solidity/libsolidity/analysis/TypeChecker.cpp

2539 lines
90 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2015
* Type analyzer and checker.
*/
#include <libsolidity/analysis/TypeChecker.h>
#include <memory>
#include <boost/algorithm/cxx11/all_of.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/join.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <libsolidity/ast/AST.h>
#include <libsolidity/inlineasm/AsmAnalysis.h>
#include <libsolidity/inlineasm/AsmAnalysisInfo.h>
#include <libsolidity/inlineasm/AsmData.h>
#include <libsolidity/interface/ErrorReporter.h>
#include <libdevcore/Algorithms.h>
using namespace std;
using namespace dev;
using namespace dev::solidity;
namespace
{
bool typeSupportedByOldABIEncoder(Type const& _type)
{
if (_type.dataStoredIn(DataLocation::Storage))
return true;
if (_type.category() == Type::Category::Struct)
return false;
if (_type.category() == Type::Category::Array)
{
auto const& arrayType = dynamic_cast<ArrayType const&>(_type);
auto base = arrayType.baseType();
if (!typeSupportedByOldABIEncoder(*base) || (base->category() == Type::Category::Array && base->isDynamicallySized()))
return false;
}
return true;
}
}
bool TypeChecker::checkTypeRequirements(ASTNode const& _contract)
{
_contract.accept(*this);
return Error::containsOnlyWarnings(m_errorReporter.errors());
}
TypePointer const& TypeChecker::type(Expression const& _expression) const
{
solAssert(!!_expression.annotation().type, "Type requested but not present.");
return _expression.annotation().type;
}
TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const
{
solAssert(!!_variable.annotation().type, "Type requested but not present.");
return _variable.annotation().type;
}
bool TypeChecker::visit(ContractDefinition const& _contract)
{
m_scope = &_contract;
// We force our own visiting order here. The structs have to be excluded below.
set<ASTNode const*> visited;
for (auto const& s: _contract.definedStructs())
visited.insert(s);
ASTNode::listAccept(_contract.definedStructs(), *this);
ASTNode::listAccept(_contract.baseContracts(), *this);
checkContractDuplicateFunctions(_contract);
checkContractDuplicateEvents(_contract);
checkContractIllegalOverrides(_contract);
checkContractAbstractFunctions(_contract);
checkContractBaseConstructorArguments(_contract);
FunctionDefinition const* function = _contract.constructor();
if (function)
{
if (!function->returnParameters().empty())
m_errorReporter.typeError(function->returnParameterList()->location(), "Non-empty \"returns\" directive for constructor.");
if (function->stateMutability() != StateMutability::NonPayable && function->stateMutability() != StateMutability::Payable)
m_errorReporter.typeError(
function->location(),
"Constructor must be payable or non-payable, but is \"" +
stateMutabilityToString(function->stateMutability()) +
"\"."
);
if (function->visibility() != FunctionDefinition::Visibility::Public && function->visibility() != FunctionDefinition::Visibility::Internal)
m_errorReporter.typeError(function->location(), "Constructor must be public or internal.");
}
for (FunctionDefinition const* function: _contract.definedFunctions())
if (function->isFallback())
{
if (_contract.isLibrary())
m_errorReporter.typeError(function->location(), "Libraries cannot have fallback functions.");
if (function->stateMutability() != StateMutability::NonPayable && function->stateMutability() != StateMutability::Payable)
m_errorReporter.typeError(
function->location(),
"Fallback function must be payable or non-payable, but is \"" +
stateMutabilityToString(function->stateMutability()) +
"\"."
);
if (!function->parameters().empty())
m_errorReporter.typeError(function->parameterList().location(), "Fallback function cannot take parameters.");
if (!function->returnParameters().empty())
m_errorReporter.typeError(function->returnParameterList()->location(), "Fallback function cannot return values.");
if (function->visibility() != FunctionDefinition::Visibility::External)
m_errorReporter.typeError(function->location(), "Fallback function must be defined as \"external\".");
}
for (auto const& n: _contract.subNodes())
if (!visited.count(n.get()))
n->accept(*this);
checkContractExternalTypeClashes(_contract);
// check for hash collisions in function signatures
set<FixedHash<4>> hashes;
for (auto const& it: _contract.interfaceFunctionList())
{
FixedHash<4> const& hash = it.first;
if (hashes.count(hash))
m_errorReporter.typeError(
_contract.location(),
string("Function signature hash collision for ") + it.second->externalSignature()
);
hashes.insert(hash);
}
if (_contract.isLibrary())
checkLibraryRequirements(_contract);
return false;
}
void TypeChecker::checkContractDuplicateFunctions(ContractDefinition const& _contract)
{
/// Checks that two functions with the same name defined in this contract have different
/// argument types and that there is at most one constructor.
map<string, vector<FunctionDefinition const*>> functions;
FunctionDefinition const* constructor = nullptr;
FunctionDefinition const* fallback = nullptr;
for (FunctionDefinition const* function: _contract.definedFunctions())
if (function->isConstructor())
{
if (constructor)
m_errorReporter.declarationError(
function->location(),
SecondarySourceLocation().append("Another declaration is here:", constructor->location()),
"More than one constructor defined."
);
constructor = function;
}
else if (function->isFallback())
{
if (fallback)
m_errorReporter.declarationError(
function->location(),
SecondarySourceLocation().append("Another declaration is here:", fallback->location()),
"Only one fallback function is allowed."
);
fallback = function;
}
else
{
solAssert(!function->name().empty(), "");
functions[function->name()].push_back(function);
}
findDuplicateDefinitions(functions, "Function with same name and arguments defined twice.");
}
void TypeChecker::checkContractDuplicateEvents(ContractDefinition const& _contract)
{
/// Checks that two events with the same name defined in this contract have different
/// argument types
map<string, vector<EventDefinition const*>> events;
for (EventDefinition const* event: _contract.events())
events[event->name()].push_back(event);
findDuplicateDefinitions(events, "Event with same name and arguments defined twice.");
}
template <class T>
void TypeChecker::findDuplicateDefinitions(map<string, vector<T>> const& _definitions, string _message)
{
for (auto const& it: _definitions)
{
vector<T> const& overloads = it.second;
set<size_t> reported;
for (size_t i = 0; i < overloads.size() && !reported.count(i); ++i)
{
SecondarySourceLocation ssl;
for (size_t j = i + 1; j < overloads.size(); ++j)
if (FunctionType(*overloads[i]).hasEqualParameterTypes(FunctionType(*overloads[j])))
{
ssl.append("Other declaration is here:", overloads[j]->location());
reported.insert(j);
}
if (ssl.infos.size() > 0)
{
ssl.limitSize(_message);
m_errorReporter.declarationError(
overloads[i]->location(),
ssl,
_message
);
}
}
}
}
void TypeChecker::checkContractAbstractFunctions(ContractDefinition const& _contract)
{
// Mapping from name to function definition (exactly one per argument type equality class) and
// flag to indicate whether it is fully implemented.
using FunTypeAndFlag = std::pair<FunctionTypePointer, bool>;
map<string, vector<FunTypeAndFlag>> functions;
// Search from base to derived
for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.annotation().linearizedBaseContracts))
for (FunctionDefinition const* function: contract->definedFunctions())
{
// Take constructors out of overload hierarchy
if (function->isConstructor())
continue;
auto& overloads = functions[function->name()];
FunctionTypePointer funType = make_shared<FunctionType>(*function);
auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag)
{
return funType->hasEqualParameterTypes(*_funAndFlag.first);
});
if (it == overloads.end())
overloads.push_back(make_pair(funType, function->isImplemented()));
else if (it->second)
{
if (!function->isImplemented())
m_errorReporter.typeError(function->location(), "Redeclaring an already implemented function as abstract");
}
else if (function->isImplemented())
it->second = true;
}
// Set to not fully implemented if at least one flag is false.
for (auto const& it: functions)
for (auto const& funAndFlag: it.second)
if (!funAndFlag.second)
{
FunctionDefinition const* function = dynamic_cast<FunctionDefinition const*>(&funAndFlag.first->declaration());
solAssert(function, "");
_contract.annotation().unimplementedFunctions.push_back(function);
break;
}
}
void TypeChecker::checkContractBaseConstructorArguments(ContractDefinition const& _contract)
{
vector<ContractDefinition const*> const& bases = _contract.annotation().linearizedBaseContracts;
// Determine the arguments that are used for the base constructors.
for (ContractDefinition const* contract: bases)
{
if (FunctionDefinition const* constructor = contract->constructor())
for (auto const& modifier: constructor->modifiers())
if (auto baseContract = dynamic_cast<ContractDefinition const*>(&dereference(*modifier->name())))
{
if (modifier->arguments())
{
if (baseContract->constructor())
annotateBaseConstructorArguments(_contract, baseContract->constructor(), modifier.get());
}
else
m_errorReporter.declarationError(
modifier->location(),
"Modifier-style base constructor call without arguments."
);
}
for (ASTPointer<InheritanceSpecifier> const& base: contract->baseContracts())
{
auto baseContract = dynamic_cast<ContractDefinition const*>(&dereference(base->name()));
solAssert(baseContract, "");
if (baseContract->constructor() && base->arguments() && !base->arguments()->empty())
annotateBaseConstructorArguments(_contract, baseContract->constructor(), base.get());
}
}
// check that we get arguments for all base constructors that need it.
// If not mark the contract as abstract (not fully implemented)
for (ContractDefinition const* contract: bases)
if (FunctionDefinition const* constructor = contract->constructor())
if (contract != &_contract && !constructor->parameters().empty())
if (!_contract.annotation().baseConstructorArguments.count(constructor))
_contract.annotation().unimplementedFunctions.push_back(constructor);
}
void TypeChecker::annotateBaseConstructorArguments(
ContractDefinition const& _currentContract,
FunctionDefinition const* _baseConstructor,
ASTNode const* _argumentNode
)
{
solAssert(_baseConstructor, "");
solAssert(_argumentNode, "");
auto insertionResult = _currentContract.annotation().baseConstructorArguments.insert(
std::make_pair(_baseConstructor, _argumentNode)
);
if (!insertionResult.second)
{
ASTNode const* previousNode = insertionResult.first->second;
SourceLocation const* mainLocation = nullptr;
SecondarySourceLocation ssl;
if (
_currentContract.location().contains(previousNode->location()) ||
_currentContract.location().contains(_argumentNode->location())
)
{
mainLocation = &previousNode->location();
ssl.append("Second constructor call is here:", _argumentNode->location());
}
else
{
mainLocation = &_currentContract.location();
ssl.append("First constructor call is here: ", _argumentNode->location());
ssl.append("Second constructor call is here: ", previousNode->location());
}
m_errorReporter.declarationError(
*mainLocation,
ssl,
"Base constructor arguments given twice."
);
}
}
void TypeChecker::checkContractIllegalOverrides(ContractDefinition const& _contract)
{
// TODO unify this at a later point. for this we need to put the constness and the access specifier
// into the types
map<string, vector<FunctionDefinition const*>> functions;
map<string, ModifierDefinition const*> modifiers;
// We search from derived to base, so the stored item causes the error.
for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
{
for (FunctionDefinition const* function: contract->definedFunctions())
{
if (function->isConstructor())
continue; // constructors can neither be overridden nor override anything
string const& name = function->name();
if (modifiers.count(name))
m_errorReporter.typeError(modifiers[name]->location(), "Override changes function to modifier.");
for (FunctionDefinition const* overriding: functions[name])
checkFunctionOverride(*overriding, *function);
functions[name].push_back(function);
}
for (ModifierDefinition const* modifier: contract->functionModifiers())
{
string const& name = modifier->name();
ModifierDefinition const*& override = modifiers[name];
if (!override)
override = modifier;
else if (ModifierType(*override) != ModifierType(*modifier))
m_errorReporter.typeError(override->location(), "Override changes modifier signature.");
if (!functions[name].empty())
m_errorReporter.typeError(override->location(), "Override changes modifier to function.");
}
}
}
void TypeChecker::checkFunctionOverride(FunctionDefinition const& function, FunctionDefinition const& super)
{
FunctionType functionType(function);
FunctionType superType(super);
if (!functionType.hasEqualParameterTypes(superType))
return;
if (!function.annotation().superFunction)
function.annotation().superFunction = &super;
if (function.visibility() != super.visibility())
{
// visibility is enforced to be external in interfaces, but a contract can override that with public
if (
super.inContractKind() == ContractDefinition::ContractKind::Interface &&
function.inContractKind() != ContractDefinition::ContractKind::Interface &&
function.visibility() == FunctionDefinition::Visibility::Public
)
return;
overrideError(function, super, "Overriding function visibility differs.");
}
else if (function.stateMutability() != super.stateMutability())
overrideError(
function,
super,
"Overriding function changes state mutability from \"" +
stateMutabilityToString(super.stateMutability()) +
"\" to \"" +
stateMutabilityToString(function.stateMutability()) +
"\"."
);
else if (functionType != superType)
overrideError(function, super, "Overriding function return types differ.");
}
void TypeChecker::overrideError(FunctionDefinition const& function, FunctionDefinition const& super, string message)
{
m_errorReporter.typeError(
function.location(),
SecondarySourceLocation().append("Overridden function is here:", super.location()),
message
);
}
void TypeChecker::checkContractExternalTypeClashes(ContractDefinition const& _contract)
{
map<string, vector<pair<Declaration const*, FunctionTypePointer>>> externalDeclarations;
for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
{
for (FunctionDefinition const* f: contract->definedFunctions())
if (f->isPartOfExternalInterface())
{
auto functionType = make_shared<FunctionType>(*f);
// under non error circumstances this should be true
if (functionType->interfaceFunctionType())
externalDeclarations[functionType->externalSignature()].push_back(
make_pair(f, functionType)
);
}
for (VariableDeclaration const* v: contract->stateVariables())
if (v->isPartOfExternalInterface())
{
auto functionType = make_shared<FunctionType>(*v);
// under non error circumstances this should be true
if (functionType->interfaceFunctionType())
externalDeclarations[functionType->externalSignature()].push_back(
make_pair(v, functionType)
);
}
}
for (auto const& it: externalDeclarations)
for (size_t i = 0; i < it.second.size(); ++i)
for (size_t j = i + 1; j < it.second.size(); ++j)
if (!it.second[i].second->hasEqualParameterTypes(*it.second[j].second))
m_errorReporter.typeError(
it.second[j].first->location(),
"Function overload clash during conversion to external types for arguments."
);
}
void TypeChecker::checkLibraryRequirements(ContractDefinition const& _contract)
{
solAssert(_contract.isLibrary(), "");
if (!_contract.baseContracts().empty())
m_errorReporter.typeError(_contract.location(), "Library is not allowed to inherit.");
for (auto const& var: _contract.stateVariables())
if (!var->isConstant())
m_errorReporter.typeError(var->location(), "Library cannot have non-constant state variables");
}
void TypeChecker::checkDoubleStorageAssignment(Assignment const& _assignment)
{
TupleType const& lhs = dynamic_cast<TupleType const&>(*type(_assignment.leftHandSide()));
TupleType const& rhs = dynamic_cast<TupleType const&>(*type(_assignment.rightHandSide()));
if (lhs.components().size() != rhs.components().size())
{
solAssert(m_errorReporter.hasErrors(), "");
return;
}
size_t storageToStorageCopies = 0;
size_t toStorageCopies = 0;
for (size_t i = 0; i < lhs.components().size(); ++i)
{
ReferenceType const* ref = dynamic_cast<ReferenceType const*>(lhs.components()[i].get());
if (!ref || !ref->dataStoredIn(DataLocation::Storage) || ref->isPointer())
continue;
toStorageCopies++;
if (rhs.components()[i]->dataStoredIn(DataLocation::Storage))
storageToStorageCopies++;
}
if (storageToStorageCopies >= 1 && toStorageCopies >= 2)
m_errorReporter.warning(
_assignment.location(),
"This assignment performs two copies to storage. Since storage copies do not first "
"copy to a temporary location, one of them might be overwritten before the second "
"is executed and thus may have unexpected effects. It is safer to perform the copies "
"separately or assign to storage pointers first."
);
}
TypePointers TypeChecker::typeCheckABIDecodeAndRetrieveReturnType(FunctionCall const& _functionCall, bool _abiEncoderV2)
{
vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
if (arguments.size() != 2)
m_errorReporter.typeError(
_functionCall.location(),
"This function takes two arguments, but " +
toString(arguments.size()) +
" were provided."
);
if (arguments.size() >= 1 && !type(*arguments.front())->isImplicitlyConvertibleTo(ArrayType::bytesMemory()))
m_errorReporter.typeError(
arguments.front()->location(),
"Invalid type for argument in function call. "
"Invalid implicit conversion from " +
type(*arguments.front())->toString() +
" to bytes memory requested."
);
if (arguments.size() < 2)
return {};
// The following is a rather syntactic restriction, but we check it here anyway:
// The second argument has to be a tuple expression containing type names.
TupleExpression const* tupleExpression = dynamic_cast<TupleExpression const*>(arguments[1].get());
if (!tupleExpression)
{
m_errorReporter.typeError(
arguments[1]->location(),
"The second argument to \"abi.decode\" has to be a tuple of types."
);
return {};
}
TypePointers components;
for (auto const& typeArgument: tupleExpression->components())
{
solAssert(typeArgument, "");
if (TypeType const* argTypeType = dynamic_cast<TypeType const*>(type(*typeArgument).get()))
{
TypePointer actualType = argTypeType->actualType();
solAssert(actualType, "");
// We force memory because the parser currently cannot handle
// data locations. Furthermore, storage can be a little dangerous and
// calldata is not really implemented anyway.
actualType = ReferenceType::copyForLocationIfReference(DataLocation::Memory, actualType);
// We force address payable for address types.
if (actualType->category() == Type::Category::Address)
actualType = make_shared<AddressType>(StateMutability::Payable);
solAssert(
!actualType->dataStoredIn(DataLocation::CallData) &&
!actualType->dataStoredIn(DataLocation::Storage),
""
);
if (!actualType->fullEncodingType(false, _abiEncoderV2, false))
m_errorReporter.typeError(
typeArgument->location(),
"Decoding type " + actualType->toString(false) + " not supported."
);
components.push_back(actualType);
}
else
{
m_errorReporter.typeError(typeArgument->location(), "Argument has to be a type name.");
components.push_back(make_shared<TupleType>());
}
}
return components;
}
void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance)
{
auto base = dynamic_cast<ContractDefinition const*>(&dereference(_inheritance.name()));
solAssert(base, "Base contract not available.");
if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
m_errorReporter.typeError(_inheritance.location(), "Interfaces cannot inherit.");
if (base->isLibrary())
m_errorReporter.typeError(_inheritance.location(), "Libraries cannot be inherited from.");
auto const& arguments = _inheritance.arguments();
TypePointers parameterTypes;
if (base->contractKind() != ContractDefinition::ContractKind::Interface)
// Interfaces do not have constructors, so there are zero parameters.
parameterTypes = ContractType(*base).newExpressionType()->parameterTypes();
if (arguments)
{
if (parameterTypes.size() != arguments->size())
{
m_errorReporter.typeError(
_inheritance.location(),
"Wrong argument count for constructor call: " +
toString(arguments->size()) +
" arguments given but expected " +
toString(parameterTypes.size()) +
". Remove parentheses if you do not want to provide arguments here."
);
}
for (size_t i = 0; i < std::min(arguments->size(), parameterTypes.size()); ++i)
if (!type(*(*arguments)[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
m_errorReporter.typeError(
(*arguments)[i]->location(),
"Invalid type for argument in constructor call. "
"Invalid implicit conversion from " +
type(*(*arguments)[i])->toString() +
" to " +
parameterTypes[i]->toString() +
" requested."
);
}
}
void TypeChecker::endVisit(UsingForDirective const& _usingFor)
{
ContractDefinition const* library = dynamic_cast<ContractDefinition const*>(
_usingFor.libraryName().annotation().referencedDeclaration
);
if (!library || !library->isLibrary())
m_errorReporter.fatalTypeError(_usingFor.libraryName().location(), "Library name expected.");
}
bool TypeChecker::visit(StructDefinition const& _struct)
{
for (ASTPointer<VariableDeclaration> const& member: _struct.members())
if (!type(*member)->canBeStored())
m_errorReporter.typeError(member->location(), "Type cannot be used in struct.");
// Check recursion, fatal error if detected.
auto visitor = [&](StructDefinition const& _struct, CycleDetector<StructDefinition>& _cycleDetector, size_t _depth)
{
if (_depth >= 256)
m_errorReporter.fatalDeclarationError(_struct.location(), "Struct definition exhausting cyclic dependency validator.");
for (ASTPointer<VariableDeclaration> const& member: _struct.members())
{
Type const* memberType = type(*member).get();
while (auto arrayType = dynamic_cast<ArrayType const*>(memberType))
{
if (arrayType->isDynamicallySized())
break;
memberType = arrayType->baseType().get();
}
if (auto structType = dynamic_cast<StructType const*>(memberType))
if (_cycleDetector.run(structType->structDefinition()))
return;
}
};
if (CycleDetector<StructDefinition>(visitor).run(_struct) != nullptr)
m_errorReporter.fatalTypeError(_struct.location(), "Recursive struct definition.");
bool insideStruct = true;
swap(insideStruct, m_insideStruct);
ASTNode::listAccept(_struct.members(), *this);
m_insideStruct = insideStruct;
return false;
}
bool TypeChecker::visit(FunctionDefinition const& _function)
{
bool isLibraryFunction = _function.inContractKind() == ContractDefinition::ContractKind::Library;
if (_function.isPayable())
{
if (isLibraryFunction)
m_errorReporter.typeError(_function.location(), "Library functions cannot be payable.");
if (!_function.isConstructor() && !_function.isFallback() && !_function.isPartOfExternalInterface())
m_errorReporter.typeError(_function.location(), "Internal functions cannot be payable.");
}
for (ASTPointer<VariableDeclaration> const& var: _function.parameters() + _function.returnParameters())
{
if (
type(*var)->category() == Type::Category::Mapping &&
!type(*var)->dataStoredIn(DataLocation::Storage)
)
m_errorReporter.typeError(var->location(), "Mapping types can only have a data location of \"storage\".");
else if (
!type(*var)->canLiveOutsideStorage() &&
_function.visibility() > FunctionDefinition::Visibility::Internal
)
m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
if (_function.visibility() >= FunctionDefinition::Visibility::Public && !(type(*var)->interfaceType(isLibraryFunction)))
m_errorReporter.fatalTypeError(var->location(), "Internal or recursive type is not allowed for public or external functions.");
if (
_function.visibility() > FunctionDefinition::Visibility::Internal &&
!_function.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
!typeSupportedByOldABIEncoder(*type(*var))
)
m_errorReporter.typeError(
var->location(),
"This type is only supported in the new experimental ABI encoder. "
"Use \"pragma experimental ABIEncoderV2;\" to enable the feature."
);
var->accept(*this);
}
set<Declaration const*> modifiers;
for (ASTPointer<ModifierInvocation> const& modifier: _function.modifiers())
{
visitManually(
*modifier,
_function.isConstructor() ?
dynamic_cast<ContractDefinition const&>(*_function.scope()).annotation().linearizedBaseContracts :
vector<ContractDefinition const*>()
);
Declaration const* decl = &dereference(*modifier->name());
if (modifiers.count(decl))
{
if (dynamic_cast<ContractDefinition const*>(decl))
m_errorReporter.declarationError(modifier->location(), "Base constructor already provided.");
}
else
modifiers.insert(decl);
}
if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
{
if (_function.isImplemented())
m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot have an implementation.");
if (_function.visibility() != FunctionDefinition::Visibility::External)
m_errorReporter.typeError(_function.location(), "Functions in interfaces must be declared external.");
if (_function.isConstructor())
m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in interfaces.");
}
else if (m_scope->contractKind() == ContractDefinition::ContractKind::Library)
if (_function.isConstructor())
m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in libraries.");
if (_function.isImplemented())
_function.body().accept(*this);
else if (_function.isConstructor())
m_errorReporter.typeError(_function.location(), "Constructor must be implemented if declared.");
else if (isLibraryFunction && _function.visibility() <= FunctionDefinition::Visibility::Internal)
m_errorReporter.typeError(_function.location(), "Internal library function must be implemented if declared.");
return false;
}
bool TypeChecker::visit(VariableDeclaration const& _variable)
{
// Forbid any variable declarations inside interfaces unless they are part of
// * a function's input/output parameters,
// * or inside of a struct definition.
if (
m_scope->contractKind() == ContractDefinition::ContractKind::Interface
&& !_variable.isCallableParameter()
&& !m_insideStruct
)
m_errorReporter.typeError(_variable.location(), "Variables cannot be declared in interfaces.");
// Variables can be declared without type (with "var"), in which case the first assignment
// sets the type.
// Note that assignments before the first declaration are legal because of the special scoping
// rules inherited from JavaScript.
// type is filled either by ReferencesResolver directly from the type name or by
// TypeChecker at the VariableDeclarationStatement level.
TypePointer varType = _variable.annotation().type;
solAssert(!!varType, "Failed to infer variable type.");
if (_variable.value())
expectType(*_variable.value(), *varType);
if (_variable.isConstant())
{
if (!_variable.type()->isValueType())
{
bool allowed = false;
if (auto arrayType = dynamic_cast<ArrayType const*>(_variable.type().get()))
allowed = arrayType->isByteArray();
if (!allowed)
m_errorReporter.typeError(_variable.location(), "Constants of non-value type not yet implemented.");
}
if (!_variable.value())
m_errorReporter.typeError(_variable.location(), "Uninitialized \"constant\" variable.");
else if (!_variable.value()->annotation().isPure)
m_errorReporter.typeError(
_variable.value()->location(),
"Initial value for constant variable has to be compile-time constant."
);
}
if (!_variable.isStateVariable())
{
if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData))
if (!varType->canLiveOutsideStorage())
m_errorReporter.typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage.");
}
else if (
_variable.visibility() >= VariableDeclaration::Visibility::Public &&
!FunctionType(_variable).interfaceFunctionType()
)
m_errorReporter.typeError(_variable.location(), "Internal or recursive type is not allowed for public state variables.");
switch (varType->category())
{
case Type::Category::Array:
if (auto arrayType = dynamic_cast<ArrayType const*>(varType.get()))
if (
((arrayType->location() == DataLocation::Memory) ||
(arrayType->location() == DataLocation::CallData)) &&
!arrayType->validForCalldata()
)
m_errorReporter.typeError(_variable.location(), "Array is too large to be encoded.");
break;
case Type::Category::Mapping:
if (auto mappingType = dynamic_cast<MappingType const*>(varType.get()))
if (
mappingType->keyType()->isDynamicallySized() &&
_variable.visibility() == Declaration::Visibility::Public
)
m_errorReporter.typeError(_variable.location(), "Dynamically-sized keys for public mappings are not supported.");
break;
default:
break;
}
return false;
}
void TypeChecker::visitManually(
ModifierInvocation const& _modifier,
vector<ContractDefinition const*> const& _bases
)
{
std::vector<ASTPointer<Expression>> const& arguments =
_modifier.arguments() ? *_modifier.arguments() : std::vector<ASTPointer<Expression>>();
for (ASTPointer<Expression> const& argument: arguments)
argument->accept(*this);
_modifier.name()->accept(*this);
auto const* declaration = &dereference(*_modifier.name());
vector<ASTPointer<VariableDeclaration>> emptyParameterList;
vector<ASTPointer<VariableDeclaration>> const* parameters = nullptr;
if (auto modifierDecl = dynamic_cast<ModifierDefinition const*>(declaration))
parameters = &modifierDecl->parameters();
else
// check parameters for Base constructors
for (ContractDefinition const* base: _bases)
if (declaration == base)
{
if (auto referencedConstructor = base->constructor())
parameters = &referencedConstructor->parameters();
else
parameters = &emptyParameterList;
break;
}
if (!parameters)
{
m_errorReporter.typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class.");
return;
}
if (parameters->size() != arguments.size())
{
m_errorReporter.typeError(
_modifier.location(),
"Wrong argument count for modifier invocation: " +
toString(arguments.size()) +
" arguments given but expected " +
toString(parameters->size()) +
"."
);
return;
}
for (size_t i = 0; i < arguments.size(); ++i)
if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i])))
m_errorReporter.typeError(
arguments[i]->location(),
"Invalid type for argument in modifier invocation. "
"Invalid implicit conversion from " +
type(*arguments[i])->toString() +
" to " +
type(*(*parameters)[i])->toString() +
" requested."
);
}
bool TypeChecker::visit(EventDefinition const& _eventDef)
{
solAssert(_eventDef.visibility() > Declaration::Visibility::Internal, "");
unsigned numIndexed = 0;
for (ASTPointer<VariableDeclaration> const& var: _eventDef.parameters())
{
if (var->isIndexed())
{
numIndexed++;
if (
_eventDef.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
dynamic_cast<ReferenceType const*>(type(*var).get())
)
m_errorReporter.typeError(
var->location(),
"Indexed reference types cannot yet be used with ABIEncoderV2."
);
}
if (!type(*var)->canLiveOutsideStorage())
m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
if (!type(*var)->interfaceType(false))
m_errorReporter.typeError(var->location(), "Internal or recursive type is not allowed as event parameter type.");
if (
!_eventDef.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
!typeSupportedByOldABIEncoder(*type(*var))
)
m_errorReporter.typeError(
var->location(),
"This type is only supported in the new experimental ABI encoder. "
"Use \"pragma experimental ABIEncoderV2;\" to enable the feature."
);
}
if (_eventDef.isAnonymous() && numIndexed > 4)
m_errorReporter.typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event.");
else if (!_eventDef.isAnonymous() && numIndexed > 3)
m_errorReporter.typeError(_eventDef.location(), "More than 3 indexed arguments for event.");
return false;
}
void TypeChecker::endVisit(FunctionTypeName const& _funType)
{
FunctionType const& fun = dynamic_cast<FunctionType const&>(*_funType.annotation().type);
if (fun.kind() == FunctionType::Kind::External)
if (!fun.canBeUsedExternally(false))
m_errorReporter.typeError(_funType.location(), "External function type uses internal types.");
}
bool TypeChecker::visit(InlineAssembly const& _inlineAssembly)
{
// External references have already been resolved in a prior stage and stored in the annotation.
// We run the resolve step again regardless.
yul::ExternalIdentifierAccess::Resolver identifierAccess = [&](
assembly::Identifier const& _identifier,
yul::IdentifierContext _context,
bool
)
{
auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier);
if (ref == _inlineAssembly.annotation().externalReferences.end())
return size_t(-1);
Declaration const* declaration = ref->second.declaration;
solAssert(!!declaration, "");
bool requiresStorage = ref->second.isSlot || ref->second.isOffset;
if (auto var = dynamic_cast<VariableDeclaration const*>(declaration))
{
if (var->isConstant())
{
m_errorReporter.typeError(_identifier.location, "Constant variables not supported by inline assembly.");
return size_t(-1);
}
else if (requiresStorage)
{
if (!var->isStateVariable() && !var->type()->dataStoredIn(DataLocation::Storage))
{
m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
return size_t(-1);
}
else if (_context != yul::IdentifierContext::RValue)
{
m_errorReporter.typeError(_identifier.location, "Storage variables cannot be assigned to.");
return size_t(-1);
}
}
else if (!var->isLocalVariable())
{
m_errorReporter.typeError(_identifier.location, "Only local variables are supported. To access storage variables, use the _slot and _offset suffixes.");
return size_t(-1);
}
else if (var->type()->dataStoredIn(DataLocation::Storage))
{
m_errorReporter.typeError(_identifier.location, "You have to use the _slot or _offset suffix to access storage reference variables.");
return size_t(-1);
}
else if (var->type()->sizeOnStack() != 1)
{
if (var->type()->dataStoredIn(DataLocation::CallData))
m_errorReporter.typeError(_identifier.location, "Call data elements cannot be accessed directly. Copy to a local variable first or use \"calldataload\" or \"calldatacopy\" with manually determined offsets and sizes.");
else
m_errorReporter.typeError(_identifier.location, "Only types that use one stack slot are supported.");
return size_t(-1);
}
}
else if (requiresStorage)
{
m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
return size_t(-1);
}
else if (_context == yul::IdentifierContext::LValue)
{
m_errorReporter.typeError(_identifier.location, "Only local variables can be assigned to in inline assembly.");
return size_t(-1);
}
if (_context == yul::IdentifierContext::RValue)
{
solAssert(!!declaration->type(), "Type of declaration required but not yet determined.");
if (dynamic_cast<FunctionDefinition const*>(declaration))
{
}
else if (dynamic_cast<VariableDeclaration const*>(declaration))
{
}
else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
{
if (!contract->isLibrary())
{
m_errorReporter.typeError(_identifier.location, "Expected a library.");
return size_t(-1);
}
}
else
return size_t(-1);
}
ref->second.valueSize = 1;
return size_t(1);
};
solAssert(!_inlineAssembly.annotation().analysisInfo, "");
_inlineAssembly.annotation().analysisInfo = make_shared<assembly::AsmAnalysisInfo>();
assembly::AsmAnalyzer analyzer(
*_inlineAssembly.annotation().analysisInfo,
m_errorReporter,
m_evmVersion,
Error::Type::SyntaxError,
assembly::AsmFlavour::Loose,
identifierAccess
);
if (!analyzer.analyze(_inlineAssembly.operations()))
return false;
return true;
}
bool TypeChecker::visit(IfStatement const& _ifStatement)
{
expectType(_ifStatement.condition(), BoolType());
_ifStatement.trueStatement().accept(*this);
if (_ifStatement.falseStatement())
_ifStatement.falseStatement()->accept(*this);
return false;
}
bool TypeChecker::visit(WhileStatement const& _whileStatement)
{
expectType(_whileStatement.condition(), BoolType());
_whileStatement.body().accept(*this);
return false;
}
bool TypeChecker::visit(ForStatement const& _forStatement)
{
if (_forStatement.initializationExpression())
_forStatement.initializationExpression()->accept(*this);
if (_forStatement.condition())
expectType(*_forStatement.condition(), BoolType());
if (_forStatement.loopExpression())
_forStatement.loopExpression()->accept(*this);
_forStatement.body().accept(*this);
return false;
}
void TypeChecker::endVisit(Return const& _return)
{
ParameterList const* params = _return.annotation().functionReturnParameters;
if (!_return.expression())
{
if (params && !params->parameters().empty())
m_errorReporter.typeError(_return.location(), "Return arguments required.");
return;
}
if (!params)
{
m_errorReporter.typeError(_return.location(), "Return arguments not allowed.");
return;
}
TypePointers returnTypes;
for (auto const& var: params->parameters())
returnTypes.push_back(type(*var));
if (auto tupleType = dynamic_cast<TupleType const*>(type(*_return.expression()).get()))
{
if (tupleType->components().size() != params->parameters().size())
m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes)))
m_errorReporter.typeError(
_return.expression()->location(),
"Return argument type " +
type(*_return.expression())->toString() +
" is not implicitly convertible to expected type " +
TupleType(returnTypes).toString(false) +
"."
);
}
else if (params->parameters().size() != 1)
m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
else
{
TypePointer const& expected = type(*params->parameters().front());
if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected))
m_errorReporter.typeError(
_return.expression()->location(),
"Return argument type " +
type(*_return.expression())->toString() +
" is not implicitly convertible to expected type (type of first return variable) " +
expected->toString() +
"."
);
}
}
void TypeChecker::endVisit(EmitStatement const& _emit)
{
if (
_emit.eventCall().annotation().kind != FunctionCallKind::FunctionCall ||
type(_emit.eventCall().expression())->category() != Type::Category::Function ||
dynamic_cast<FunctionType const&>(*type(_emit.eventCall().expression())).kind() != FunctionType::Kind::Event
)
m_errorReporter.typeError(_emit.eventCall().expression().location(), "Expression has to be an event invocation.");
m_insideEmitStatement = false;
}
namespace
{
/**
* @returns a suggested left-hand-side of a multi-variable declaration contairing
* the variable declarations given in @a _decls.
*/
string createTupleDecl(vector<ASTPointer<VariableDeclaration>> const& _decls)
{
vector<string> components;
for (ASTPointer<VariableDeclaration> const& decl: _decls)
if (decl)
{
solAssert(decl->annotation().type, "");
components.emplace_back(decl->annotation().type->toString(false) + " " + decl->name());
}
else
components.emplace_back();
if (_decls.size() == 1)
return components.front();
else
return "(" + boost::algorithm::join(components, ", ") + ")";
}
bool typeCanBeExpressed(vector<ASTPointer<VariableDeclaration>> const& decls)
{
for (ASTPointer<VariableDeclaration> const& decl: decls)
{
// skip empty tuples (they can be expressed of course)
if (!decl)
continue;
if (!decl->annotation().type)
return false;
if (auto functionType = dynamic_cast<FunctionType const*>(decl->annotation().type.get()))
if (
functionType->kind() != FunctionType::Kind::Internal &&
functionType->kind() != FunctionType::Kind::External
)
return false;
}
return true;
}
}
bool TypeChecker::visit(VariableDeclarationStatement const& _statement)
{
if (!_statement.initialValue())
{
// No initial value is only permitted for single variables with specified type.
if (_statement.declarations().size() != 1 || !_statement.declarations().front())
{
if (boost::algorithm::all_of_equal(_statement.declarations(), nullptr))
{
// The syntax checker has already generated an error for this case (empty LHS tuple).
solAssert(m_errorReporter.hasErrors(), "");
// It is okay to return here, as there are no named components on the
// left-hand-side that could cause any damage later.
return false;
}
else
// Bailing out *fatal* here, as those (untyped) vars may be used later, and diagnostics wouldn't be helpful then.
m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");
}
VariableDeclaration const& varDecl = *_statement.declarations().front();
if (!varDecl.annotation().type)
m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");
if (auto ref = dynamic_cast<ReferenceType const*>(type(varDecl).get()))
{
if (ref->dataStoredIn(DataLocation::Storage))
{
string errorText{"Uninitialized storage pointer."};
if (varDecl.referenceLocation() == VariableDeclaration::Location::Unspecified)
errorText += " Did you mean '<type> memory " + varDecl.name() + "'?";
solAssert(m_scope, "");
m_errorReporter.declarationError(varDecl.location(), errorText);
}
}
else if (dynamic_cast<MappingType const*>(type(varDecl).get()))
m_errorReporter.typeError(
varDecl.location(),
"Uninitialized mapping. Mappings cannot be created dynamically, you have to assign them from a state variable."
);
varDecl.accept(*this);
return false;
}
// Here we have an initial value and might have to derive some types before we can visit
// the variable declaration(s).
_statement.initialValue()->accept(*this);
TypePointers valueTypes;
if (auto tupleType = dynamic_cast<TupleType const*>(type(*_statement.initialValue()).get()))
valueTypes = tupleType->components();
else
valueTypes = TypePointers{type(*_statement.initialValue())};
vector<ASTPointer<VariableDeclaration>> const& variables = _statement.declarations();
if (variables.empty())
// We already have an error for this in the SyntaxChecker.
solAssert(m_errorReporter.hasErrors(), "");
else if (valueTypes.size() != variables.size())
m_errorReporter.typeError(
_statement.location(),
"Different number of components on the left hand side (" +
toString(variables.size()) +
") than on the right hand side (" +
toString(valueTypes.size()) +
")."
);
bool autoTypeDeductionNeeded = false;
for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i)
{
if (!variables[i])
continue;
VariableDeclaration const& var = *variables[i];
solAssert(!var.value(), "Value has to be tied to statement.");
TypePointer const& valueComponentType = valueTypes[i];
solAssert(!!valueComponentType, "");
if (!var.annotation().type)
{
autoTypeDeductionNeeded = true;
// Infer type from value.
solAssert(!var.typeName(), "");
var.annotation().type = valueComponentType->mobileType();
if (!var.annotation().type)
{
if (valueComponentType->category() == Type::Category::RationalNumber)
m_errorReporter.fatalTypeError(
_statement.initialValue()->location(),
"Invalid rational " +
valueComponentType->toString() +
" (absolute value too large or division by zero)."
);
else
solAssert(false, "");
}
else if (*var.annotation().type == TupleType())
m_errorReporter.typeError(
var.location(),
"Cannot declare variable with void (empty tuple) type."
);
else if (valueComponentType->category() == Type::Category::RationalNumber)
{
string typeName = var.annotation().type->toString(true);
string extension;
if (auto type = dynamic_cast<IntegerType const*>(var.annotation().type.get()))
{
unsigned numBits = type->numBits();
bool isSigned = type->isSigned();
solAssert(numBits > 0, "");
string minValue;
string maxValue;
if (isSigned)
{
numBits--;
minValue = "-" + bigint(bigint(1) << numBits).str();
}
else
minValue = "0";
maxValue = bigint((bigint(1) << numBits) - 1).str();
extension = ", which can hold values between " + minValue + " and " + maxValue;
}
else
solAssert(dynamic_cast<FixedPointType const*>(var.annotation().type.get()), "Unknown type.");
}
var.accept(*this);
}
else
{
var.accept(*this);
if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type))
{
if (
valueComponentType->category() == Type::Category::RationalNumber &&
dynamic_cast<RationalNumberType const&>(*valueComponentType).isFractional() &&
valueComponentType->mobileType()
)
m_errorReporter.typeError(
_statement.location(),
"Type " +
valueComponentType->toString() +
" is not implicitly convertible to expected type " +
var.annotation().type->toString() +
". Try converting to type " +
valueComponentType->mobileType()->toString() +
" or use an explicit conversion."
);
else
m_errorReporter.typeError(
_statement.location(),
"Type " +
valueComponentType->toString() +
" is not implicitly convertible to expected type " +
var.annotation().type->toString() +
"."
);
}
}
}
if (autoTypeDeductionNeeded)
{
if (!typeCanBeExpressed(variables))
m_errorReporter.syntaxError(
_statement.location(),
"Use of the \"var\" keyword is disallowed. "
"Type cannot be expressed in syntax."
);
else
m_errorReporter.syntaxError(
_statement.location(),
"Use of the \"var\" keyword is disallowed. "
"Use explicit declaration `" + createTupleDecl(variables) + " = ...´ instead."
);
}
return false;
}
void TypeChecker::endVisit(ExpressionStatement const& _statement)
{
if (type(_statement.expression())->category() == Type::Category::RationalNumber)
if (!dynamic_cast<RationalNumberType const&>(*type(_statement.expression())).mobileType())
m_errorReporter.typeError(_statement.expression().location(), "Invalid rational number.");
if (auto call = dynamic_cast<FunctionCall const*>(&_statement.expression()))
{
if (auto callType = dynamic_cast<FunctionType const*>(type(call->expression()).get()))
{
auto kind = callType->kind();
if (
kind == FunctionType::Kind::BareCall ||
kind == FunctionType::Kind::BareCallCode ||
kind == FunctionType::Kind::BareDelegateCall ||
kind == FunctionType::Kind::BareStaticCall
)
m_errorReporter.warning(_statement.location(), "Return value of low-level calls not used.");
else if (kind == FunctionType::Kind::Send)
m_errorReporter.warning(_statement.location(), "Failure condition of 'send' ignored. Consider using 'transfer' instead.");
}
}
}
bool TypeChecker::visit(Conditional const& _conditional)
{
expectType(_conditional.condition(), BoolType());
_conditional.trueExpression().accept(*this);
_conditional.falseExpression().accept(*this);
TypePointer trueType = type(_conditional.trueExpression())->mobileType();
TypePointer falseType = type(_conditional.falseExpression())->mobileType();
if (!trueType)
m_errorReporter.fatalTypeError(_conditional.trueExpression().location(), "Invalid mobile type.");
if (!falseType)
m_errorReporter.fatalTypeError(_conditional.falseExpression().location(), "Invalid mobile type.");
TypePointer commonType = Type::commonType(trueType, falseType);
if (!commonType)
{
m_errorReporter.typeError(
_conditional.location(),
"True expression's type " +
trueType->toString() +
" doesn't match false expression's type " +
falseType->toString() +
"."
);
// even we can't find a common type, we have to set a type here,
// otherwise the upper statement will not be able to check the type.
commonType = trueType;
}
_conditional.annotation().type = commonType;
_conditional.annotation().isPure =
_conditional.condition().annotation().isPure &&
_conditional.trueExpression().annotation().isPure &&
_conditional.falseExpression().annotation().isPure;
if (_conditional.annotation().lValueRequested)
m_errorReporter.typeError(
_conditional.location(),
"Conditional expression as left value is not supported yet."
);
return false;
}
void TypeChecker::checkExpressionAssignment(Type const& _type, Expression const& _expression)
{
if (auto const* tupleExpression = dynamic_cast<TupleExpression const*>(&_expression))
{
auto const* tupleType = dynamic_cast<TupleType const*>(&_type);
auto const& types = tupleType ? tupleType->components() : vector<TypePointer> { _type.shared_from_this() };
solAssert(
tupleExpression->components().size() == types.size() || m_errorReporter.hasErrors(),
"Array sizes don't match or no errors generated."
);
for (size_t i = 0; i < min(tupleExpression->components().size(), types.size()); i++)
if (types[i])
{
solAssert(!!tupleExpression->components()[i], "");
checkExpressionAssignment(*types[i], *tupleExpression->components()[i]);
}
}
else if (_type.category() == Type::Category::Mapping)
{
bool isLocalOrReturn = false;
if (auto const* identifier = dynamic_cast<Identifier const*>(&_expression))
if (auto const *variableDeclaration = dynamic_cast<VariableDeclaration const*>(identifier->annotation().referencedDeclaration))
if (variableDeclaration->isLocalOrReturn())
isLocalOrReturn = true;
if (!isLocalOrReturn)
m_errorReporter.typeError(_expression.location(), "Mappings cannot be assigned to.");
}
}
bool TypeChecker::visit(Assignment const& _assignment)
{
requireLValue(_assignment.leftHandSide());
TypePointer t = type(_assignment.leftHandSide());
_assignment.annotation().type = t;
checkExpressionAssignment(*t, _assignment.leftHandSide());
if (TupleType const* tupleType = dynamic_cast<TupleType const*>(t.get()))
{
if (_assignment.assignmentOperator() != Token::Assign)
m_errorReporter.typeError(
_assignment.location(),
"Compound assignment is not allowed for tuple types."
);
// Sequenced assignments of tuples is not valid, make the result a "void" type.
_assignment.annotation().type = make_shared<TupleType>();
expectType(_assignment.rightHandSide(), *tupleType);
// expectType does not cause fatal errors, so we have to check again here.
if (dynamic_cast<TupleType const*>(type(_assignment.rightHandSide()).get()))
checkDoubleStorageAssignment(_assignment);
}
else if (_assignment.assignmentOperator() == Token::Assign)
expectType(_assignment.rightHandSide(), *t);
else
{
// compound assignment
_assignment.rightHandSide().accept(*this);
TypePointer resultType = t->binaryOperatorResult(
TokenTraits::AssignmentToBinaryOp(_assignment.assignmentOperator()),
type(_assignment.rightHandSide())
);
if (!resultType || *resultType != *t)
m_errorReporter.typeError(
_assignment.location(),
"Operator " +
string(TokenTraits::toString(_assignment.assignmentOperator())) +
" not compatible with types " +
t->toString() +
" and " +
type(_assignment.rightHandSide())->toString()
);
}
return false;
}
bool TypeChecker::visit(TupleExpression const& _tuple)
{
vector<ASTPointer<Expression>> const& components = _tuple.components();
TypePointers types;
if (_tuple.annotation().lValueRequested)
{
if (_tuple.isInlineArray())
m_errorReporter.fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue.");
for (auto const& component: components)
if (component)
{
requireLValue(*component);
types.push_back(type(*component));
}
else
types.push_back(TypePointer());
if (components.size() == 1)
_tuple.annotation().type = type(*components[0]);
else
_tuple.annotation().type = make_shared<TupleType>(types);
// If some of the components are not LValues, the error is reported above.
_tuple.annotation().isLValue = true;
}
else
{
bool isPure = true;
TypePointer inlineArrayType;
for (size_t i = 0; i < components.size(); ++i)
{
if (!components[i])
m_errorReporter.fatalTypeError(_tuple.location(), "Tuple component cannot be empty.");
else if (components[i])
{
components[i]->accept(*this);
types.push_back(type(*components[i]));
if (types[i]->category() == Type::Category::Tuple)
if (dynamic_cast<TupleType const&>(*types[i]).components().empty())
{
if (_tuple.isInlineArray())
m_errorReporter.fatalTypeError(components[i]->location(), "Array component cannot be empty.");
m_errorReporter.typeError(components[i]->location(), "Tuple component cannot be empty.");
}
// Note: code generation will visit each of the expression even if they are not assigned from.
if (types[i]->category() == Type::Category::RationalNumber && components.size() > 1)
if (!dynamic_cast<RationalNumberType const&>(*types[i]).mobileType())
m_errorReporter.fatalTypeError(components[i]->location(), "Invalid rational number.");
if (_tuple.isInlineArray())
solAssert(!!types[i], "Inline array cannot have empty components");
if (_tuple.isInlineArray())
{
if ((i == 0 || inlineArrayType) && !types[i]->mobileType())
m_errorReporter.fatalTypeError(components[i]->location(), "Invalid mobile type.");
if (i == 0)
inlineArrayType = types[i]->mobileType();
else if (inlineArrayType)
inlineArrayType = Type::commonType(inlineArrayType, types[i]);
}
if (!components[i]->annotation().isPure)
isPure = false;
}
else
types.push_back(TypePointer());
}
_tuple.annotation().isPure = isPure;
if (_tuple.isInlineArray())
{
if (!inlineArrayType)
m_errorReporter.fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements.");
_tuple.annotation().type = make_shared<ArrayType>(DataLocation::Memory, inlineArrayType, types.size());
}
else
{
if (components.size() == 1)
_tuple.annotation().type = type(*components[0]);
else
_tuple.annotation().type = make_shared<TupleType>(types);
}
}
return false;
}
bool TypeChecker::visit(UnaryOperation const& _operation)
{
// Inc, Dec, Add, Sub, Not, BitNot, Delete
Token op = _operation.getOperator();
bool const modifying = (op == Token::Inc || op == Token::Dec || op == Token::Delete);
if (modifying)
requireLValue(_operation.subExpression());
else
_operation.subExpression().accept(*this);
TypePointer const& subExprType = type(_operation.subExpression());
TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op);
if (!t)
{
m_errorReporter.typeError(
_operation.location(),
"Unary operator " +
string(TokenTraits::toString(op)) +
" cannot be applied to type " +
subExprType->toString()
);
t = subExprType;
}
_operation.annotation().type = t;
_operation.annotation().isPure = !modifying && _operation.subExpression().annotation().isPure;
return false;
}
void TypeChecker::endVisit(BinaryOperation const& _operation)
{
TypePointer const& leftType = type(_operation.leftExpression());
TypePointer const& rightType = type(_operation.rightExpression());
TypePointer commonType = leftType->binaryOperatorResult(_operation.getOperator(), rightType);
if (!commonType)
{
m_errorReporter.typeError(
_operation.location(),
"Operator " +
string(TokenTraits::toString(_operation.getOperator())) +
" not compatible with types " +
leftType->toString() +
" and " +
rightType->toString()
);
commonType = leftType;
}
_operation.annotation().commonType = commonType;
_operation.annotation().type =
TokenTraits::isCompareOp(_operation.getOperator()) ?
make_shared<BoolType>() :
commonType;
_operation.annotation().isPure =
_operation.leftExpression().annotation().isPure &&
_operation.rightExpression().annotation().isPure;
if (_operation.getOperator() == Token::Exp || _operation.getOperator() == Token::SHL)
{
string operation = _operation.getOperator() == Token::Exp ? "exponentiation" : "shift";
if (
leftType->category() == Type::Category::RationalNumber &&
rightType->category() != Type::Category::RationalNumber
)
if ((
commonType->category() == Type::Category::Integer &&
dynamic_cast<IntegerType const&>(*commonType).numBits() != 256
) || (
commonType->category() == Type::Category::FixedPoint &&
dynamic_cast<FixedPointType const&>(*commonType).numBits() != 256
))
m_errorReporter.warning(
_operation.location(),
"Result of " + operation + " has type " + commonType->toString() + " and thus "
"might overflow. Silence this warning by converting the literal to the "
"expected type."
);
}
}
bool TypeChecker::visit(FunctionCall const& _functionCall)
{
bool isPositionalCall = _functionCall.names().empty();
vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
vector<ASTPointer<ASTString>> const& argumentNames = _functionCall.names();
bool isPure = true;
// We need to check arguments' type first as they will be needed for overload resolution.
shared_ptr<TypePointers> argumentTypes;
if (isPositionalCall)
argumentTypes = make_shared<TypePointers>();
for (ASTPointer<Expression const> const& argument: arguments)
{
argument->accept(*this);
if (!argument->annotation().isPure)
isPure = false;
// only store them for positional calls
if (isPositionalCall)
argumentTypes->push_back(type(*argument));
}
if (isPositionalCall)
_functionCall.expression().annotation().argumentTypes = move(argumentTypes);
_functionCall.expression().accept(*this);
TypePointer expressionType = type(_functionCall.expression());
if (auto const* typeType = dynamic_cast<TypeType const*>(expressionType.get()))
{
if (typeType->actualType()->category() == Type::Category::Struct)
_functionCall.annotation().kind = FunctionCallKind::StructConstructorCall;
else
_functionCall.annotation().kind = FunctionCallKind::TypeConversion;
}
else
_functionCall.annotation().kind = FunctionCallKind::FunctionCall;
solAssert(_functionCall.annotation().kind != FunctionCallKind::Unset, "");
if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
{
TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
TypePointer resultType = t.actualType();
if (arguments.size() != 1)
m_errorReporter.typeError(_functionCall.location(), "Exactly one argument expected for explicit type conversion.");
else if (!isPositionalCall)
m_errorReporter.typeError(_functionCall.location(), "Type conversion cannot allow named arguments.");
else
{
TypePointer const& argType = type(*arguments.front());
// Resulting data location is memory unless we are converting from a reference
// type with a different data location.
// (data location cannot yet be specified for type conversions)
DataLocation dataLoc = DataLocation::Memory;
if (auto argRefType = dynamic_cast<ReferenceType const*>(argType.get()))
dataLoc = argRefType->location();
if (auto type = dynamic_cast<ReferenceType const*>(resultType.get()))
resultType = type->copyForLocation(dataLoc, type->isPointer());
if (argType->isExplicitlyConvertibleTo(*resultType))
{
if (auto argArrayType = dynamic_cast<ArrayType const*>(argType.get()))
{
auto resultArrayType = dynamic_cast<ArrayType const*>(resultType.get());
solAssert(!!resultArrayType, "");
solAssert(
argArrayType->location() != DataLocation::Storage ||
((resultArrayType->isPointer() || (argArrayType->isByteArray() && resultArrayType->isByteArray())) &&
resultArrayType->location() == DataLocation::Storage),
"Invalid explicit conversion to storage type."
);
}
}
else
{
if (resultType->category() == Type::Category::Contract && argType->category() == Type::Category::Address)
{
solAssert(dynamic_cast<ContractType const*>(resultType.get())->isPayable(), "");
solAssert(dynamic_cast<AddressType const*>(argType.get())->stateMutability() < StateMutability::Payable, "");
SecondarySourceLocation ssl;
if (auto const* identifier = dynamic_cast<Identifier const*>(arguments.front().get()))
if (auto const* variableDeclaration = dynamic_cast<VariableDeclaration const*>(identifier->annotation().referencedDeclaration))
ssl.append("Did you mean to declare this variable as \"address payable\"?", variableDeclaration->location());
m_errorReporter.typeError(
_functionCall.location(), ssl,
"Explicit type conversion not allowed from non-payable \"address\" to \"" +
resultType->toString() +
"\", which has a payable fallback function."
);
}
else
m_errorReporter.typeError(
_functionCall.location(),
"Explicit type conversion not allowed from \"" +
argType->toString() +
"\" to \"" +
resultType->toString() +
"\"."
);
}
if (resultType->category() == Type::Category::Address)
{
bool payable = argType->isExplicitlyConvertibleTo(AddressType::addressPayable());
resultType = make_shared<AddressType>(payable ? StateMutability::Payable : StateMutability::NonPayable);
}
}
_functionCall.annotation().type = resultType;
_functionCall.annotation().isPure = isPure;
return false;
}
// Actual function call or struct constructor call.
FunctionTypePointer functionType;
/// For error message: Struct members that were removed during conversion to memory.
set<string> membersRemovedForStructConstructor;
if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall)
{
TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
auto const& structType = dynamic_cast<StructType const&>(*t.actualType());
functionType = structType.constructorType();
membersRemovedForStructConstructor = structType.membersMissingInMemory();
_functionCall.annotation().isPure = isPure;
}
else if ((functionType = dynamic_pointer_cast<FunctionType const>(expressionType)))
_functionCall.annotation().isPure =
isPure &&
_functionCall.expression().annotation().isPure &&
functionType->isPure();
bool allowDynamicTypes = m_evmVersion.supportsReturndata();
if (!functionType)
{
m_errorReporter.typeError(_functionCall.location(), "Type is not callable");
_functionCall.annotation().type = make_shared<TupleType>();
return false;
}
if (functionType->kind() == FunctionType::Kind::BareStaticCall && !m_evmVersion.hasStaticCall())
m_errorReporter.typeError(_functionCall.location(), "\"staticcall\" is not supported by the VM version.");
if (auto functionName = dynamic_cast<Identifier const*>(&_functionCall.expression()))
{
if (functionName->name() == "sha3" && functionType->kind() == FunctionType::Kind::KECCAK256)
m_errorReporter.typeError(_functionCall.location(), "\"sha3\" has been deprecated in favour of \"keccak256\"");
else if (functionName->name() == "suicide" && functionType->kind() == FunctionType::Kind::Selfdestruct)
m_errorReporter.typeError(_functionCall.location(), "\"suicide\" has been deprecated in favour of \"selfdestruct\"");
}
if (!m_insideEmitStatement && functionType->kind() == FunctionType::Kind::Event)
m_errorReporter.typeError(_functionCall.location(), "Event invocations have to be prefixed by \"emit\".");
TypePointers parameterTypes = functionType->parameterTypes();
if (!functionType->padArguments())
{
for (size_t i = 0; i < arguments.size(); ++i)
{
auto const& argType = type(*arguments[i]);
if (auto literal = dynamic_cast<RationalNumberType const*>(argType.get()))
{
if (literal->mobileType())
m_errorReporter.typeError(
arguments[i]->location(),
"Cannot perform packed encoding for a literal. Please convert it to an explicit type first."
);
else
{
/* If no mobile type is available an error will be raised elsewhere. */
solAssert(m_errorReporter.hasErrors(), "");
}
}
}
}
bool const abiEncoderV2 = m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2);
// Will be assigned to .type at the end (turning multi-elements into a tuple).
TypePointers returnTypes =
allowDynamicTypes ?
functionType->returnParameterTypes() :
functionType->returnParameterTypesWithoutDynamicTypes();
if (functionType->kind() == FunctionType::Kind::ABIDecode)
returnTypes = typeCheckABIDecodeAndRetrieveReturnType(_functionCall, abiEncoderV2);
else if (functionType->takesArbitraryParameters() && arguments.size() < parameterTypes.size())
{
solAssert(_functionCall.annotation().kind == FunctionCallKind::FunctionCall, "");
m_errorReporter.typeError(
_functionCall.location(),
"Need at least " +
toString(parameterTypes.size()) +
" arguments for function call, but provided only " +
toString(arguments.size()) +
"."
);
}
else if (!functionType->takesArbitraryParameters() && parameterTypes.size() != arguments.size())
{
bool isStructConstructorCall = _functionCall.annotation().kind == FunctionCallKind::StructConstructorCall;
string msg =
"Wrong argument count for " +
string(isStructConstructorCall ? "struct constructor" : "function call") +
": " +
toString(arguments.size()) +
" arguments given but expected " +
toString(parameterTypes.size()) +
".";
// Extend error message in case we try to construct a struct with mapping member.
if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall && !membersRemovedForStructConstructor.empty())
{
msg += " Members that have to be skipped in memory:";
for (auto const& member: membersRemovedForStructConstructor)
msg += " " + member;
}
else if (
functionType->kind() == FunctionType::Kind::BareCall ||
functionType->kind() == FunctionType::Kind::BareCallCode ||
functionType->kind() == FunctionType::Kind::BareDelegateCall ||
functionType->kind() == FunctionType::Kind::BareStaticCall
)
{
if (arguments.empty())
msg += " This function requires a single bytes argument. Use \"\" as argument to provide empty calldata.";
else
msg += " This function requires a single bytes argument. If all your arguments are value types, you can use abi.encode(...) to properly generate it.";
}
else if (
functionType->kind() == FunctionType::Kind::KECCAK256 ||
functionType->kind() == FunctionType::Kind::SHA256 ||
functionType->kind() == FunctionType::Kind::RIPEMD160
)
msg +=
" This function requires a single bytes argument."
" Use abi.encodePacked(...) to obtain the pre-0.5.0 behaviour"
" or abi.encode(...) to use ABI encoding.";
m_errorReporter.typeError(_functionCall.location(), msg);
}
else if (isPositionalCall)
{
for (size_t i = 0; i < arguments.size(); ++i)
{
auto const& argType = type(*arguments[i]);
if (functionType->takesArbitraryParameters() && i >= parameterTypes.size())
{
bool errored = false;
if (auto t = dynamic_cast<RationalNumberType const*>(argType.get()))
if (!t->mobileType())
{
m_errorReporter.typeError(arguments[i]->location(), "Invalid rational number (too large or division by zero).");
errored = true;
}
if (!errored && !argType->fullEncodingType(false, abiEncoderV2, !functionType->padArguments()))
m_errorReporter.typeError(arguments[i]->location(), "This type cannot be encoded.");
}
else if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
{
string msg =
"Invalid type for argument in function call. "
"Invalid implicit conversion from " +
type(*arguments[i])->toString() +
" to " +
parameterTypes[i]->toString() +
" requested.";
if (
functionType->kind() == FunctionType::Kind::BareCall ||
functionType->kind() == FunctionType::Kind::BareCallCode ||
functionType->kind() == FunctionType::Kind::BareDelegateCall ||
functionType->kind() == FunctionType::Kind::BareStaticCall
)
msg += " This function requires a single bytes argument. If all your arguments are value types, you can use abi.encode(...) to properly generate it.";
else if (
functionType->kind() == FunctionType::Kind::KECCAK256 ||
functionType->kind() == FunctionType::Kind::SHA256 ||
functionType->kind() == FunctionType::Kind::RIPEMD160
)
msg +=
" This function requires a single bytes argument."
" Use abi.encodePacked(...) to obtain the pre-0.5.0 behaviour"
" or abi.encode(...) to use ABI encoding.";
m_errorReporter.typeError(arguments[i]->location(), msg);
}
}
}
else
{
// call by named arguments
auto const& parameterNames = functionType->parameterNames();
if (functionType->takesArbitraryParameters())
m_errorReporter.typeError(
_functionCall.location(),
"Named arguments cannot be used for functions that take arbitrary parameters."
);
else if (parameterNames.size() > argumentNames.size())
m_errorReporter.typeError(_functionCall.location(), "Some argument names are missing.");
else if (parameterNames.size() < argumentNames.size())
m_errorReporter.typeError(_functionCall.location(), "Too many arguments.");
else
{
// check duplicate names
bool duplication = false;
for (size_t i = 0; i < argumentNames.size(); i++)
for (size_t j = i + 1; j < argumentNames.size(); j++)
if (*argumentNames[i] == *argumentNames[j])
{
duplication = true;
m_errorReporter.typeError(arguments[i]->location(), "Duplicate named argument.");
}
// check actual types
if (!duplication)
for (size_t i = 0; i < argumentNames.size(); i++)
{
bool found = false;
for (size_t j = 0; j < parameterNames.size(); j++)
if (parameterNames[j] == *argumentNames[i])
{
found = true;
// check type convertible
if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[j]))
m_errorReporter.typeError(
arguments[i]->location(),
"Invalid type for argument in function call. "
"Invalid implicit conversion from " +
type(*arguments[i])->toString() +
" to " +
parameterTypes[i]->toString() +
" requested."
);
break;
}
if (!found)
m_errorReporter.typeError(
_functionCall.location(),
"Named argument \"" + *argumentNames[i] + "\" does not match function declaration."
);
}
}
}
if (returnTypes.size() == 1)
_functionCall.annotation().type = returnTypes.front();
else
_functionCall.annotation().type = make_shared<TupleType>(returnTypes);
return false;
}
void TypeChecker::endVisit(NewExpression const& _newExpression)
{
TypePointer type = _newExpression.typeName().annotation().type;
solAssert(!!type, "Type name not resolved.");
if (auto contractName = dynamic_cast<UserDefinedTypeName const*>(&_newExpression.typeName()))
{
auto contract = dynamic_cast<ContractDefinition const*>(&dereference(*contractName));
if (!contract)
m_errorReporter.fatalTypeError(_newExpression.location(), "Identifier is not a contract.");
if (contract->contractKind() == ContractDefinition::ContractKind::Interface)
m_errorReporter.fatalTypeError(_newExpression.location(), "Cannot instantiate an interface.");
if (!contract->annotation().unimplementedFunctions.empty())
{
SecondarySourceLocation ssl;
for (auto function: contract->annotation().unimplementedFunctions)
ssl.append("Missing implementation:", function->location());
string msg = "Trying to create an instance of an abstract contract.";
ssl.limitSize(msg);
m_errorReporter.typeError(
_newExpression.location(),
ssl,
msg
);
}
if (!contract->constructorIsPublic())
m_errorReporter.typeError(_newExpression.location(), "Contract with internal constructor cannot be created directly.");
solAssert(!!m_scope, "");
m_scope->annotation().contractDependencies.insert(contract);
solAssert(
!contract->annotation().linearizedBaseContracts.empty(),
"Linearized base contracts not yet available."
);
if (contractDependenciesAreCyclic(*m_scope))
m_errorReporter.typeError(
_newExpression.location(),
"Circular reference for contract creation (cannot create instance of derived or same contract)."
);
_newExpression.annotation().type = FunctionType::newExpressionType(*contract);
}
else if (type->category() == Type::Category::Array)
{
if (!type->canLiveOutsideStorage())
m_errorReporter.fatalTypeError(
_newExpression.typeName().location(),
"Type cannot live outside storage."
);
if (!type->isDynamicallySized())
m_errorReporter.typeError(
_newExpression.typeName().location(),
"Length has to be placed in parentheses after the array type for new expression."
);
type = ReferenceType::copyForLocationIfReference(DataLocation::Memory, type);
_newExpression.annotation().type = make_shared<FunctionType>(
TypePointers{make_shared<IntegerType>(256)},
TypePointers{type},
strings(),
strings(),
FunctionType::Kind::ObjectCreation,
false,
StateMutability::Pure
);
_newExpression.annotation().isPure = true;
}
else
m_errorReporter.fatalTypeError(_newExpression.location(), "Contract or array type expected.");
}
bool TypeChecker::visit(MemberAccess const& _memberAccess)
{
_memberAccess.expression().accept(*this);
TypePointer exprType = type(_memberAccess.expression());
ASTString const& memberName = _memberAccess.memberName();
// Retrieve the types of the arguments if this is used to call a function.
auto const& argumentTypes = _memberAccess.annotation().argumentTypes;
MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName);
size_t const initialMemberCount = possibleMembers.size();
if (initialMemberCount > 1 && argumentTypes)
{
// do overload resolution
for (auto it = possibleMembers.begin(); it != possibleMembers.end();)
if (
it->type->category() == Type::Category::Function &&
!dynamic_cast<FunctionType const&>(*it->type).canTakeArguments(*argumentTypes, exprType)
)
it = possibleMembers.erase(it);
else
++it;
}
auto& annotation = _memberAccess.annotation();
if (possibleMembers.empty())
{
if (initialMemberCount == 0)
{
// Try to see if the member was removed because it is only available for storage types.
auto storageType = ReferenceType::copyForLocationIfReference(
DataLocation::Storage,
exprType
);
if (!storageType->members(m_scope).membersByName(memberName).empty())
m_errorReporter.fatalTypeError(
_memberAccess.location(),
"Member \"" + memberName + "\" is not available in " +
exprType->toString() +
" outside of storage."
);
}
string errorMsg = "Member \"" + memberName + "\" not found or not visible "
"after argument-dependent lookup in " + exprType->toString() + ".";
if (memberName == "value")
{
errorMsg.pop_back();
errorMsg += " - did you forget the \"payable\" modifier?";
}
else if (exprType->category() == Type::Category::Function)
{
if (auto const& funType = dynamic_pointer_cast<FunctionType const>(exprType))
{
auto const& t = funType->returnParameterTypes();
if (t.size() == 1)
if (
t.front()->category() == Type::Category::Contract ||
t.front()->category() == Type::Category::Struct
)
errorMsg += " Did you intend to call the function?";
}
}
if (exprType->category() == Type::Category::Contract)
for (auto const& addressMember: AddressType::addressPayable().nativeMembers(nullptr))
if (addressMember.name == memberName)
{
Identifier const* var = dynamic_cast<Identifier const*>(&_memberAccess.expression());
string varName = var ? var->name() : "...";
errorMsg += " Use \"address(" + varName + ")." + memberName + "\" to access this address member.";
break;
}
m_errorReporter.fatalTypeError(
_memberAccess.location(),
errorMsg
);
}
else if (possibleMembers.size() > 1)
m_errorReporter.fatalTypeError(
_memberAccess.location(),
"Member \"" + memberName + "\" not unique "
"after argument-dependent lookup in " + exprType->toString() +
(memberName == "value" ? " - did you forget the \"payable\" modifier?" : ".")
);
annotation.referencedDeclaration = possibleMembers.front().declaration;
annotation.type = possibleMembers.front().type;
if (auto funType = dynamic_cast<FunctionType const*>(annotation.type.get()))
if (funType->bound() && !exprType->isImplicitlyConvertibleTo(*funType->selfType()))
m_errorReporter.typeError(
_memberAccess.location(),
"Function \"" + memberName + "\" cannot be called on an object of type " +
exprType->toString() + " (expected " + funType->selfType()->toString() + ")."
);
if (exprType->category() == Type::Category::Struct)
annotation.isLValue = true;
else if (exprType->category() == Type::Category::Array)
{
auto const& arrayType(dynamic_cast<ArrayType const&>(*exprType));
annotation.isLValue = (
memberName == "length" &&
arrayType.location() == DataLocation::Storage &&
arrayType.isDynamicallySized()
);
}
else if (exprType->category() == Type::Category::FixedBytes)
annotation.isLValue = false;
else if (TypeType const* typeType = dynamic_cast<decltype(typeType)>(exprType.get()))
{
if (ContractType const* contractType = dynamic_cast<decltype(contractType)>(typeType->actualType().get()))
annotation.isLValue = annotation.referencedDeclaration->isLValue();
}
if (exprType->category() == Type::Category::Contract)
{
// Warn about using send or transfer with a non-payable fallback function.
if (auto callType = dynamic_cast<FunctionType const*>(type(_memberAccess).get()))
{
auto kind = callType->kind();
auto contractType = dynamic_cast<ContractType const*>(exprType.get());
solAssert(!!contractType, "Should be contract type.");
if (
(kind == FunctionType::Kind::Send || kind == FunctionType::Kind::Transfer) &&
!contractType->isPayable()
)
m_errorReporter.typeError(
_memberAccess.location(),
"Value transfer to a contract without a payable fallback function."
);
}
}
// TODO some members might be pure, but for example `address(0x123).balance` is not pure
// although every subexpression is, so leaving this limited for now.
if (auto tt = dynamic_cast<TypeType const*>(exprType.get()))
if (tt->actualType()->category() == Type::Category::Enum)
annotation.isPure = true;
if (auto magicType = dynamic_cast<MagicType const*>(exprType.get()))
if (magicType->kind() == MagicType::Kind::ABI)
annotation.isPure = true;
return false;
}
bool TypeChecker::visit(IndexAccess const& _access)
{
_access.baseExpression().accept(*this);
TypePointer baseType = type(_access.baseExpression());
TypePointer resultType;
bool isLValue = false;
bool isPure = _access.baseExpression().annotation().isPure;
Expression const* index = _access.indexExpression();
switch (baseType->category())
{
case Type::Category::Array:
{
ArrayType const& actualType = dynamic_cast<ArrayType const&>(*baseType);
if (!index)
m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
else if (actualType.isString())
{
m_errorReporter.typeError(_access.location(), "Index access for string is not possible.");
index->accept(*this);
}
else
{
expectType(*index, IntegerType(256));
if (!m_errorReporter.hasErrors())
if (auto numberType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
{
solAssert(!numberType->isFractional(), "");
if (!actualType.isDynamicallySized() && actualType.length() <= numberType->literalValue(nullptr))
m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
}
}
resultType = actualType.baseType();
isLValue = actualType.location() != DataLocation::CallData;
break;
}
case Type::Category::Mapping:
{
MappingType const& actualType = dynamic_cast<MappingType const&>(*baseType);
if (!index)
m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
else
expectType(*index, *actualType.keyType());
resultType = actualType.valueType();
isLValue = true;
break;
}
case Type::Category::TypeType:
{
TypeType const& typeType = dynamic_cast<TypeType const&>(*baseType);
if (!index)
resultType = make_shared<TypeType>(make_shared<ArrayType>(DataLocation::Memory, typeType.actualType()));
else
{
expectType(*index, IntegerType(256));
if (auto length = dynamic_cast<RationalNumberType const*>(type(*index).get()))
resultType = make_shared<TypeType>(make_shared<ArrayType>(
DataLocation::Memory,
typeType.actualType(),
length->literalValue(nullptr)
));
else
m_errorReporter.fatalTypeError(index->location(), "Integer constant expected.");
}
break;
}
case Type::Category::FixedBytes:
{
FixedBytesType const& bytesType = dynamic_cast<FixedBytesType const&>(*baseType);
if (!index)
m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
else
{
if (!expectType(*index, IntegerType(256)))
m_errorReporter.fatalTypeError(_access.location(), "Index expression cannot be represented as an unsigned integer.");
if (auto integerType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
if (bytesType.numBytes() <= integerType->literalValue(nullptr))
m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
}
resultType = make_shared<FixedBytesType>(1);
isLValue = false; // @todo this heavily depends on how it is embedded
break;
}
default:
m_errorReporter.fatalTypeError(
_access.baseExpression().location(),
"Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")"
);
}
_access.annotation().type = move(resultType);
_access.annotation().isLValue = isLValue;
if (index && !index->annotation().isPure)
isPure = false;
_access.annotation().isPure = isPure;
return false;
}
bool TypeChecker::visit(Identifier const& _identifier)
{
IdentifierAnnotation& annotation = _identifier.annotation();
if (!annotation.referencedDeclaration)
{
if (!annotation.argumentTypes)
{
// The identifier should be a public state variable shadowing other functions
vector<Declaration const*> candidates;
for (Declaration const* declaration: annotation.overloadedDeclarations)
{
if (VariableDeclaration const* variableDeclaration = dynamic_cast<decltype(variableDeclaration)>(declaration))
candidates.push_back(declaration);
}
if (candidates.empty())
m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup.");
else if (candidates.size() == 1)
annotation.referencedDeclaration = candidates.front();
else
m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup.");
}
else if (annotation.overloadedDeclarations.empty())
m_errorReporter.fatalTypeError(_identifier.location(), "No candidates for overload resolution found.");
else if (annotation.overloadedDeclarations.size() == 1)
annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();
else
{
vector<Declaration const*> candidates;
for (Declaration const* declaration: annotation.overloadedDeclarations)
{
FunctionTypePointer functionType = declaration->functionType(true);
solAssert(!!functionType, "Requested type not present.");
if (functionType->canTakeArguments(*annotation.argumentTypes))
candidates.push_back(declaration);
}
if (candidates.empty())
m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup.");
else if (candidates.size() == 1)
annotation.referencedDeclaration = candidates.front();
else
m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup.");
}
}
solAssert(
!!annotation.referencedDeclaration,
"Referenced declaration is null after overload resolution."
);
annotation.isLValue = annotation.referencedDeclaration->isLValue();
annotation.type = annotation.referencedDeclaration->type();
if (!annotation.type)
m_errorReporter.fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined.");
if (auto variableDeclaration = dynamic_cast<VariableDeclaration const*>(annotation.referencedDeclaration))
annotation.isPure = annotation.isConstant = variableDeclaration->isConstant();
else if (dynamic_cast<MagicVariableDeclaration const*>(annotation.referencedDeclaration))
if (dynamic_cast<FunctionType const*>(annotation.type.get()))
annotation.isPure = true;
return false;
}
void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr)
{
_expr.annotation().type = make_shared<TypeType>(Type::fromElementaryTypeName(_expr.typeName()));
_expr.annotation().isPure = true;
}
void TypeChecker::endVisit(Literal const& _literal)
{
if (_literal.looksLikeAddress())
{
// Assign type here if it even looks like an address. This prevents double errors for invalid addresses
_literal.annotation().type = make_shared<AddressType>(StateMutability::Payable);
string msg;
if (_literal.valueWithoutUnderscores().length() != 42) // "0x" + 40 hex digits
// looksLikeAddress enforces that it is a hex literal starting with "0x"
msg =
"This looks like an address but is not exactly 40 hex digits. It is " +
to_string(_literal.valueWithoutUnderscores().length() - 2) +
" hex digits.";
else if (!_literal.passesAddressChecksum())
{
msg = "This looks like an address but has an invalid checksum.";
if (!_literal.getChecksummedAddress().empty())
msg += " Correct checksummed address: \"" + _literal.getChecksummedAddress() + "\".";
}
if (!msg.empty())
m_errorReporter.syntaxError(
_literal.location(),
msg +
" If this is not used as an address, please prepend '00'. " +
"For more information please see https://solidity.readthedocs.io/en/develop/types.html#address-literals"
);
}
if (_literal.isHexNumber() && _literal.subDenomination() != Literal::SubDenomination::None)
m_errorReporter.fatalTypeError(
_literal.location(),
"Hexadecimal numbers cannot be used with unit denominations. "
"You can use an expression of the form \"0x1234 * 1 day\" instead."
);
if (_literal.subDenomination() == Literal::SubDenomination::Year)
m_errorReporter.typeError(
_literal.location(),
"Using \"years\" as a unit denomination is deprecated."
);
if (!_literal.annotation().type)
_literal.annotation().type = Type::forLiteral(_literal);
if (!_literal.annotation().type)
m_errorReporter.fatalTypeError(_literal.location(), "Invalid literal value.");
_literal.annotation().isPure = true;
}
bool TypeChecker::contractDependenciesAreCyclic(
ContractDefinition const& _contract,
std::set<ContractDefinition const*> const& _seenContracts
) const
{
// Naive depth-first search that remembers nodes already seen.
if (_seenContracts.count(&_contract))
return true;
set<ContractDefinition const*> seen(_seenContracts);
seen.insert(&_contract);
for (auto const* c: _contract.annotation().contractDependencies)
if (contractDependenciesAreCyclic(*c, seen))
return true;
return false;
}
Declaration const& TypeChecker::dereference(Identifier const& _identifier) const
{
solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored.");
return *_identifier.annotation().referencedDeclaration;
}
Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const
{
solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored.");
return *_typeName.annotation().referencedDeclaration;
}
bool TypeChecker::expectType(Expression const& _expression, Type const& _expectedType)
{
_expression.accept(*this);
if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType))
{
if (
type(_expression)->category() == Type::Category::RationalNumber &&
dynamic_pointer_cast<RationalNumberType const>(type(_expression))->isFractional() &&
type(_expression)->mobileType()
)
m_errorReporter.typeError(
_expression.location(),
"Type " +
type(_expression)->toString() +
" is not implicitly convertible to expected type " +
_expectedType.toString() +
". Try converting to type " +
type(_expression)->mobileType()->toString() +
" or use an explicit conversion."
);
else
m_errorReporter.typeError(
_expression.location(),
"Type " +
type(_expression)->toString() +
" is not implicitly convertible to expected type " +
_expectedType.toString() +
"."
);
return false;
}
return true;
}
void TypeChecker::requireLValue(Expression const& _expression)
{
_expression.annotation().lValueRequested = true;
_expression.accept(*this);
if (_expression.annotation().isConstant)
m_errorReporter.typeError(_expression.location(), "Cannot assign to a constant variable.");
else if (!_expression.annotation().isLValue)
m_errorReporter.typeError(_expression.location(), "Expression has to be an lvalue.");
}