solidity/libsolidity/codegen/ir/IRGenerator.cpp
2021-05-26 15:51:46 +01:00

987 lines
34 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* @author Alex Beregszaszi
* @date 2017
* Component that translates Solidity code into Yul.
*/
#include <libsolidity/codegen/ir/IRGenerator.h>
#include <libsolidity/codegen/ir/IRGeneratorForStatements.h>
#include <libsolidity/ast/AST.h>
#include <libsolidity/ast/ASTVisitor.h>
#include <libsolidity/codegen/ABIFunctions.h>
#include <libsolidity/codegen/CompilerUtils.h>
#include <libyul/AssemblyStack.h>
#include <libyul/Utilities.h>
#include <libsolutil/CommonData.h>
#include <libsolutil/Whiskers.h>
#include <libsolutil/StringUtils.h>
#include <libsolutil/Algorithms.h>
#include <liblangutil/SourceReferenceFormatter.h>
#include <range/v3/view/map.hpp>
#include <sstream>
#include <variant>
using namespace std;
using namespace solidity;
using namespace solidity::util;
using namespace solidity::frontend;
namespace
{
void verifyCallGraph(
set<CallableDeclaration const*, ASTNode::CompareByID> const& _expectedCallables,
set<FunctionDefinition const*> _generatedFunctions
)
{
for (auto const& expectedCallable: _expectedCallables)
if (auto const* expectedFunction = dynamic_cast<FunctionDefinition const*>(expectedCallable))
{
solAssert(
_generatedFunctions.count(expectedFunction) == 1 || expectedFunction->isConstructor(),
"No code generated for function " + expectedFunction->name() + " even though it is not a constructor."
);
_generatedFunctions.erase(expectedFunction);
}
solAssert(
_generatedFunctions.size() == 0,
"Of the generated functions " + toString(_generatedFunctions.size()) + " are not in the call graph."
);
}
set<CallableDeclaration const*, ASTNode::CompareByID> collectReachableCallables(
CallGraph const& _graph
)
{
set<CallableDeclaration const*, ASTNode::CompareByID> reachableCallables;
for (CallGraph::Node const& reachableNode: _graph.edges | ranges::views::keys)
if (holds_alternative<CallableDeclaration const*>(reachableNode))
reachableCallables.emplace(get<CallableDeclaration const*>(reachableNode));
return reachableCallables;
}
}
pair<string, string> IRGenerator::run(
ContractDefinition const& _contract,
map<ContractDefinition const*, string_view const> const& _otherYulSources
)
{
string const ir = yul::reindent(generate(_contract, _otherYulSources));
yul::AssemblyStack asmStack(m_evmVersion, yul::AssemblyStack::Language::StrictAssembly, m_optimiserSettings);
if (!asmStack.parseAndAnalyze("", ir))
{
string errorMessage;
for (auto const& error: asmStack.errors())
errorMessage += langutil::SourceReferenceFormatter::formatErrorInformation(*error);
solAssert(false, ir + "\n\nInvalid IR generated:\n" + errorMessage + "\n");
}
asmStack.optimize();
string warning =
"/*******************************************************\n"
" * WARNING *\n"
" * Solidity to Yul compilation is still EXPERIMENTAL *\n"
" * It can result in LOSS OF FUNDS or worse *\n"
" * !USE AT YOUR OWN RISK! *\n"
" *******************************************************/\n\n";
return {warning + ir, warning + asmStack.print()};
}
string IRGenerator::generate(
ContractDefinition const& _contract,
map<ContractDefinition const*, string_view const> const& _otherYulSources
)
{
auto subObjectSources = [&_otherYulSources](std::set<ContractDefinition const*, ASTNode::CompareByID> const& subObjects) -> string
{
std::string subObjectsSources;
for (ContractDefinition const* subObject: subObjects)
subObjectsSources += _otherYulSources.at(subObject);
return subObjectsSources;
};
Whiskers t(R"(
object "<CreationObject>" {
code {
<memoryInitCreation>
<callValueCheck>
<?library>
<!library>
<?constructorHasParams> let <constructorParams> := <copyConstructorArguments>() </constructorHasParams>
<implicitConstructor>(<constructorParams>)
</library>
<deploy>
<functions>
}
object "<DeployedObject>" {
code {
<memoryInitDeployed>
<?library>
let called_via_delegatecall := iszero(eq(loadimmutable("<library_address>"), address()))
</library>
<dispatch>
<deployedFunctions>
}
<deployedSubObjects>
}
<subObjects>
}
)");
resetContext(_contract);
for (VariableDeclaration const* var: ContractType(_contract).immutableVariables())
m_context.registerImmutableVariable(*var);
t("CreationObject", IRNames::creationObject(_contract));
t("library", _contract.isLibrary());
FunctionDefinition const* constructor = _contract.constructor();
t("callValueCheck", !constructor || !constructor->isPayable() ? callValueCheck() : "");
vector<string> constructorParams;
if (constructor && !constructor->parameters().empty())
{
for (size_t i = 0; i < CompilerUtils::sizeOnStack(constructor->parameters()); ++i)
constructorParams.emplace_back(m_context.newYulVariable());
t(
"copyConstructorArguments",
m_utils.copyConstructorArgumentsToMemoryFunction(_contract, IRNames::creationObject(_contract))
);
}
t("constructorParams", joinHumanReadable(constructorParams));
t("constructorHasParams", !constructorParams.empty());
t("implicitConstructor", IRNames::implicitConstructor(_contract));
t("deploy", deployCode(_contract));
generateImplicitConstructors(_contract);
set<FunctionDefinition const*> creationFunctionList = generateQueuedFunctions();
InternalDispatchMap internalDispatchMap = generateInternalDispatchFunctions();
t("functions", m_context.functionCollector().requestedFunctions());
t("subObjects", subObjectSources(m_context.subObjectsCreated()));
// This has to be called only after all other code generation for the creation object is complete.
bool creationInvolvesAssembly = m_context.inlineAssemblySeen();
t("memoryInitCreation", memoryInit(!creationInvolvesAssembly));
resetContext(_contract);
// NOTE: Function pointers can be passed from creation code via storage variables. We need to
// get all the functions they could point to into the dispatch functions even if they're never
// referenced by name in the deployed code.
m_context.initializeInternalDispatch(move(internalDispatchMap));
// Do not register immutables to avoid assignment.
t("DeployedObject", IRNames::deployedObject(_contract));
t("library_address", IRNames::libraryAddressImmutable());
t("dispatch", dispatchRoutine(_contract));
set<FunctionDefinition const*> deployedFunctionList = generateQueuedFunctions();
generateInternalDispatchFunctions();
t("deployedFunctions", m_context.functionCollector().requestedFunctions());
t("deployedSubObjects", subObjectSources(m_context.subObjectsCreated()));
// This has to be called only after all other code generation for the deployed object is complete.
bool deployedInvolvesAssembly = m_context.inlineAssemblySeen();
t("memoryInitDeployed", memoryInit(!deployedInvolvesAssembly));
solAssert(_contract.annotation().creationCallGraph->get() != nullptr, "");
solAssert(_contract.annotation().deployedCallGraph->get() != nullptr, "");
verifyCallGraph(collectReachableCallables(**_contract.annotation().creationCallGraph), move(creationFunctionList));
verifyCallGraph(collectReachableCallables(**_contract.annotation().deployedCallGraph), move(deployedFunctionList));
return t.render();
}
string IRGenerator::generate(Block const& _block)
{
IRGeneratorForStatements generator(m_context, m_utils);
generator.generate(_block);
return generator.code();
}
set<FunctionDefinition const*> IRGenerator::generateQueuedFunctions()
{
set<FunctionDefinition const*> functions;
while (!m_context.functionGenerationQueueEmpty())
{
FunctionDefinition const& functionDefinition = *m_context.dequeueFunctionForCodeGeneration();
functions.emplace(&functionDefinition);
// NOTE: generateFunction() may modify function generation queue
generateFunction(functionDefinition);
}
return functions;
}
InternalDispatchMap IRGenerator::generateInternalDispatchFunctions()
{
solAssert(
m_context.functionGenerationQueueEmpty(),
"At this point all the enqueued functions should have been generated. "
"Otherwise the dispatch may be incomplete."
);
InternalDispatchMap internalDispatchMap = m_context.consumeInternalDispatchMap();
for (YulArity const& arity: internalDispatchMap | ranges::views::keys)
{
string funName = IRNames::internalDispatch(arity);
m_context.functionCollector().createFunction(funName, [&]() {
Whiskers templ(R"(
function <functionName>(fun<?+in>, <in></+in>) <?+out>-> <out></+out> {
switch fun
<#cases>
case <funID>
{
<?+out> <out> :=</+out> <name>(<in>)
}
</cases>
default { <panic>() }
}
)");
templ("functionName", funName);
templ("panic", m_utils.panicFunction(PanicCode::InvalidInternalFunction));
templ("in", suffixedVariableNameList("in_", 0, arity.in));
templ("out", suffixedVariableNameList("out_", 0, arity.out));
vector<map<string, string>> cases;
for (FunctionDefinition const* function: internalDispatchMap.at(arity))
{
solAssert(function, "");
solAssert(
YulArity::fromType(*TypeProvider::function(*function, FunctionType::Kind::Internal)) == arity,
"A single dispatch function can only handle functions of one arity"
);
solAssert(!function->isConstructor(), "");
// 0 is reserved for uninitialized function pointers
solAssert(function->id() != 0, "Unexpected function ID: 0");
solAssert(m_context.functionCollector().contains(IRNames::function(*function)), "");
cases.emplace_back(map<string, string>{
{"funID", to_string(function->id())},
{"name", IRNames::function(*function)}
});
}
templ("cases", move(cases));
return templ.render();
});
}
solAssert(m_context.internalDispatchClean(), "");
solAssert(
m_context.functionGenerationQueueEmpty(),
"Internal dispatch generation must not add new functions to generation queue because they won't be proeessed."
);
return internalDispatchMap;
}
string IRGenerator::generateFunction(FunctionDefinition const& _function)
{
string functionName = IRNames::function(_function);
return m_context.functionCollector().createFunction(functionName, [&]() {
m_context.resetLocalVariables();
Whiskers t(R"(
function <functionName>(<params>)<?+retParams> -> <retParams></+retParams> {
<retInit>
<body>
}
)");
t("functionName", functionName);
vector<string> params;
for (auto const& varDecl: _function.parameters())
params += m_context.addLocalVariable(*varDecl).stackSlots();
t("params", joinHumanReadable(params));
vector<string> retParams;
string retInit;
for (auto const& varDecl: _function.returnParameters())
{
retParams += m_context.addLocalVariable(*varDecl).stackSlots();
retInit += generateInitialAssignment(*varDecl);
}
t("retParams", joinHumanReadable(retParams));
t("retInit", retInit);
if (_function.modifiers().empty())
t("body", generate(_function.body()));
else
{
for (size_t i = 0; i < _function.modifiers().size(); ++i)
{
ModifierInvocation const& modifier = *_function.modifiers().at(i);
string next =
i + 1 < _function.modifiers().size() ?
IRNames::modifierInvocation(*_function.modifiers().at(i + 1)) :
IRNames::functionWithModifierInner(_function);
generateModifier(modifier, _function, next);
}
t("body",
(retParams.empty() ? string{} : joinHumanReadable(retParams) + " := ") +
IRNames::modifierInvocation(*_function.modifiers().at(0)) +
"(" +
joinHumanReadable(retParams + params) +
")"
);
// Now generate the actual inner function.
generateFunctionWithModifierInner(_function);
}
return t.render();
});
}
string IRGenerator::generateModifier(
ModifierInvocation const& _modifierInvocation,
FunctionDefinition const& _function,
string const& _nextFunction
)
{
string functionName = IRNames::modifierInvocation(_modifierInvocation);
return m_context.functionCollector().createFunction(functionName, [&]() {
m_context.resetLocalVariables();
Whiskers t(R"(
function <functionName>(<params>)<?+retParams> -> <retParams></+retParams> {
<assignRetParams>
<evalArgs>
<body>
}
)");
t("functionName", functionName);
vector<string> retParamsIn;
for (auto const& varDecl: _function.returnParameters())
retParamsIn += m_context.addLocalVariable(*varDecl).stackSlots();
vector<string> params = retParamsIn;
for (auto const& varDecl: _function.parameters())
params += m_context.addLocalVariable(*varDecl).stackSlots();
t("params", joinHumanReadable(params));
vector<string> retParams;
string assignRetParams;
for (size_t i = 0; i < retParamsIn.size(); ++i)
{
retParams.emplace_back(m_context.newYulVariable());
assignRetParams += retParams.back() + " := " + retParamsIn[i] + "\n";
}
t("retParams", joinHumanReadable(retParams));
t("assignRetParams", assignRetParams);
ModifierDefinition const* modifier = dynamic_cast<ModifierDefinition const*>(
_modifierInvocation.name().annotation().referencedDeclaration
);
solAssert(modifier, "");
switch (*_modifierInvocation.name().annotation().requiredLookup)
{
case VirtualLookup::Virtual:
modifier = &modifier->resolveVirtual(m_context.mostDerivedContract());
solAssert(modifier, "");
break;
case VirtualLookup::Static:
break;
case VirtualLookup::Super:
solAssert(false, "");
}
solAssert(
modifier->parameters().empty() ==
(!_modifierInvocation.arguments() || _modifierInvocation.arguments()->empty()),
""
);
IRGeneratorForStatements expressionEvaluator(m_context, m_utils);
if (_modifierInvocation.arguments())
for (size_t i = 0; i < _modifierInvocation.arguments()->size(); i++)
{
IRVariable argument = expressionEvaluator.evaluateExpression(
*_modifierInvocation.arguments()->at(i),
*modifier->parameters()[i]->annotation().type
);
expressionEvaluator.define(
m_context.addLocalVariable(*modifier->parameters()[i]),
argument
);
}
t("evalArgs", expressionEvaluator.code());
IRGeneratorForStatements generator(m_context, m_utils, [&]() {
string ret = joinHumanReadable(retParams);
return
(ret.empty() ? "" : ret + " := ") +
_nextFunction + "(" + joinHumanReadable(params) + ")\n";
});
generator.generate(modifier->body());
t("body", generator.code());
return t.render();
});
}
string IRGenerator::generateFunctionWithModifierInner(FunctionDefinition const& _function)
{
string functionName = IRNames::functionWithModifierInner(_function);
return m_context.functionCollector().createFunction(functionName, [&]() {
m_context.resetLocalVariables();
Whiskers t(R"(
function <functionName>(<params>)<?+retParams> -> <retParams></+retParams> {
<assignRetParams>
<body>
}
)");
t("functionName", functionName);
vector<string> retParams;
vector<string> retParamsIn;
for (auto const& varDecl: _function.returnParameters())
retParams += m_context.addLocalVariable(*varDecl).stackSlots();
string assignRetParams;
for (size_t i = 0; i < retParams.size(); ++i)
{
retParamsIn.emplace_back(m_context.newYulVariable());
assignRetParams += retParams.back() + " := " + retParamsIn[i] + "\n";
}
vector<string> params = retParamsIn;
for (auto const& varDecl: _function.parameters())
params += m_context.addLocalVariable(*varDecl).stackSlots();
t("params", joinHumanReadable(params));
t("retParams", joinHumanReadable(retParams));
t("assignRetParams", assignRetParams);
t("body", generate(_function.body()));
return t.render();
});
}
string IRGenerator::generateGetter(VariableDeclaration const& _varDecl)
{
string functionName = IRNames::function(_varDecl);
return m_context.functionCollector().createFunction(functionName, [&]() {
Type const* type = _varDecl.annotation().type;
solAssert(_varDecl.isStateVariable(), "");
FunctionType accessorType(_varDecl);
TypePointers paramTypes = accessorType.parameterTypes();
if (_varDecl.immutable())
{
solAssert(paramTypes.empty(), "");
solUnimplementedAssert(type->sizeOnStack() == 1, "");
return Whiskers(R"(
function <functionName>() -> rval {
rval := loadimmutable("<id>")
}
)")
("functionName", functionName)
("id", to_string(_varDecl.id()))
.render();
}
else if (_varDecl.isConstant())
{
solAssert(paramTypes.empty(), "");
return Whiskers(R"(
function <functionName>() -> <ret> {
<ret> := <constantValueFunction>()
}
)")
("functionName", functionName)
("constantValueFunction", IRGeneratorForStatements(m_context, m_utils).constantValueFunction(_varDecl))
("ret", suffixedVariableNameList("ret_", 0, _varDecl.type()->sizeOnStack()))
.render();
}
string code;
auto const& location = m_context.storageLocationOfStateVariable(_varDecl);
code += Whiskers(R"(
let slot := <slot>
let offset := <offset>
)")
("slot", location.first.str())
("offset", to_string(location.second))
.render();
if (!paramTypes.empty())
solAssert(
location.second == 0,
"If there are parameters, we are dealing with structs or mappings and thus should have offset zero."
);
// The code of an accessor is of the form `x[a][b][c]` (it is slightly more complicated
// if the final type is a struct).
// In each iteration of the loop below, we consume one parameter, perform an
// index access, reassign the yul variable `slot` and move @a currentType further "down".
// The initial value of @a currentType is only used if we skip the loop completely.
Type const* currentType = _varDecl.annotation().type;
vector<string> parameters;
vector<string> returnVariables;
for (size_t i = 0; i < paramTypes.size(); ++i)
{
MappingType const* mappingType = dynamic_cast<MappingType const*>(currentType);
ArrayType const* arrayType = dynamic_cast<ArrayType const*>(currentType);
solAssert(mappingType || arrayType, "");
vector<string> keys = IRVariable("key_" + to_string(i),
mappingType ? *mappingType->keyType() : *TypeProvider::uint256()
).stackSlots();
parameters += keys;
Whiskers templ(R"(
<?array>
if iszero(lt(<keys>, <length>(slot))) { revert(0, 0) }
</array>
slot<?array>, offset</array> := <indexAccess>(slot<?+keys>, <keys></+keys>)
)");
templ(
"indexAccess",
mappingType ?
m_utils.mappingIndexAccessFunction(*mappingType, *mappingType->keyType()) :
m_utils.storageArrayIndexAccessFunction(*arrayType)
)
("array", arrayType != nullptr)
("keys", joinHumanReadable(keys));
if (arrayType)
templ("length", m_utils.arrayLengthFunction(*arrayType));
code += templ.render();
currentType = mappingType ? mappingType->valueType() : arrayType->baseType();
}
auto returnTypes = accessorType.returnParameterTypes();
solAssert(returnTypes.size() >= 1, "");
if (StructType const* structType = dynamic_cast<StructType const*>(currentType))
{
solAssert(location.second == 0, "");
auto const& names = accessorType.returnParameterNames();
for (size_t i = 0; i < names.size(); ++i)
{
if (returnTypes[i]->category() == Type::Category::Mapping)
continue;
if (
auto const* arrayType = dynamic_cast<ArrayType const*>(returnTypes[i]);
arrayType && !arrayType->isByteArray()
)
continue;
pair<u256, unsigned> const& offsets = structType->storageOffsetsOfMember(names[i]);
vector<string> retVars = IRVariable("ret_" + to_string(returnVariables.size()), *returnTypes[i]).stackSlots();
returnVariables += retVars;
code += Whiskers(R"(
<ret> := <readStorage>(add(slot, <slotOffset>))
)")
("ret", joinHumanReadable(retVars))
("readStorage", m_utils.readFromStorage(*returnTypes[i], offsets.second, true))
("slotOffset", offsets.first.str())
.render();
}
}
else
{
solAssert(returnTypes.size() == 1, "");
auto const* arrayType = dynamic_cast<ArrayType const*>(returnTypes.front());
if (arrayType)
solAssert(arrayType->isByteArray(), "");
vector<string> retVars = IRVariable("ret", *returnTypes.front()).stackSlots();
returnVariables += retVars;
code += Whiskers(R"(
<ret> := <readStorage>(slot, offset)
)")
("ret", joinHumanReadable(retVars))
("readStorage", m_utils.readFromStorageDynamic(*returnTypes.front(), true))
.render();
}
return Whiskers(R"(
function <functionName>(<params>) -> <retVariables> {
<code>
}
)")
("functionName", functionName)
("params", joinHumanReadable(parameters))
("retVariables", joinHumanReadable(returnVariables))
("code", std::move(code))
.render();
});
}
string IRGenerator::generateInitialAssignment(VariableDeclaration const& _varDecl)
{
IRGeneratorForStatements generator(m_context, m_utils);
generator.initializeLocalVar(_varDecl);
return generator.code();
}
pair<string, map<ContractDefinition const*, vector<string>>> IRGenerator::evaluateConstructorArguments(
ContractDefinition const& _contract
)
{
struct InheritanceOrder
{
bool operator()(ContractDefinition const* _c1, ContractDefinition const* _c2) const
{
solAssert(contains(linearizedBaseContracts, _c1) && contains(linearizedBaseContracts, _c2), "");
auto it1 = find(linearizedBaseContracts.begin(), linearizedBaseContracts.end(), _c1);
auto it2 = find(linearizedBaseContracts.begin(), linearizedBaseContracts.end(), _c2);
return it1 < it2;
}
vector<ContractDefinition const*> const& linearizedBaseContracts;
} inheritanceOrder{_contract.annotation().linearizedBaseContracts};
map<ContractDefinition const*, vector<string>> constructorParams;
map<ContractDefinition const*, std::vector<ASTPointer<Expression>>const *, InheritanceOrder>
baseConstructorArguments(inheritanceOrder);
for (ASTPointer<InheritanceSpecifier> const& base: _contract.baseContracts())
if (FunctionDefinition const* baseConstructor = dynamic_cast<ContractDefinition const*>(
base->name().annotation().referencedDeclaration
)->constructor(); baseConstructor && base->arguments())
solAssert(baseConstructorArguments.emplace(
dynamic_cast<ContractDefinition const*>(baseConstructor->scope()),
base->arguments()
).second, "");
if (FunctionDefinition const* constructor = _contract.constructor())
for (ASTPointer<ModifierInvocation> const& modifier: constructor->modifiers())
if (auto const* baseContract = dynamic_cast<ContractDefinition const*>(
modifier->name().annotation().referencedDeclaration
))
if (
FunctionDefinition const* baseConstructor = baseContract->constructor();
baseConstructor && modifier->arguments()
)
solAssert(baseConstructorArguments.emplace(
dynamic_cast<ContractDefinition const*>(baseConstructor->scope()),
modifier->arguments()
).second, "");
IRGeneratorForStatements generator{m_context, m_utils};
for (auto&& [baseContract, arguments]: baseConstructorArguments)
{
solAssert(baseContract && arguments, "");
if (baseContract->constructor() && !arguments->empty())
{
vector<string> params;
for (size_t i = 0; i < arguments->size(); ++i)
params += generator.evaluateExpression(
*(arguments->at(i)),
*(baseContract->constructor()->parameters()[i]->type())
).stackSlots();
constructorParams[baseContract] = std::move(params);
}
}
return {generator.code(), constructorParams};
}
string IRGenerator::initStateVariables(ContractDefinition const& _contract)
{
IRGeneratorForStatements generator{m_context, m_utils};
for (VariableDeclaration const* variable: _contract.stateVariables())
if (!variable->isConstant())
generator.initializeStateVar(*variable);
return generator.code();
}
void IRGenerator::generateImplicitConstructors(ContractDefinition const& _contract)
{
auto listAllParams = [&](
map<ContractDefinition const*, vector<string>> const& baseParams) -> vector<string>
{
vector<string> params;
for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
if (baseParams.count(contract))
params += baseParams.at(contract);
return params;
};
map<ContractDefinition const*, vector<string>> baseConstructorParams;
for (size_t i = 0; i < _contract.annotation().linearizedBaseContracts.size(); ++i)
{
ContractDefinition const* contract = _contract.annotation().linearizedBaseContracts[i];
baseConstructorParams.erase(contract);
m_context.resetLocalVariables();
m_context.functionCollector().createFunction(IRNames::implicitConstructor(*contract), [&]() {
Whiskers t(R"(
function <functionName>(<params><comma><baseParams>) {
<evalBaseArguments>
<?hasNextConstructor> <nextConstructor>(<nextParams>) </hasNextConstructor>
<initStateVariables>
<userDefinedConstructorBody>
}
)");
vector<string> params;
if (contract->constructor())
for (ASTPointer<VariableDeclaration> const& varDecl: contract->constructor()->parameters())
params += m_context.addLocalVariable(*varDecl).stackSlots();
t("params", joinHumanReadable(params));
vector<string> baseParams = listAllParams(baseConstructorParams);
t("baseParams", joinHumanReadable(baseParams));
t("comma", !params.empty() && !baseParams.empty() ? ", " : "");
t("functionName", IRNames::implicitConstructor(*contract));
pair<string, map<ContractDefinition const*, vector<string>>> evaluatedArgs = evaluateConstructorArguments(*contract);
baseConstructorParams.insert(evaluatedArgs.second.begin(), evaluatedArgs.second.end());
t("evalBaseArguments", evaluatedArgs.first);
if (i < _contract.annotation().linearizedBaseContracts.size() - 1)
{
t("hasNextConstructor", true);
ContractDefinition const* nextContract = _contract.annotation().linearizedBaseContracts[i + 1];
t("nextConstructor", IRNames::implicitConstructor(*nextContract));
t("nextParams", joinHumanReadable(listAllParams(baseConstructorParams)));
}
else
t("hasNextConstructor", false);
t("initStateVariables", initStateVariables(*contract));
string body;
if (FunctionDefinition const* constructor = contract->constructor())
{
vector<ModifierInvocation*> realModifiers;
for (auto const& modifierInvocation: constructor->modifiers())
// Filter out the base constructor calls
if (dynamic_cast<ModifierDefinition const*>(modifierInvocation->name().annotation().referencedDeclaration))
realModifiers.emplace_back(modifierInvocation.get());
if (realModifiers.empty())
body = generate(constructor->body());
else
{
for (size_t i = 0; i < realModifiers.size(); ++i)
{
ModifierInvocation const& modifier = *realModifiers.at(i);
string next =
i + 1 < realModifiers.size() ?
IRNames::modifierInvocation(*realModifiers.at(i + 1)) :
IRNames::functionWithModifierInner(*constructor);
generateModifier(modifier, *constructor, next);
}
body =
IRNames::modifierInvocation(*realModifiers.at(0)) +
"(" +
joinHumanReadable(params) +
")";
// Now generate the actual inner function.
generateFunctionWithModifierInner(*constructor);
}
}
t("userDefinedConstructorBody", move(body));
return t.render();
});
}
}
string IRGenerator::deployCode(ContractDefinition const& _contract)
{
Whiskers t(R"X(
let <codeOffset> := <allocateUnbounded>()
codecopy(<codeOffset>, dataoffset("<object>"), datasize("<object>"))
<#immutables>
setimmutable(<codeOffset>, "<immutableName>", <value>)
</immutables>
return(<codeOffset>, datasize("<object>"))
)X");
t("allocateUnbounded", m_utils.allocateUnboundedFunction());
t("codeOffset", m_context.newYulVariable());
t("object", IRNames::deployedObject(_contract));
vector<map<string, string>> immutables;
if (_contract.isLibrary())
{
solAssert(ContractType(_contract).immutableVariables().empty(), "");
immutables.emplace_back(map<string, string>{
{"immutableName"s, IRNames::libraryAddressImmutable()},
{"value"s, "address()"}
});
}
else
for (VariableDeclaration const* immutable: ContractType(_contract).immutableVariables())
{
solUnimplementedAssert(immutable->type()->isValueType(), "");
solUnimplementedAssert(immutable->type()->sizeOnStack() == 1, "");
immutables.emplace_back(map<string, string>{
{"immutableName"s, to_string(immutable->id())},
{"value"s, "mload(" + to_string(m_context.immutableMemoryOffset(*immutable)) + ")"}
});
}
t("immutables", std::move(immutables));
return t.render();
}
string IRGenerator::callValueCheck()
{
return "if callvalue() { " + m_utils.revertReasonIfDebugFunction("Ether sent to non-payable function") + "() }";
}
string IRGenerator::dispatchRoutine(ContractDefinition const& _contract)
{
Whiskers t(R"X(
if iszero(lt(calldatasize(), 4))
{
let selector := <shr224>(calldataload(0))
switch selector
<#cases>
case <functionSelector>
{
// <functionName>
<delegatecallCheck>
<callValueCheck>
<?+params>let <params> := </+params> <abiDecode>(4, calldatasize())
<?+retParams>let <retParams> := </+retParams> <function>(<params>)
let memPos := <allocateUnbounded>()
let memEnd := <abiEncode>(memPos <?+retParams>,</+retParams> <retParams>)
return(memPos, sub(memEnd, memPos))
}
</cases>
default {}
}
if iszero(calldatasize()) { <receiveEther> }
<fallback>
)X");
t("shr224", m_utils.shiftRightFunction(224));
vector<map<string, string>> functions;
for (auto const& function: _contract.interfaceFunctions())
{
functions.emplace_back();
map<string, string>& templ = functions.back();
templ["functionSelector"] = "0x" + function.first.hex();
FunctionTypePointer const& type = function.second;
templ["functionName"] = type->externalSignature();
string delegatecallCheck;
if (_contract.isLibrary())
{
solAssert(!type->isPayable(), "");
if (type->stateMutability() > StateMutability::View)
// If the function is not a view function and is called without DELEGATECALL,
// we revert.
delegatecallCheck =
"if iszero(called_via_delegatecall) { " +
m_utils.revertReasonIfDebugFunction("Non-view function of library called without DELEGATECALL") +
"() }";
}
templ["delegatecallCheck"] = delegatecallCheck;
templ["callValueCheck"] = (type->isPayable() || _contract.isLibrary()) ? "" : callValueCheck();
unsigned paramVars = make_shared<TupleType>(type->parameterTypes())->sizeOnStack();
unsigned retVars = make_shared<TupleType>(type->returnParameterTypes())->sizeOnStack();
ABIFunctions abiFunctions(m_evmVersion, m_context.revertStrings(), m_context.functionCollector());
templ["abiDecode"] = abiFunctions.tupleDecoder(type->parameterTypes());
templ["params"] = suffixedVariableNameList("param_", 0, paramVars);
templ["retParams"] = suffixedVariableNameList("ret_", 0, retVars);
if (FunctionDefinition const* funDef = dynamic_cast<FunctionDefinition const*>(&type->declaration()))
templ["function"] = m_context.enqueueFunctionForCodeGeneration(*funDef);
else if (VariableDeclaration const* varDecl = dynamic_cast<VariableDeclaration const*>(&type->declaration()))
templ["function"] = generateGetter(*varDecl);
else
solAssert(false, "Unexpected declaration for function!");
templ["allocateUnbounded"] = m_utils.allocateUnboundedFunction();
templ["abiEncode"] = abiFunctions.tupleEncoder(type->returnParameterTypes(), type->returnParameterTypes(), _contract.isLibrary());
}
t("cases", functions);
FunctionDefinition const* etherReceiver = _contract.receiveFunction();
if (etherReceiver)
{
solAssert(!_contract.isLibrary(), "");
t("receiveEther", m_context.enqueueFunctionForCodeGeneration(*etherReceiver) + "() stop()");
}
else
t("receiveEther", "");
if (FunctionDefinition const* fallback = _contract.fallbackFunction())
{
solAssert(!_contract.isLibrary(), "");
string fallbackCode;
if (!fallback->isPayable())
fallbackCode += callValueCheck() + "\n";
if (fallback->parameters().empty())
fallbackCode += m_context.enqueueFunctionForCodeGeneration(*fallback) + "() stop()";
else
{
solAssert(fallback->parameters().size() == 1 && fallback->returnParameters().size() == 1, "");
fallbackCode += "let retval := " + m_context.enqueueFunctionForCodeGeneration(*fallback) + "(0, calldatasize())\n";
fallbackCode += "return(add(retval, 0x20), mload(retval))\n";
}
t("fallback", fallbackCode);
}
else
t("fallback", (
etherReceiver ?
m_utils.revertReasonIfDebugFunction("Unknown signature and no fallback defined") :
m_utils.revertReasonIfDebugFunction("Contract does not have fallback nor receive functions")
) + "()");
return t.render();
}
string IRGenerator::memoryInit(bool _useMemoryGuard)
{
// TODO: Remove once we have made sure it is safe, i.e. after "Yul memory objects lite".
// Also restore the tests removed in the commit that adds this comment.
_useMemoryGuard = false;
// This function should be called at the beginning of the EVM call frame
// and thus can assume all memory to be zero, including the contents of
// the "zero memory area" (the position CompilerUtils::zeroPointer points to).
return
Whiskers{
_useMemoryGuard ?
"mstore(<memPtr>, memoryguard(<freeMemoryStart>))" :
"mstore(<memPtr>, <freeMemoryStart>)"
}
("memPtr", to_string(CompilerUtils::freeMemoryPointer))
(
"freeMemoryStart",
to_string(CompilerUtils::generalPurposeMemoryStart + m_context.reservedMemory())
).render();
}
void IRGenerator::resetContext(ContractDefinition const& _contract)
{
solAssert(
m_context.functionGenerationQueueEmpty(),
"Reset function generation queue while it still had functions."
);
solAssert(
m_context.functionCollector().requestedFunctions().empty(),
"Reset context while it still had functions."
);
solAssert(
m_context.internalDispatchClean(),
"Reset internal dispatch map without consuming it."
);
m_context = IRGenerationContext(m_evmVersion, m_context.revertStrings(), m_optimiserSettings);
m_context.setMostDerivedContract(_contract);
for (auto const& var: ContractType(_contract).stateVariables())
m_context.addStateVariable(*get<0>(var), get<1>(var), get<2>(var));
}