solidity/libyul/backends/evm/OptimizedEVMCodeTransform.cpp
2021-07-06 19:05:36 +02:00

459 lines
17 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <libyul/backends/evm/OptimizedEVMCodeTransform.h>
#include <libyul/backends/evm/ControlFlowGraphBuilder.h>
#include <libyul/backends/evm/StackHelpers.h>
#include <libyul/backends/evm/StackLayoutGenerator.h>
#include <libyul/Utilities.h>
#include <libsolutil/Permutations.h>
#include <libsolutil/Visitor.h>
#include <libsolutil/cxx20.h>
#include <range/v3/action/push_back.hpp>
#include <range/v3/view/drop.hpp>
#include <range/v3/view/enumerate.hpp>
#include <range/v3/view/filter.hpp>
#include <range/v3/view/map.hpp>
#include <range/v3/view/reverse.hpp>
#include <range/v3/view/take_last.hpp>
using namespace solidity;
using namespace solidity::yul;
using namespace std;
OptimizedEVMCodeTransform::OptimizedEVMCodeTransform(
AbstractAssembly& _assembly,
BuiltinContext& _builtinContext,
bool _useNamedLabelsForFunctions,
CFG const& _dfg,
StackLayout const& _stackLayout
):
m_assembly(_assembly),
m_builtinContext(_builtinContext),
m_useNamedLabelsForFunctions(_useNamedLabelsForFunctions),
m_dfg(_dfg),
m_stackLayout(_stackLayout)
{
}
void OptimizedEVMCodeTransform::assertLayoutCompatibility(Stack const& _currentStack, Stack const& _desiredStack)
{
for (auto&& [currentSlot, desiredSlot]: ranges::zip_view(_currentStack, _desiredStack))
yulAssert(holds_alternative<JunkSlot>(desiredSlot) || currentSlot == desiredSlot, "");
}
AbstractAssembly::LabelID OptimizedEVMCodeTransform::getFunctionLabel(Scope::Function const& _function)
{
CFG::FunctionInfo const& functionInfo = m_dfg.functionInfo.at(&_function);
if (!m_functionLabels.count(&functionInfo))
{
m_functionLabels[&functionInfo] = m_useNamedLabelsForFunctions ?
m_assembly.namedLabel(
functionInfo.function.name.str(),
functionInfo.function.arguments.size(),
functionInfo.function.returns.size(),
{}
) : m_assembly.newLabelId();
}
return m_functionLabels[&functionInfo];
}
void OptimizedEVMCodeTransform::validateSlot(StackSlot const& _slot, Expression const& _expression)
{
std::visit(util::GenericVisitor{
[&](yul::Literal const& _literal) {
auto* literalSlot = get_if<LiteralSlot>(&_slot);
yulAssert(literalSlot && valueOfLiteral(_literal) == literalSlot->value, "");
},
[&](yul::Identifier const& _identifier) {
auto* variableSlot = get_if<VariableSlot>(&_slot);
yulAssert(variableSlot && variableSlot->variable.get().name == _identifier.name, "");
},
[&](yul::FunctionCall const& _call) {
auto* temporarySlot = get_if<TemporarySlot>(&_slot);
yulAssert(temporarySlot && &temporarySlot->call.get() == &_call, "");
}
}, _expression);
}
void OptimizedEVMCodeTransform::operator()(CFG::FunctionInfo const& _functionInfo)
{
yulAssert(!m_currentFunctionInfo, "");
m_currentFunctionInfo = &_functionInfo;
Stack const& entryLayout = m_stackLayout.blockInfos.at(_functionInfo.entry).entryLayout;
m_stack.clear();
m_stack.emplace_back(FunctionReturnLabelSlot{});
for (auto const& param: _functionInfo.parameters | ranges::views::reverse)
m_stack.emplace_back(param);
m_assembly.setStackHeight(static_cast<int>(m_stack.size()));
m_assembly.setSourceLocation(locationOf(_functionInfo));
if (!m_functionLabels.count(&_functionInfo))
m_functionLabels[&_functionInfo] = m_assembly.newLabelId();
m_assembly.appendLabel(getFunctionLabel(_functionInfo.function));
createStackLayout(entryLayout);
(*this)(*_functionInfo.entry);
m_currentFunctionInfo = nullptr;
m_stack.clear();
m_assembly.setStackHeight(0);
}
void OptimizedEVMCodeTransform::operator()(CFG::FunctionCall const& _call)
{
yulAssert(m_stack.size() >= _call.function.get().arguments.size() + 1, "");
auto returnLabel = m_returnLabels.at(&_call.functionCall.get());
// Assert that we got a correct arguments on stack for the call.
for (auto&& [arg, slot]: ranges::zip_view(
_call.functionCall.get().arguments | ranges::views::reverse,
m_stack | ranges::views::take_last(_call.functionCall.get().arguments.size())
))
validateSlot(slot, arg);
// Assert that we got the correct return label on stack.
auto* returnLabelSlot = get_if<FunctionCallReturnLabelSlot>(&m_stack.at(m_stack.size() - _call.functionCall.get().arguments.size() - 1));
yulAssert(returnLabelSlot && &returnLabelSlot->call.get() == &_call.functionCall.get(), "");
m_assembly.setSourceLocation(locationOf(_call));
m_assembly.appendJumpTo(
getFunctionLabel(_call.function),
static_cast<int>(_call.function.get().returns.size() - _call.function.get().arguments.size()) - 1,
AbstractAssembly::JumpType::IntoFunction
);
m_assembly.appendLabel(returnLabel);
// Remove arguments and return label from m_stack.
for (size_t i = 0; i < _call.function.get().arguments.size() + 1; ++i)
m_stack.pop_back();
// Push return values to m_stack.
ranges::actions::push_back(
m_stack,
ranges::views::iota(0u, _call.function.get().returns.size()) |
ranges::views::transform([&](size_t _i) -> StackSlot { return TemporarySlot{_call.functionCall, _i}; })
);
yulAssert(m_assembly.stackHeight() == static_cast<int>(m_stack.size()), "");
}
void OptimizedEVMCodeTransform::operator()(CFG::BuiltinCall const& _call)
{
yulAssert(m_stack.size() >= _call.arguments, "");
// Assert that we got a correct stack for the call.
for (auto&& [arg, slot]: ranges::zip_view(
_call.functionCall.get().arguments | ranges::views::enumerate |
ranges::views::filter(util::mapTuple([&](size_t idx, auto&) -> bool { return !_call.builtin.get().literalArgument(idx); })) |
ranges::views::reverse | ranges::views::values,
m_stack | ranges::views::take_last(_call.arguments)
))
validateSlot(slot, arg);
m_assembly.setSourceLocation(locationOf(_call));
static_cast<BuiltinFunctionForEVM const&>(_call.builtin.get()).generateCode(_call.functionCall, m_assembly, m_builtinContext, [](auto&&){});
// Remove arguments from m_stack.
for (size_t i = 0; i < _call.arguments; ++i)
m_stack.pop_back();
// Push return values to m_stack.
ranges::actions::push_back(
m_stack,
ranges::views::iota(0u, _call.builtin.get().returns.size()) |
ranges::views::transform([&](size_t _i) -> StackSlot { return TemporarySlot{_call.functionCall, _i};})
);
yulAssert(m_assembly.stackHeight() == static_cast<int>(m_stack.size()), "");
}
void OptimizedEVMCodeTransform::operator()(CFG::Assignment const& _assignment)
{
for (auto& currentSlot: m_stack)
if (VariableSlot const* varSlot = get_if<VariableSlot>(&currentSlot))
if (util::findOffset(_assignment.variables, *varSlot))
currentSlot = JunkSlot{};
for (auto&& [currentSlot, varSlot]: ranges::zip_view(m_stack | ranges::views::take_last(_assignment.variables.size()), _assignment.variables))
currentSlot = varSlot;
}
void OptimizedEVMCodeTransform::operator()(CFG::BasicBlock const& _block)
{
if (!m_generated.insert(&_block).second)
return;
auto&& [entryLayout, exitLayout] = m_stackLayout.blockInfos.at(&_block);
if (auto label = util::valueOrNullptr(m_blockLabels, &_block))
m_assembly.appendLabel(*label);
assertLayoutCompatibility(m_stack, entryLayout);
m_stack = entryLayout;
yulAssert(static_cast<int>(m_stack.size()) == m_assembly.stackHeight(), "");
for (auto const& operation: _block.operations)
{
createStackLayout(m_stackLayout.operationEntryLayout.at(&operation));
std::visit(*this, operation.operation);
}
createStackLayout(exitLayout);
std::visit(util::GenericVisitor{
[&](CFG::BasicBlock::MainExit const&)
{
m_assembly.appendInstruction(evmasm::Instruction::STOP);
m_assembly.setStackHeight(0);
m_stack.clear();
},
[&](CFG::BasicBlock::Jump const& _jump)
{
Stack const& entryLayout = m_stackLayout.blockInfos.at(_jump.target).entryLayout;
createStackLayout(entryLayout);
if (!m_blockLabels.count(_jump.target) && _jump.target->entries.size() == 1)
{
yulAssert(!_jump.backwards, "");
(*this)(*_jump.target);
}
else
{
if (!m_blockLabels.count(_jump.target))
m_blockLabels[_jump.target] = m_assembly.newLabelId();
m_assembly.appendJumpTo(m_blockLabels[_jump.target]);
if (!m_generated.count(_jump.target))
(*this)(*_jump.target);
}
},
[&](CFG::BasicBlock::ConditionalJump const& _conditionalJump)
{
if (!m_blockLabels.count(_conditionalJump.nonZero))
m_blockLabels[_conditionalJump.nonZero] = m_assembly.newLabelId();
m_assembly.appendJumpToIf(m_blockLabels[_conditionalJump.nonZero]);
m_stack.pop_back();
assertLayoutCompatibility(m_stack, m_stackLayout.blockInfos.at(_conditionalJump.nonZero).entryLayout);
assertLayoutCompatibility(m_stack, m_stackLayout.blockInfos.at(_conditionalJump.zero).entryLayout);
{
ScopedSaveAndRestore stackRestore(m_stack, Stack{m_stack});
if (!m_blockLabels.count(_conditionalJump.zero))
m_blockLabels[_conditionalJump.zero] = m_assembly.newLabelId();
if (m_generated.count(_conditionalJump.zero))
m_assembly.appendJumpTo(m_blockLabels[_conditionalJump.zero]);
else
(*this)(*_conditionalJump.zero);
}
if (!m_generated.count(_conditionalJump.nonZero))
{
m_assembly.setStackHeight(static_cast<int>(m_stack.size()));
(*this)(*_conditionalJump.nonZero);
}
},
[&](CFG::BasicBlock::FunctionReturn const& _functionReturn)
{
yulAssert(m_currentFunctionInfo, "");
yulAssert(m_currentFunctionInfo == _functionReturn.info, "");
Stack exitStack = m_currentFunctionInfo->returnVariables | ranges::views::transform([](auto const& _varSlot){
return StackSlot{_varSlot};
}) | ranges::to<Stack>;
exitStack.emplace_back(FunctionReturnLabelSlot{});
createStackLayout(exitStack);
m_assembly.setSourceLocation(locationOf(*m_currentFunctionInfo));
m_assembly.appendJump(0, AbstractAssembly::JumpType::OutOfFunction); // TODO: stack height diff.
m_assembly.setStackHeight(0);
m_stack.clear();
},
[&](CFG::BasicBlock::Terminated const&)
{
m_assembly.setStackHeight(0);
m_stack.clear();
}
}, _block.exit);
}
// TODO: It may or may not be nicer to merge this with createStackLayout (e.g. by adding an option to it that
// disables actually emitting assembly output).
Stack OptimizedEVMCodeTransform::tryCreateStackLayout(Stack const& _currentStack, Stack _targetStack)
{
Stack unreachable;
Stack commonPrefix;
for (auto&& [slot1, slot2]: ranges::zip_view(_currentStack, _targetStack))
{
if (!(slot1 == slot2))
break;
commonPrefix.emplace_back(slot1);
}
Stack temporaryStack = _currentStack | ranges::views::drop(commonPrefix.size()) | ranges::to<Stack>;
::createStackLayout(temporaryStack, _targetStack | ranges::views::drop(commonPrefix.size()) | ranges::to<Stack>, [&](unsigned _i) {
if (_i > 16)
{
if (!util::findOffset(unreachable, temporaryStack.at(temporaryStack.size() - _i - 1)))
unreachable.emplace_back(temporaryStack.at(temporaryStack.size() - _i - 1));
}
}, [&](unsigned _i) {
if (_i > 16)
{
if (!util::findOffset(unreachable, temporaryStack.at(temporaryStack.size() - _i - 1)))
unreachable.emplace_back(temporaryStack.at(temporaryStack.size() - _i - 1));
}
}, [&](StackSlot const& _slot) {
Stack currentFullStack = commonPrefix;
for (auto slot: temporaryStack)
currentFullStack.emplace_back(slot);
if (auto depth = util::findOffset(currentFullStack | ranges::views::reverse, _slot))
{
if (*depth + 1 > 16)
{
if (!util::findOffset(unreachable, _slot))
unreachable.emplace_back(_slot);
}
return;
}
}, [&]() {});
return unreachable;
}
void OptimizedEVMCodeTransform::createStackLayout(Stack _targetStack)
{
Stack commonPrefix;
for (auto&& [currentSlot, targetSlot]: ranges::zip_view(m_stack, _targetStack))
{
if (!(currentSlot == targetSlot) || holds_alternative<JunkSlot>(targetSlot))
break;
commonPrefix.emplace_back(targetSlot);
}
Stack temporaryStack = m_stack | ranges::views::drop(commonPrefix.size()) | ranges::to<Stack>;
if (!tryCreateStackLayout(m_stack, _targetStack).empty())
{
yulAssert(false, "Stack too deep."); // Make this a hard failure now to focus on avoiding it earlier.
// TODO: check if we can do better.
// Maybe switching to a general "fix everything deep first" algorithm.
// Or we just let these cases, that weren't fixed in the StackLayoutGenerator go through and report the
// need for stack limit evasion for these cases instead.
std::map<unsigned, StackSlot> slotsByDepth;
for (auto slot: _targetStack | ranges::views::take_last(_targetStack.size() - commonPrefix.size()))
if (auto offset = util::findOffset(m_stack | ranges::views::reverse | ranges::to<Stack>, slot))
slotsByDepth.insert(std::make_pair(*offset, slot));
for (auto slot: slotsByDepth | ranges::views::reverse | ranges::views::values)
if (!util::findOffset(temporaryStack, slot))
{
auto offset = util::findOffset(m_stack | ranges::views::reverse | ranges::to<Stack>, slot);
m_stack.emplace_back(slot);
m_assembly.appendInstruction(evmasm::dupInstruction(static_cast<unsigned>(*offset + 1)));
}
temporaryStack = m_stack | ranges::views::drop(commonPrefix.size()) | ranges::to<Stack>;
}
::createStackLayout(temporaryStack, _targetStack | ranges::views::drop(commonPrefix.size()) | ranges::to<Stack>, [&](unsigned _i) {
m_assembly.appendInstruction(evmasm::swapInstruction(_i));
}, [&](unsigned _i) {
m_assembly.appendInstruction(evmasm::dupInstruction(_i));
}, [&](StackSlot const& _slot) {
Stack currentFullStack = commonPrefix;
for (auto slot: temporaryStack)
currentFullStack.emplace_back(slot);
if (auto depth = util::findOffset(currentFullStack | ranges::views::reverse, _slot))
{
m_assembly.appendInstruction(evmasm::dupInstruction(static_cast<unsigned>(*depth + 1)));
return;
}
std::visit(util::GenericVisitor{
[&](LiteralSlot const& _literal)
{
m_assembly.setSourceLocation(locationOf(_literal));
m_assembly.appendConstant(_literal.value);
},
[&](FunctionReturnLabelSlot const&)
{
yulAssert(false, "Cannot produce function return label.");
},
[&](FunctionCallReturnLabelSlot const& _returnLabel)
{
if (!m_returnLabels.count(&_returnLabel.call.get()))
m_returnLabels[&_returnLabel.call.get()] = m_assembly.newLabelId();
m_assembly.appendLabelReference(m_returnLabels.at(&_returnLabel.call.get()));
},
[&](VariableSlot const& _variable)
{
if (m_currentFunctionInfo)
if (util::contains(m_currentFunctionInfo->returnVariables, _variable))
{
// TODO: maybe track uninitialized return variables.
m_assembly.appendConstant(0);
return;
}
yulAssert(false, "Variable not found on stack.");
},
[&](TemporarySlot const&)
{
yulAssert(false, "Function call result requested, but not found on stack.");
},
[&](JunkSlot const&)
{
// Note: this will always be popped, so we can push anything.
// TODO: discuss if PC is in fact a good choice here.
// Advantages:
// - costs only 2 gas
// - deterministic value (in case it is in fact used due to some bug)
// - hard to exploit in case of a bug
// - distinctive, since it is not generated elsewhere
// Disadvantages:
// - static analysis might get confused until it realizes that these are always popped
// Alternatives:
// - any other opcode with cost 2
// - unless the stack is empty: DUP1
// - the constant 0
// Note: it might even make sense to introduce a specific assembly item for this, s.t.
// the peephole optimizer can deal with this (e.g. POP PUSHJUNK can be removed).
m_assembly.appendInstruction(evmasm::Instruction::PC);
}
}, _slot);
}, [&]() { m_assembly.appendInstruction(evmasm::Instruction::POP); });
m_stack = commonPrefix;
for (auto slot: temporaryStack)
m_stack.emplace_back(slot);
}
void OptimizedEVMCodeTransform::run(
AbstractAssembly& _assembly,
AsmAnalysisInfo& _analysisInfo,
Block const& _block,
EVMDialect const& _dialect,
BuiltinContext& _builtinContext,
ExternalIdentifierAccess const&,
bool _useNamedLabelsForFunctions
)
{
std::unique_ptr<CFG> dfg = ControlFlowGraphBuilder::build(_analysisInfo, _dialect, _block);
StackLayout stackLayout = StackLayoutGenerator::run(*dfg);
OptimizedEVMCodeTransform optimizedCodeTransform(_assembly, _builtinContext, _useNamedLabelsForFunctions, *dfg, stackLayout);
optimizedCodeTransform(*dfg->entry);
for (Scope::Function const* function: dfg->functions)
optimizedCodeTransform(dfg->functionInfo.at(function));
}