solidity/libevmasm/RuleList.h
2019-11-15 00:34:01 +01:00

678 lines
21 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @date 2018
* Templatized list of simplification rules.
*/
#pragma once
#include <libevmasm/Instruction.h>
#include <libevmasm/SimplificationRule.h>
#include <libdevcore/CommonData.h>
#include <boost/multiprecision/detail/min_max.hpp>
#include <vector>
#include <functional>
namespace dev
{
namespace eth
{
template <class S> S divWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) / bigint(_b));
}
template <class S> S modWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) % bigint(_b));
}
// This works around a bug fixed with Boost 1.64.
// https://www.boost.org/doc/libs/1_68_0/libs/multiprecision/doc/html/boost_multiprecision/map/hist.html#boost_multiprecision.map.hist.multiprecision_2_3_1_boost_1_64
template <class S> S shlWorkaround(S const& _x, unsigned _amount)
{
return u256((bigint(_x) << _amount) & u256(-1));
}
// simplificationRuleList below was split up into parts to prevent
// stack overflows in the JavaScript optimizer for emscripten builds
// that affected certain browser versions.
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleListPart1(
Pattern A,
Pattern B,
Pattern C,
Pattern,
Pattern
)
{
using Word = typename Pattern::Word;
using Builtins = typename Pattern::Builtins;
return std::vector<SimplificationRule<Pattern>> {
// arithmetic on constants
{Builtins::ADD(A, B), [=]{ return A.d() + B.d(); }, false},
{Builtins::MUL(A, B), [=]{ return A.d() * B.d(); }, false},
{Builtins::SUB(A, B), [=]{ return A.d() - B.d(); }, false},
{Builtins::DIV(A, B), [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }, false},
{Builtins::SDIV(A, B), [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }, false},
{Builtins::MOD(A, B), [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }, false},
{Builtins::SMOD(A, B), [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }, false},
{Builtins::EXP(A, B), [=]{ return Word(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << Pattern::WordSize)); }, false},
{Builtins::NOT(A), [=]{ return ~A.d(); }, false},
{Builtins::LT(A, B), [=]() -> Word { return A.d() < B.d() ? 1 : 0; }, false},
{Builtins::GT(A, B), [=]() -> Word { return A.d() > B.d() ? 1 : 0; }, false},
{Builtins::SLT(A, B), [=]() -> Word { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }, false},
{Builtins::SGT(A, B), [=]() -> Word { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }, false},
{Builtins::EQ(A, B), [=]() -> Word { return A.d() == B.d() ? 1 : 0; }, false},
{Builtins::ISZERO(A), [=]() -> Word { return A.d() == 0 ? 1 : 0; }, false},
{Builtins::AND(A, B), [=]{ return A.d() & B.d(); }, false},
{Builtins::OR(A, B), [=]{ return A.d() | B.d(); }, false},
{Builtins::XOR(A, B), [=]{ return A.d() ^ B.d(); }, false},
{Builtins::BYTE(A, B), [=]{
return
A.d() >= Pattern::WordSize / 8 ?
0 :
(B.d() >> unsigned(8 * (Pattern::WordSize / 8 - 1 - A.d()))) & 0xff;
}, false},
{Builtins::ADDMOD(A, B, C), [=]{ return C.d() == 0 ? 0 : Word((bigint(A.d()) + bigint(B.d())) % C.d()); }, false},
{Builtins::MULMOD(A, B, C), [=]{ return C.d() == 0 ? 0 : Word((bigint(A.d()) * bigint(B.d())) % C.d()); }, false},
{Builtins::SIGNEXTEND(A, B), [=]() -> Word {
if (A.d() >= Pattern::WordSize / 8 - 1)
return B.d();
unsigned testBit = unsigned(A.d()) * 8 + 7;
Word mask = (Word(1) << testBit) - 1;
return boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask;
}, false},
{Builtins::SHL(A, B), [=]{
if (A.d() >= Pattern::WordSize)
return Word(0);
return shlWorkaround(B.d(), unsigned(A.d()));
}, false},
{Builtins::SHR(A, B), [=]{
if (A.d() >= Pattern::WordSize)
return Word(0);
return B.d() >> unsigned(A.d());
}, false}
};
}
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleListPart2(
Pattern,
Pattern,
Pattern,
Pattern X,
Pattern Y
)
{
using Word = typename Pattern::Word;
using Builtins = typename Pattern::Builtins;
return std::vector<SimplificationRule<Pattern>> {
// invariants involving known constants
{Builtins::ADD(X, 0), [=]{ return X; }, false},
{Builtins::ADD(0, X), [=]{ return X; }, false},
{Builtins::SUB(X, 0), [=]{ return X; }, false},
{Builtins::SUB(~Word(0), X), [=]() -> Pattern { return Builtins::NOT(X); }, false},
{Builtins::MUL(X, 0), [=]{ return Word(0); }, true},
{Builtins::MUL(0, X), [=]{ return Word(0); }, true},
{Builtins::MUL(X, 1), [=]{ return X; }, false},
{Builtins::MUL(1, X), [=]{ return X; }, false},
{Builtins::MUL(X, Word(-1)), [=]() -> Pattern { return Builtins::SUB(0, X); }, false},
{Builtins::MUL(Word(-1), X), [=]() -> Pattern { return Builtins::SUB(0, X); }, false},
{Builtins::DIV(X, 0), [=]{ return Word(0); }, true},
{Builtins::DIV(0, X), [=]{ return Word(0); }, true},
{Builtins::DIV(X, 1), [=]{ return X; }, false},
{Builtins::SDIV(X, 0), [=]{ return Word(0); }, true},
{Builtins::SDIV(0, X), [=]{ return Word(0); }, true},
{Builtins::SDIV(X, 1), [=]{ return X; }, false},
{Builtins::AND(X, ~Word(0)), [=]{ return X; }, false},
{Builtins::AND(~Word(0), X), [=]{ return X; }, false},
{Builtins::AND(X, 0), [=]{ return Word(0); }, true},
{Builtins::AND(0, X), [=]{ return Word(0); }, true},
{Builtins::OR(X, 0), [=]{ return X; }, false},
{Builtins::OR(0, X), [=]{ return X; }, false},
{Builtins::OR(X, ~Word(0)), [=]{ return ~Word(0); }, true},
{Builtins::OR(~Word(0), X), [=]{ return ~Word(0); }, true},
{Builtins::XOR(X, 0), [=]{ return X; }, false},
{Builtins::XOR(0, X), [=]{ return X; }, false},
{Builtins::MOD(X, 0), [=]{ return Word(0); }, true},
{Builtins::MOD(0, X), [=]{ return Word(0); }, true},
{Builtins::EQ(X, 0), [=]() -> Pattern { return Builtins::ISZERO(X); }, false },
{Builtins::EQ(0, X), [=]() -> Pattern { return Builtins::ISZERO(X); }, false },
{Builtins::SHL(0, X), [=]{ return X; }, false},
{Builtins::SHR(0, X), [=]{ return X; }, false},
{Builtins::SHL(X, 0), [=]{ return Word(0); }, true},
{Builtins::SHR(X, 0), [=]{ return Word(0); }, true},
{Builtins::GT(X, 0), [=]() -> Pattern { return Builtins::ISZERO(Builtins::ISZERO(X)); }, false},
{Builtins::LT(0, X), [=]() -> Pattern { return Builtins::ISZERO(Builtins::ISZERO(X)); }, false},
{Builtins::GT(X, ~Word(0)), [=]{ return Word(0); }, true},
{Builtins::LT(~Word(0), X), [=]{ return Word(0); }, true},
{Builtins::GT(0, X), [=]{ return Word(0); }, true},
{Builtins::LT(X, 0), [=]{ return Word(0); }, true},
{Builtins::AND(Builtins::BYTE(X, Y), Word(0xff)), [=]() -> Pattern { return Builtins::BYTE(X, Y); }, false},
{Builtins::BYTE(Word(Pattern::WordSize / 8 - 1), X), [=]() -> Pattern { return Builtins::AND(X, Word(0xff)); }, false}
};
}
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleListPart3(
Pattern,
Pattern,
Pattern,
Pattern X,
Pattern
)
{
using Word = typename Pattern::Word;
using Builtins = typename Pattern::Builtins;
return std::vector<SimplificationRule<Pattern>> {
// operations involving an expression and itself
{Builtins::AND(X, X), [=]{ return X; }, true},
{Builtins::OR(X, X), [=]{ return X; }, true},
{Builtins::XOR(X, X), [=]{ return Word(0); }, true},
{Builtins::SUB(X, X), [=]{ return Word(0); }, true},
{Builtins::EQ(X, X), [=]{ return Word(1); }, true},
{Builtins::LT(X, X), [=]{ return Word(0); }, true},
{Builtins::SLT(X, X), [=]{ return Word(0); }, true},
{Builtins::GT(X, X), [=]{ return Word(0); }, true},
{Builtins::SGT(X, X), [=]{ return Word(0); }, true},
{Builtins::MOD(X, X), [=]{ return Word(0); }, true}
};
}
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleListPart4(
Pattern,
Pattern,
Pattern,
Pattern X,
Pattern Y
)
{
using Word = typename Pattern::Word;
using Builtins = typename Pattern::Builtins;
return std::vector<SimplificationRule<Pattern>> {
// logical instruction combinations
{Builtins::NOT(Builtins::NOT(X)), [=]{ return X; }, false},
{Builtins::XOR(X, Builtins::XOR(X, Y)), [=]{ return Y; }, true},
{Builtins::XOR(X, Builtins::XOR(Y, X)), [=]{ return Y; }, true},
{Builtins::XOR(Builtins::XOR(X, Y), X), [=]{ return Y; }, true},
{Builtins::XOR(Builtins::XOR(Y, X), X), [=]{ return Y; }, true},
{Builtins::OR(X, Builtins::AND(X, Y)), [=]{ return X; }, true},
{Builtins::OR(X, Builtins::AND(Y, X)), [=]{ return X; }, true},
{Builtins::OR(Builtins::AND(X, Y), X), [=]{ return X; }, true},
{Builtins::OR(Builtins::AND(Y, X), X), [=]{ return X; }, true},
{Builtins::AND(X, Builtins::OR(X, Y)), [=]{ return X; }, true},
{Builtins::AND(X, Builtins::OR(Y, X)), [=]{ return X; }, true},
{Builtins::AND(Builtins::OR(X, Y), X), [=]{ return X; }, true},
{Builtins::AND(Builtins::OR(Y, X), X), [=]{ return X; }, true},
{Builtins::AND(X, Builtins::NOT(X)), [=]{ return Word(0); }, true},
{Builtins::AND(Builtins::NOT(X), X), [=]{ return Word(0); }, true},
{Builtins::OR(X, Builtins::NOT(X)), [=]{ return ~Word(0); }, true},
{Builtins::OR(Builtins::NOT(X), X), [=]{ return ~Word(0); }, true},
};
}
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleListPart5(
Pattern A,
Pattern,
Pattern,
Pattern X,
Pattern
)
{
using Word = typename Pattern::Word;
using Builtins = typename Pattern::Builtins;
std::vector<SimplificationRule<Pattern>> rules;
// Replace MOD X, <power-of-two> with AND X, <power-of-two> - 1
for (size_t i = 0; i < Pattern::WordSize; ++i)
{
Word value = Word(1) << i;
rules.push_back({
Builtins::MOD(X, value),
[=]() -> Pattern { return Builtins::AND(X, value - 1); },
false
});
}
// Replace SHL >=256, X with 0
rules.push_back({
Builtins::SHL(A, X),
[=]() -> Pattern { return Word(0); },
true,
[=]() { return A.d() >= Pattern::WordSize; }
});
// Replace SHR >=256, X with 0
rules.push_back({
Builtins::SHR(A, X),
[=]() -> Pattern { return Word(0); },
true,
[=]() { return A.d() >= Pattern::WordSize; }
});
// Replace BYTE(A, X), A >= 32 with 0
rules.push_back({
Builtins::BYTE(A, X),
[=]() -> Pattern { return Word(0); },
true,
[=]() { return A.d() >= Pattern::WordSize / 8; }
});
for (auto instr: {
Instruction::ADDRESS,
Instruction::CALLER,
Instruction::ORIGIN,
Instruction::COINBASE
})
{
assertThrow(Pattern::WordSize > 160, OptimizerException, "");
Word const mask = (Word(1) << 160) - 1;
rules.push_back({
Builtins::AND(Pattern{instr}, mask),
[=]() -> Pattern { return {instr}; },
false
});
rules.push_back({
Builtins::AND(mask, Pattern{instr}),
[=]() -> Pattern { return {instr}; },
false
});
}
return rules;
}
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleListPart6(
Pattern,
Pattern,
Pattern,
Pattern X,
Pattern Y
)
{
using Builtins = typename Pattern::Builtins;
std::vector<SimplificationRule<Pattern>> rules;
// Double negation of opcodes with boolean result
for (auto instr: {
Instruction::EQ,
Instruction::LT,
Instruction::SLT,
Instruction::GT,
Instruction::SGT
})
{
typename Builtins::PatternGeneratorInstance op{instr};
rules.push_back({
Builtins::ISZERO(Builtins::ISZERO(op(X, Y))),
[=]() -> Pattern { return op(X, Y); },
false
});
}
rules.push_back({
Builtins::ISZERO(Builtins::ISZERO(Builtins::ISZERO(X))),
[=]() -> Pattern { return Builtins::ISZERO(X); },
false
});
rules.push_back({
Builtins::ISZERO(Builtins::XOR(X, Y)),
[=]() -> Pattern { return Builtins::EQ(X, Y); },
false
});
return rules;
}
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleListPart7(
Pattern A,
Pattern B,
Pattern,
Pattern X,
Pattern Y
)
{
using Word = typename Pattern::Word;
using Builtins = typename Pattern::Builtins;
std::vector<SimplificationRule<Pattern>> rules;
// Associative operations
for (auto&& instrAndFunc: std::vector<std::pair<Instruction, std::function<Word(Word, Word)>>>{
{Instruction::ADD, std::plus<Word>()},
{Instruction::MUL, std::multiplies<Word>()},
{Instruction::AND, std::bit_and<Word>()},
{Instruction::OR, std::bit_or<Word>()},
{Instruction::XOR, std::bit_xor<Word>()}
})
{
typename Builtins::PatternGeneratorInstance op{instrAndFunc.first};
std::function<Word(Word, Word)> fun = instrAndFunc.second;
// Moving constants to the outside, order matters here - we first add rules
// for constants and then for non-constants.
// xa can be (X, A) or (A, X)
for (auto const& opXA: {op(X, A), op(A, X)})
{
rules += std::vector<SimplificationRule<Pattern>>{{
// (X+A)+B -> X+(A+B)
op(opXA, B),
[=]() -> Pattern { return op(X, fun(A.d(), B.d())); },
false
}, {
// (X+A)+Y -> (X+Y)+A
op(opXA, Y),
[=]() -> Pattern { return op(op(X, Y), A); },
false
}, {
// B+(X+A) -> X+(A+B)
op(B, opXA),
[=]() -> Pattern { return op(X, fun(A.d(), B.d())); },
false
}, {
// Y+(X+A) -> (Y+X)+A
op(Y, opXA),
[=]() -> Pattern { return op(op(Y, X), A); },
false
}};
}
}
// Combine two SHL by constant
rules.push_back({
// SHL(B, SHL(A, X)) -> SHL(min(A+B, 256), X)
Builtins::SHL(B, Builtins::SHL(A, X)),
[=]() -> Pattern {
bigint sum = bigint(A.d()) + B.d();
if (sum >= Pattern::WordSize)
return Builtins::AND(X, Word(0));
else
return Builtins::SHL(Word(sum), X);
},
false
});
// Combine two SHR by constant
rules.push_back({
// SHR(B, SHR(A, X)) -> SHR(min(A+B, 256), X)
Builtins::SHR(B, Builtins::SHR(A, X)),
[=]() -> Pattern {
bigint sum = bigint(A.d()) + B.d();
if (sum >= Pattern::WordSize)
return Builtins::AND(X, Word(0));
else
return Builtins::SHR(Word(sum), X);
},
false
});
// Combine SHL-SHR by constant
rules.push_back({
// SHR(B, SHL(A, X)) -> AND(SH[L/R]([B - A / A - B], X), Mask)
Builtins::SHR(B, Builtins::SHL(A, X)),
[=]() -> Pattern {
Word mask = shlWorkaround(~Word(0), unsigned(A.d())) >> unsigned(B.d());
if (A.d() > B.d())
return Builtins::AND(Builtins::SHL(A.d() - B.d(), X), mask);
else if (B.d() > A.d())
return Builtins::AND(Builtins::SHR(B.d() - A.d(), X), mask);
else
return Builtins::AND(X, mask);
},
false,
[=] { return A.d() < Pattern::WordSize && B.d() < Pattern::WordSize; }
});
// Combine SHR-SHL by constant
rules.push_back({
// SHL(B, SHR(A, X)) -> AND(SH[L/R]([B - A / A - B], X), Mask)
Builtins::SHL(B, Builtins::SHR(A, X)),
[=]() -> Pattern {
Word mask = shlWorkaround((~Word(0)) >> unsigned(A.d()), unsigned(B.d()));
if (A.d() > B.d())
return Builtins::AND(Builtins::SHR(A.d() - B.d(), X), mask);
else if (B.d() > A.d())
return Builtins::AND(Builtins::SHL(B.d() - A.d(), X), mask);
else
return Builtins::AND(X, mask);
},
false,
[=] { return A.d() < Pattern::WordSize && B.d() < Pattern::WordSize; }
});
// Move AND with constant across SHL and SHR by constant
for (auto instr: {Instruction::SHL, Instruction::SHR})
{
typename Builtins::PatternGeneratorInstance shiftOp{instr};
auto replacement = [=]() -> Pattern {
Word mask =
instr == Instruction::SHL ?
shlWorkaround(A.d(), unsigned(B.d())) :
A.d() >> unsigned(B.d());
return Builtins::AND(shiftOp(B.d(), X), std::move(mask));
};
rules.push_back({
// SH[L/R](B, AND(X, A)) -> AND(SH[L/R](B, X), [ A << B / A >> B ])
shiftOp(B, Builtins::AND(X, A)),
replacement,
false,
[=] { return B.d() < Pattern::WordSize; }
});
rules.push_back({
// SH[L/R](B, AND(A, X)) -> AND(SH[L/R](B, X), [ A << B / A >> B ])
shiftOp(B, Builtins::AND(A, X)),
replacement,
false,
[=] { return B.d() < Pattern::WordSize; }
});
}
rules.push_back({
// MUL(X, SHL(Y, 1)) -> SHL(Y, X)
Builtins::MUL(X, Builtins::SHL(Y, Word(1))),
[=]() -> Pattern {
return Builtins::SHL(Y, X);
},
// Actually only changes the order, does not remove.
true
});
rules.push_back({
// MUL(SHL(X, 1), Y) -> SHL(X, Y)
Builtins::MUL(Builtins::SHL(X, Word(1)), Y),
[=]() -> Pattern {
return Builtins::SHL(X, Y);
},
false
});
rules.push_back({
// DIV(X, SHL(Y, 1)) -> SHR(Y, X)
Builtins::DIV(X, Builtins::SHL(Y, Word(1))),
[=]() -> Pattern {
return Builtins::SHR(Y, X);
},
// Actually only changes the order, does not remove.
true
});
std::function<bool()> feasibilityFunction = [=]() {
if (B.d() > Pattern::WordSize)
return false;
unsigned bAsUint = static_cast<unsigned>(B.d());
return (A.d() & ((~Word(0)) >> bAsUint)) == ((~Word(0)) >> bAsUint);
};
rules.push_back({
// AND(A, SHR(B, X)) -> A & ((2^256-1) >> B) == ((2^256-1) >> B)
Builtins::AND(A, Builtins::SHR(B, X)),
[=]() -> Pattern { return Builtins::SHR(B, X); },
false,
feasibilityFunction
});
rules.push_back({
// AND(SHR(B, X), A) -> ((2^256-1) >> B) & A == ((2^256-1) >> B)
Builtins::AND(Builtins::SHR(B, X), A),
[=]() -> Pattern { return Builtins::SHR(B, X); },
false,
feasibilityFunction
});
return rules;
}
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleListPart8(
Pattern A,
Pattern,
Pattern,
Pattern X,
Pattern Y
)
{
using Builtins = typename Pattern::Builtins;
std::vector<SimplificationRule<Pattern>> rules;
// move constants across subtractions
rules += std::vector<SimplificationRule<Pattern>>{
{
// X - A -> X + (-A)
Builtins::SUB(X, A),
[=]() -> Pattern { return Builtins::ADD(X, 0 - A.d()); },
false
}, {
// (X + A) - Y -> (X - Y) + A
Builtins::SUB(Builtins::ADD(X, A), Y),
[=]() -> Pattern { return Builtins::ADD(Builtins::SUB(X, Y), A); },
false
}, {
// (A + X) - Y -> (X - Y) + A
Builtins::SUB(Builtins::ADD(A, X), Y),
[=]() -> Pattern { return Builtins::ADD(Builtins::SUB(X, Y), A); },
false
}, {
// X - (Y + A) -> (X - Y) + (-A)
Builtins::SUB(X, Builtins::ADD(Y, A)),
[=]() -> Pattern { return Builtins::ADD(Builtins::SUB(X, Y), 0 - A.d()); },
false
}, {
// X - (A + Y) -> (X - Y) + (-A)
Builtins::SUB(X, Builtins::ADD(A, Y)),
[=]() -> Pattern { return Builtins::ADD(Builtins::SUB(X, Y), 0 - A.d()); },
false
}
};
return rules;
}
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleListPart9(
Pattern,
Pattern,
Pattern,
Pattern W,
Pattern X,
Pattern Y,
Pattern Z
)
{
using Word = typename Pattern::Word;
using Builtins = typename Pattern::Builtins;
std::vector<SimplificationRule<Pattern>> rules;
assertThrow(Pattern::WordSize > 160, OptimizerException, "");
Word const mask = (Word(1) << 160) - 1;
// CREATE
rules.push_back({
Builtins::AND(Builtins::CREATE(W, X, Y), mask),
[=]() -> Pattern { return Builtins::CREATE(W, X, Y); },
false
});
rules.push_back({
Builtins::AND(mask, Builtins::CREATE(W, X, Y)),
[=]() -> Pattern { return Builtins::CREATE(W, X, Y); },
false
});
// CREATE2
rules.push_back({
Builtins::AND(Builtins::CREATE2(W, X, Y, Z), mask),
[=]() -> Pattern { return Builtins::CREATE2(W, X, Y, Z); },
false
});
rules.push_back({
Builtins::AND(mask, Builtins::CREATE2(W, X, Y, Z)),
[=]() -> Pattern { return Builtins::CREATE2(W, X, Y, Z); },
false
});
return rules;
}
/// @returns a list of simplification rules given certain match placeholders.
/// A, B and C should represent constants, W, X, Y, and Z arbitrary expressions.
/// The simplifications should never change the order of evaluation of
/// arbitrary operations.
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleList(
Pattern A,
Pattern B,
Pattern C,
Pattern W,
Pattern X,
Pattern Y,
Pattern Z
)
{
using Word = typename Pattern::Word;
// Some sanity checks
assertThrow(Pattern::WordSize % 8 == 0, OptimizerException, "");
assertThrow(Pattern::WordSize >= 8, OptimizerException, "");
assertThrow(Pattern::WordSize <= 256, OptimizerException, "");
assertThrow(Word(-1) == ~Word(0), OptimizerException, "");
assertThrow(Word(-1) + 1 == Word(0), OptimizerException, "");
std::vector<SimplificationRule<Pattern>> rules;
rules += simplificationRuleListPart1(A, B, C, W, X);
rules += simplificationRuleListPart2(A, B, C, W, X);
rules += simplificationRuleListPart3(A, B, C, W, X);
rules += simplificationRuleListPart4(A, B, C, W, X);
rules += simplificationRuleListPart5(A, B, C, W, X);
rules += simplificationRuleListPart6(A, B, C, W, X);
rules += simplificationRuleListPart7(A, B, C, W, X);
rules += simplificationRuleListPart8(A, B, C, W, X);
rules += simplificationRuleListPart9(A, B, C, W, X, Y, Z);
return rules;
}
}
}