {
function f() public {
this.callcode;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"callcode\" not found or not visible after argument-dependent lookup in contract");
text = R"(
pragma experimental "v0.5.0";
contract C {
function f() public {
this.delegatecall;
}
}
)";
CHECK_ERROR(text, TypeError, "Member \"delegatecall\" not found or not visible after argument-dependent lookup in contract");
}
BOOST_AUTO_TEST_CASE(no_warning_for_using_members_that_look_like_address_members)
{
char const* text = R"(
pragma experimental "v0.5.0";
contract C {
function transfer(uint) public;
function f() public {
this.transfer(10);
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(emit_events)
{
char const* text = R"(
contract C {
event e();
function f() public {
emit e();
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
contract C {
event e(uint a, string b);
function f() public {
emit e(2, "abc");
emit e({b: "abc", a: 8});
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
text = R"(
contract A { event e(uint a, string b); }
contract C is A {
function f() public {
emit A.e(2, "abc");
emit A.e({b: "abc", a: 8});
}
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
}
BOOST_AUTO_TEST_CASE(old_style_events_050)
{
char const* text = R"(
contract C {
event e();
function f() public {
e();
}
}
)";
CHECK_WARNING(text, "without \"emit\" prefix");
text = R"(
pragma experimental "v0.5.0";
contract C {
event e();
function f() public {
e();
}
}
)";
CHECK_ERROR(text, TypeError, "have to be prefixed");
}
BOOST_AUTO_TEST_CASE(getter_is_memory_type)
{
char const* text = R"(
contract C {
struct S { string m; }
string[] public x;
S[] public y;
}
)";
CHECK_SUCCESS_NO_WARNINGS(text);
// Check that the getters return a memory strings, not a storage strings.
ContractDefinition const& c = dynamic_cast<ContractDefinition const&>(*m_compiler.ast("").nodes().at(1));
BOOST_CHECK(c.interfaceFunctions().size() == 2);
for (auto const& f: c.interfaceFunctions())
{
auto const& retType = f.second->returnParameterTypes().at(0);
BOOST_CHECK(retType->dataStoredIn(DataLocation::Memory));
}
}
BOOST_AUTO_TEST_CASE(require_visibility_specifiers)
{
char const* text = R"(
contract C {
function f() pure { }
}
)";
CHECK_WARNING(text, "No visibility specified. Defaulting to");
text = R"(
pragma experimental "v0.5.0";
contract C {
function f() pure { }
}
)";
CHECK_ERROR(text, SyntaxError, "No visibility specified.");
}
BOOST_AUTO_TEST_CASE(blockhash)
{
char const* code = R"(
contract C {
function f() public view returns (bytes32) {
return block.blockhash(3);
}
}
)";
CHECK_WARNING(code, "\"block.blockhash()\" has been deprecated in favor of \"blockhash()\"");
code = R"(
contract C {
function f() public view returns (bytes32) { return blockhash(3); }
}
)";
CHECK_SUCCESS_NO_WARNINGS(code);
code = R"(
pragma experimental "v0.5.0";
contract C {
function f() public returns (bytes32) { return block.blockhash(3); }
}
)";
CHECK_ERROR(code, TypeError, "\"block.blockhash()\" has been deprecated in favor of \"blockhash()\"");
}
BOOST_AUTO_TEST_SUITE_END()
}
}
} // end namespaces